University of California at San Diego - Department of Physics - Prof. John McGreevy

Quantum Field Theory C (215C) Spring 2013 Assignment 1

Posted April 3, 2013
Due 11am, Thursday, April 11, 2013

Please remember to put your name at the top of your homework.

Announcements

- The 215 C web site is:
http://physics.ucsd.edu/~mcgreevy/s13.

Problem Set 1

1. Scale invariant quantum mechanics

Consider the action for one quantum variable $r \in \mathbb{R}^{+}$

$$
S[r]=\int d t\left(\frac{1}{2} m \dot{r}^{2}-V(r)\right), \quad V(r)=\frac{\lambda}{r^{2}} .
$$

[Note: relative to earlier versions of this problem set, I've restored the (non-relativistic) mass parameter m. It can be eliminated by a multiplicative redefinition of the field r or of the time t. You should convince yourself that the physics of interest here should only depend on $m \lambda$.]
(a) Show that the coupling λ is dimensionless: $[\lambda]=0$.
(b) Show that this action is scale invariant, i.e. show that under the transformation

$$
\begin{equation*}
r(t) \rightarrow s^{\alpha} \cdot r(s t) \tag{1}
\end{equation*}
$$

(for some α which you must determine), $s \in \mathbb{R}^{+}$is a symmetry. Find the associated Noether charge \mathcal{D}. For this last step, it will be useful to note that the infinitesimal version of (1) is ($s=e^{a}, a \ll 1$)

$$
\delta r(t)=a\left(\alpha+t \frac{d}{d t}\right) r(t)
$$

(c) Find the position-space Hamiltonian \mathbf{H} governing the dynamics of r. Show that the Schrödinger equation is Bessel's equation

$$
\left(-\frac{\partial_{r}^{2}}{2 m}+\frac{\lambda}{r^{2}}\right) \psi_{E}(r)=E \psi_{E}(r)
$$

Check that $[\mathbf{H}, \mathcal{D}]=0$.
(d) Describe the behavior of the solutions to this equation as $r \rightarrow 0$. [Hint: in this limit you can ignore the RHS. Make a power-law ansatz: $\psi(r) \sim r^{\Delta}$ and find Δ.]
(e) What happens if $2 m \lambda<-\frac{1}{4}$? It looks like there is a continuum of negative-energy solutions (boundstates). This is another example of a too-attractive potential.
(f) A hermitian operator has orthogonal eigenvectors. We will show next that to make H hermitian when $2 m \lambda<-\frac{1}{4}$, we must impose a constraint on the wavefunctions:

$$
\begin{equation*}
\left.\left(\psi_{E}^{\star} \partial_{r} \psi_{E}-\psi_{E} \partial_{r} \psi_{E}^{\star}\right)\right|_{r=0}=0 \tag{2}
\end{equation*}
$$

There are two useful perspectives on this condition: one is that the LHS is the probability current passing through the point $r=0$.
The other perspective is the following. Consider two eigenfunctions:

$$
\mathbf{H} \psi_{E}=E \psi_{E}, \quad \mathbf{H} \psi_{E^{\prime}}=E^{\prime} \psi_{E^{\prime}}
$$

Multiply the first equation by $\psi_{E^{\prime}}^{\star}$ and integrate; multiply the second by ψ_{E}^{\star} and integrate; take the difference. Show that the result is a boundary term which must vanish when $E=E^{\prime}$.
(g) Show that the condition (2) is empty for $2 m \lambda>-\frac{1}{4}$. Impose the condition (2) on the eigenfunctions for $2 m \lambda<-\frac{1}{4}$. Show that the resulting spectrum of boundstates has a discrete scale invariance.
[Cultural remark: For some silly reason, restricting the Hilbert space in this way is called a self-adjoint extension.] ${ }^{1}$
(h) [Extra credit] Consider instead a particle moving in \mathbb{R}^{d} with a central $1 / r^{2}$ potential, $r^{2} \equiv \vec{x} \cdot \vec{x}$,

$$
S[\vec{x}]=\int d t\left(\frac{1}{2} m \dot{\vec{x}} \cdot \dot{\vec{x}}-\frac{\lambda}{r^{2}}\right) .
$$

Show that the same analysis applies (e.g. to the s-wave states) with minor modifications.
[A useful intermediate result is the following representation of (minus) the laplacian in \mathbb{R}^{d} :

$$
\vec{p}^{2}=-\frac{1}{r^{d-1}} \partial_{r}\left(r^{d-1} \partial_{r}\right)+\frac{\hat{L}^{2}}{r^{2}}, \quad \hat{L}^{2} \equiv \frac{1}{2} \hat{L}_{i j} \hat{L}_{i j}, \quad L_{i j}=-\mathbf{i}\left(x_{i} \partial_{j}-x_{j} \partial_{i}\right),
$$

where $r^{2} \equiv x^{i} x^{i}$. By 's-wave states' I mean those annihilated by \hat{L}^{2}.]

[^0]
2. Gaussian integrals are your friend

(a) Show that

$$
\int_{-\infty}^{\infty} d x e^{-\frac{1}{2} a x^{2}+j x}=\sqrt{\frac{2 \pi}{a}} e^{\frac{j^{2}}{2 a}} .
$$

(b) Consider a collection of variables $x_{i}, i=1 . . N$ and a hermitian matrix $a_{i j}$. Show that

$$
\int \prod_{i=1}^{N} d x_{i} e^{-\frac{1}{2} x_{i} a_{i j} x_{j}+J^{i} x_{i}}=\frac{(2 \pi)^{N / 2}}{\sqrt{\operatorname{det} a}} e^{\frac{1}{2} J^{i} a_{i j}^{-1} J^{j}}
$$

(Summation convention in effect, as always.)
[Hint: change into variables to diagonalize a. $\operatorname{det} a=\prod a_{i}$, where a_{i} are the eigenvalues of a.]
(c) Consider a Gaussian field X, governed by the (quadratic) action

$$
S[x]=\int d t \frac{1}{2}\left(\dot{X}^{2}-\Omega^{2} X^{2}\right)
$$

Show that

$$
\left\langle e^{-\int d s J(s) X(s)}\right\rangle_{X}=\mathcal{N} e^{+\frac{1}{4} \int d s d t J(s) G(s, t) J(t)}
$$

where G is the (Feynman) Green's function for X, satisfying:

$$
\left(-\partial_{s}^{2}+\Omega^{2}\right) G(s, t)=\delta(s-t)
$$

Here \mathcal{N} is a normalization factor which is independent of J. Note the similarity with the previous problem, under the replacement

$$
a=-\partial_{s}^{2}+\Omega^{2}, \quad a^{-1}=G .
$$

[^0]: ${ }^{1}$ This model has been studied extensively, beginning, I think, with K.M. Case, Phys Rev 80 (1950) 797. More recent literature includes Hammer and Swingle, arXiv:quant-ph/0503074, Annals Phys. 321 (2006) 306-317. It also arises as the scalar wave equation for a field in anti de Sitter space.

