University of California at San Diego – Department of Physics – Prof. John McGreevy

Quantum Field Theory C (215C) Spring 2013 Assignment 3

Posted April 23, 2013

Due 11am, Thursday, May 2, 2013

Relevant reading: Zee, Chapter IV.3. Zee, Chapter III.3 also overlaps with recent lecture material.

Problem Set 3

1. Propagator corrections in a solvable field theory.

Consider a theory of a scalar field in D dimensions with action

$$S = S_0 + S_1$$

where

$$S_0 = \int d^D x \frac{1}{2} \left(\partial_\mu \phi \partial^\mu \phi - m_0^2 \phi^2 \right)$$

and

$$S_1 = -\int d^D x \frac{1}{2} \delta m^2 \phi^2 \; .$$

We have artificially decomposed the mass term into two parts. We will do perturbation theory in small δm^2 , treating S_1 as an 'interaction' term. We wish to show that the organization of perturbation theory that we've seen lecture will correctly reassemble the mass term.

- (a) Write down all the Feynman rules for this perturbation theory.
- (b) Determine the 1PI two-point function in this model.
- (c) Show that the (geometric) summation of the propagator corrections correctly produces the propagator that you would have used had we not split up $m_0^2 + \delta m^2$.

2. Coleman-Weinberg potential.

(a) [Zee problem IV.3.4] What set of Feynman diagrams are summed by the Coleman-Weinberg calculation?

[Hint: expand the logarithm as a series in V''/k^2 and associate a Feynman diagram with each term.]

(b) [Zee problem IV.3.3] Consider a massless fermion field coupled to a scalar field ϕ by a coupling $g\phi\bar{\psi}\psi$ in D = 1 + 1. Show that the one loop effective potential that results from integrating out the fluctuations of the fermion has the form

$$V_F = \frac{1}{2\pi} \left(g\phi\right)^2 \log\left(\frac{\phi^2}{M^2}\right)$$

after adding an appropriate counterterm.