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5.1 Entropy is a state function

This is a fact we know from the microscopic discussion in Chapter 4. Here we will illustrate
its thermodynamic consequences.

Example: Three different expansion processes for a hydrostatic
system

1) Free 2) Quasistatic Isothermal 3) Quasistatic Adiabatic

In each case, expand from e.g. Vi to Vf = 2Vi.

What is ∆S in each case?

1) Free expansion:

dS >d̄Q/T since it is not quasistatic.

In particular, ∆S > 0.

For an ideal gas,

S = kBN

(
ln

(
V

N

)
+

3

2
ln

(
E

N

)
+ const

)
Recall: E does not change. Neither does N or T .

=⇒ ∆S = kBN

(
ln

(
Vf
N

)
− ln

(
Vi
N

))
= kBN

ln

(
Vf
Vi

)
︸ ︷︷ ︸

=2


∆S = kBN ln 2 for free expansion

2) (Quasistatic) Isothermal expansion:

Isothermal means the temperature doesn’t change. Since the temperature didn’t
change in protocol (1) above, this is another way to get to the same final state.

But this time we’re getting there quasistatically, so dS = d̄Q/T .
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Since T is constant and E = E(T ),

0 = dE = d̄Q+d̄W

=⇒ d̄Q = −d̄W = +PdV

=⇒ dS =
P

T
dV =

NkB
V

dV

=⇒ ∆S =

∫ f

i

dS = NkB

∫ Vf

Vi

dV

V
= NkB ln

(
Vf
Vi

)
Same answer:

∆S = kBN ln 2 for isothermal expansion

This had to be true in order for S to be a state function – it only depends on the
endpoints, not on how we got there.

3) Quasistatic adiabatic expansion:

quasistatic: =⇒ dS =
d̄Q

T
adiabatic: =⇒ d̄Q = 0 =⇒ dS = 0.

∆S = 0 for quasistatic adiabatic expansion

Different final state means we can have a different ∆S.

S = kBN

(
ln

(
V

N

)
+

3

2
ln

(
E

N

)
+ const

)
∆S = 0 =⇒ lnV +

3

2
lnE = const

=⇒ V E3/2 = const

So if V increases by a factor of 2, E decreases by a factor of 22/3. (Since E ∝ T , so
does T .)

Aside:

E =
3

2
NkBT =⇒ V T 3/2 = const

PV = NkBT =⇒ const = V (PV )3/2 = P 3/2V 5/2

=⇒ PV 5/3 = const

which is what we found before for the shape of an adiabat.
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CP − CV for a general hydrostatic system.

Recall from Chapter 3 that:

CP − CV = V α︸︷︷︸
=( ∂V

∂T )
P


(
∂U

∂V

)
T︸ ︷︷ ︸

=0 for ideal gas

+P


The reason α = 1

V

(
∂V
∂T

)
P

has a name is that it is easy to measure. On the other hand, the

term
(
∂U
∂V

)
T

which was zero for ideal gas is not so easy to measure. (I guess we could imagine
doing adiabatic free expansion lots of times into different size containers.) We can use the
fact that entropy is a state function to find an alternate useful expression for it.

The fact that S is a state function means we can think of it as a function of any complete
set of independent thermodynamic variables. It started its life in our discussion as a function
of (E, V ), but S = S(T, V ) would work just as well.

dS =

(
∂S

∂T

)
V

dT +

(
∂S

∂V

)
T

dV (1)

On the other hand, the 1st Law for quasistatic processes

dU = TdS︸︷︷︸
d̄Q

+−PdV︸ ︷︷ ︸
d̄W

also gives an expression for dS:

dS =
1

T
dU +

P

T
dV

Use calculus on U : dU =
(
∂U
∂T

)
V
dT +

(
∂U
∂V

)
T
dV to get

dS =
1

T

(
∂U

∂T

)
V

dT +
1

T

((
∂U

∂V

)
T

+ P

)
dV (2)

Now we can equate the coefficients in the two expressions, (1) and (2), for dS.(
∂S

∂T

)
V

=
1

T

(
∂U

∂T

)
V

(
∂S
∂V

)
T

= 1
T

((
∂U
∂V

)
T

+ P
)

=⇒ ∂

∂V
( ↑ ) = ∂

∂T
( ↑ )

The fact that S is a state variable means the mixed partials must be equal. This gives

1

T

∂2U

∂T∂V
=

1

T

∂2U

∂V ∂T
− 1

T 2

((
∂U

∂V

)
T

+ P

)
+

1

T

(
∂P

∂T

)
V

=⇒
((

∂U

∂V

)
T

+ P

)
= T

(
∂P

∂T

)
V
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We’ve rewritten
(
∂U
∂V

)
T

in terms of things that are easier to measure – P and its derivatives.
To see that this is something nicely measurable we do one more manipulation:

We’ve shown that

CP − CV = V α

(
T

(
∂P

∂T

)
V

)
On the other hand, the reciprocity relation implies(

∂P

∂T

)
V

=
−1(

∂V
∂P

)
T

(
∂T
∂V

)
P

=
−1

(−V κT ) 1
V α

=
α

κT
.

Since we can write it in terms of things that have historical names, it must be measurable.

CP − CV =
V Tα2

κT

This expression (or its derivation) involves basically everything we’ve learned so far.

A few things we can deduce from it:

• We know that CP − CV ≥ 0. So consistency with this expression means κT > 0. (If
this is not true, the system will explode or collapse.)

• CP − CV = 0 if α = 0. That happens when
(
∂V
∂T

)
P

= 0.

This happens for water at 4◦C.

Aside: we’ve shown along the way here that(
∂S

∂V

)
T

=

(
∂P

∂T

)
V

.

This is an example of a “Maxwell Relation”. (A different kind of
Maxwell relations are shown at right.) There are actually more of
them, and we’ll derive them systematically soon in §5.4.
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5.2 Efficiency of heat engines

hot source

cold sink

W

Q

Q

H

C

engine
OUT

Recall:

1. A heat engine takes a system (some assembly of some substance)
around a closed cycle over and over. It returns to the initial state
after one cycle.

2. Heat is transferred into and out of the substance. Some part of
the cycle involves a cold sink.

Conventions:
QH is the heat taken in from the hot reservoir.
QC is the heat spat out to the cold sink.
WOUT is the work done by the system.

3. Work is performed.

4. Efficiency is a subjective thing, in that it is defined as the ratio
of (what we want) to (what we use up) – it depends on our goals.
For heat engines, efficiency is defined by

η ≡ work out

heat in from hot source
=
Wout

QH

= 1− QC

QH

If all of QH enters from a reservoir at a single TH , and
if all of QC exits to a reservoir at a single TC , and
if the engine operates quasistatically
then this is called a Carnot engine.1 Then the following is true:

Carnot: ∆SH =
QH

TH
∆SC = −QC

TC

where ∆SH is the change in entropy of the system during the heating stage of the cycle and
∆SH is the change in entropy of the system during the cooling stage of the cycle. When we
heat the system, we increase its entropy; when we extract heat, we decrease its entropy.

1Below we will consider more complicated things, e.g. more isothermal legs and more adiabatic legs. They
will compare unfavorably with Carnot.
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S is a state function, and we are going in a closed cycle, so during one whole cycle:

0 = ∆STOT.

Finally, if we assume quasistatic operation, then the adiabatic legs involve no change in
entropy:

0 = d̄Q = TdS for adiabatic steps.

So:

0 = ∆STOT =
QC

TC
− QH

TH

=⇒ QC

TC
=
QH

TH

=⇒ η = 1− TC
TH

.

There can be many implementations of such a Carnot engine: e.g. one where the substance
in question was an ideal gas, or one involving a paramagnet. They all look the same on a
T-S diagram:

S

SS 12

T

T

H

T
C

H

C

Q   in

Q    out

1 2

34

The P-V diagram and the H-M diagram would look quite different from each other:
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If everything is done quasistatically∮
TdS︸ ︷︷ ︸

=area enclosed in TS diagram

=

∮
d̄Q = QH −QC

1st Law
= WOUT

On the other hand, S is a state function means that

0 =

∮
any closed cycle

dS
quasistatic

=

∮
d̄Q

T

If the cycle is not traversed quasistatically,

dS >
d̄Q

T
=⇒

∮
d̄Q

T
< 0

∮
d̄Q

T
≤ 0 Clausius’ Theorem

and the inequality is saturated for quasistatic cyclic processes ( = Carnot engines).
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Carnot is the best

Two arguments that Carnot efficiency is the maximum possible:

Consider a cyclic but not quasistatic engine which takes heat from some reservoir at TH
and dumping into a cold sink at TC , just like the engine we just studied.

Q

Q

H

C

engine

W
OUTother running

backwards

Carnot,

Q

Q
C

H ’

’

cold sink, T

hot source, T

C

H

= 

T

T
H

C

Q  − Q  ’
C C

H H
Q   − Q  ’

Clausius’ Statement of 2nd Law: QH −Q′H ≥ 0 =⇒ QH ≥ Q′H . (Similarly for QC ≥ Q′C .)

=⇒ WOUT

QH

≤ WOUT

Q′H

=⇒ ηother engine ≤ ηcarnot engine.
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Carnot is the best, part 2

Q: Can we do better if we construct some complicated protocol involving reservoirs at
different temperatures?

Consider the cycle of an arbitrary, quasistatic engine in the TS plane:

η =
W

QIN

=
QIN −QOUT

QIN

= 1− QOUT

QIN

.

QIN =

∫
upper path from 1 to 2

TdS ≤ Tmax

∫ 2

1

dS = Tmax (S2 − S1) .

QOUT = −
∫

lower path from 2 to 1

TdS = +

∫
lower path from 1 to 2

TdS ≥ Tmin

∫ 2

1

dS = Tmin (S2 − S1) .

These facts combine to imply that

η = 1− QOUT

QIN

≤ 1− Tmin (S2 − S1)

Tmax (S2 − S1)
= 1− Tmin

Tmax

= ηCarnot

It is less than the efficiency of a Carnot engine with just two reservoirs, one at Tmin and one
at Tmax.

A: No.

[End of Lecture 13.]
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5.3 Refrigerators and heat pumps

Q

Q

H

C

W

refrigerator

T
H

T
C

Refrigerator: run the cycle backwards, extract heat at the cold end and
dump heat into the hot reservoir. Accomplishing this requires that we
do work on the system, QH = W +QC .

Assume that this is a Carnot refrigerator, i.e. everything is reversible,
and there’s just two temperatures involved TH , TC .

We know:
W

QH

= 1− TC
TH

,
QC

QH

=
TC
TH

but this isn’t what we care about in judging whether this is a good
refrigerator.

ηrefrig =
what we want

what we use up
=

heat extracted from cold end

work done on system
=
QC

W
=

QC

QH −QC

=
TC

TH − TC

For TH
TC

= 1+ a little, ηrefrig � 1 – easy to cool without doing a lot of work, low power.

For TC → 0, ηrefrig → 0. It becomes increasingly difficult to cool something as T → 0.

T = 0 is the point at which no further heat can be extracted.

Reaching T = 0 requires an infinite amount of work.

Heat Pump

Same setup, but with a different goal.

Suppose we want to heat the hot end, not cool the cold end.

ηheat pump ≡
QH

W
=

QH

QH −QC

if reversible
=

TH
TH − TC

Now we have completed the rigorous version of Chapter 1.
Go back and read Chapter 1 again.

One more item in thermodynamics, however:
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5.4 Legendre transforms, thermodynamic potentials, and Maxwell
relations

A while back, we saw that we could start with2

E = E(S, V )

in terms of which the 1st Law for quasistatic processes is:

dE = TdS − PdV

and from this construct a new state variable:

H ≡ E + PV enthalpy

dH = dE + PdV + V dP =⇒ dH = TdS + V dP (3)

Note then that the enthalpy H is most naturally H(S, P ). It is most useful in analyzing
processes at constant pressure, in which case (3) reduces to

dH = d̄Q

(this is true even if the process is not quasistatic).

E and H are two examples of thermodynamic potentials.

The step of going from E(S, V ) to H(S, P ) is an example of a Legendre Transform.

A place where you might have seen this operation is going between Lagrangian and Hamil-
tonian descriptions in classical mechanics.

As there, the same physics can be described using E or H. Sometimes one is more conve-
nient than the other. For example:

CV =
(
∂E
∂T

)
V

CP = complicated expression with derivs of E

CV = complicated expression with derivs of H CP =

(
∂H

∂T

)
P

2We wrote it as U = U(S, V ); if you like, this is the relation S = S(U, V ), rearranged by solving for the
internal energy.
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A mathematical interlude on Legendre Transform

Consider a function y(x) whose second derivative y′′(x) is nowhere zero.
(So it is everywhere concave, or everywhere convex.)

[ Think of E = E(V ) at fixed S: E = 3
2
NkBT, V T

3/2 = const =⇒
E(V, S) ∝ V −2/3. ]

Geometric interpretation:

Consider the point (x, y) = (x, y(x)) along the curve y(x); draw the
tangent line through this point. It has slope y′ = y′(x). Its y-axis-
intercept is at

I ≡ y − xy′.

We can represent the information about the same curve as either y(x) or as I(y′). Here’s
the protocol for doing the latter:

Pick a y′. Draw a line with that slope. Slide it up and down until it is tangent to the curve
y(x); the resulting line has y-intercept I(y′). Repeat for however many values of y′ you
want.

This collection of straight lines (determined by I(y′)) is the “envelope of tangents” of the
curve of interest y(x).

y(x)↔ I(y′)

Contain the same information, determine the same curve.
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In the definition of I ≡ y − xy′, you recognize the formula for Legendre transformation.
Rewrite in terms of thermo letters:

y(x)→ E︸︷︷︸
think of this as y

(S, V︸︷︷︸
think of this as x

)

and S is just a spectator.

y′ =

(
∂E

∂V

)
S

= −P.

I︸︷︷︸
H

( y′︸︷︷︸
−P

) = y − xy′ = E + PV = H(S, P ).

So E(S, V ) and H(S, P ) describe the same physics. 3

Now we can Legendre transform back:

In the plot I have shown the curve I(y′).4 Also indicated are the point (y′, I) and the
vertical-axis-intercept of the tangent through that point. Its height is

I − y′∂I
∂y
≡ Ĩ .

3As long as E is a convex (or concave) function of V . This is in fact a requirement for stability.
4I’m using the I(y′) for the function I plotted above, which was y(x) = (x− 2)2 − 2. This means

y′(x) = 2(x− 2) ;

I solved this for x(y′) = (4 + y′)/2 and plugged that into

I(y′) = y(x)− xy′ = 2− 2y′ − (y′)2/4.
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We can represent the data in I(y′) just as well by Ĩ(∂I
∂y

). But

∂I

∂y′
= −x =⇒ Ĩ = I + xy′ = y

That is, Ĩ = y(x). So the Legendre transform squares to one, i.e. undoes itself.

Returning to physics variables again, start with H(S, P ) and dH = TdS+V dP . Construct
E = H − PV .

dE = TdS − PdV

So this is E(S, V ).

So to go back and forth between E and H we Legendre transform, either way.

Maxwell Relations

dE = TdS − PdV dH = TdS + V dP

=⇒
(
∂E

∂S

)
V

= T

(
∂E

∂V

)
S

= −P =⇒
(
∂H

∂S

)
P

= T

(
∂H

∂P

)
S

= V

E is a state variable. H is a state variable.
equate mixed partials of E: equate mixed partials of H:

=⇒
(
∂T

∂V

)
S

= −
(
∂P

∂S

)
V

=⇒
(
∂T

∂P

)
S

=

(
∂V

∂S

)
P

So: Maxwell Relations follow by equating mixed second derivatives of thermodynamic po-
tentials. The second one is the one we encountered previously.
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More thermodynamic potentials → more Maxwell relations

So far S has just gone along for the ride in our Legendre transforms: we haven’t touched
the TdS bit. We can Legendre transform that bit, too:

Define F = E − TS “(Helmholtz) Free Energy”

(Mnemonic: ‘F’ is for ‘free’.)

dF = dE − TdS − SdT =⇒ dF = −SdT − PdV

So F = F (T, V ).

[Preview: in the next Chapter, we will formulate statistical mechanics for a system which
is not isolated, and in particular is held at constant temperature by a heat reservoir. F will
play a key role.]

From this expression, we deduce:(
∂F

∂T

)
V

= −S
(
∂F

∂V

)
T

= −P

Equating crossed derivatives gives our 3rd Maxwell relation:(
∂S

∂V

)
T

=

(
∂P

∂T

)
V
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The 4th Maxwell relation, by the Method of the Missing Box

E = E(S, V ),
dE = TdS − PdV,(

∂T

∂V

)
S

= −
(
∂P

∂S

)
V

H = E + PV ↙ ↘ F = E − TS

H = H(S, P ),
dH = TdS + V dP(

∂T

∂P

)
S

=

(
∂V

∂S

)
P

F = F (T, V ),
dF = −SdT − PdV,

−
(
∂S

∂V

)
T

= −
(
∂P

∂T

)
V

G = H − ST ↘ ↙ G = F + PV

G = G(T, P ),
dG = −SdT + V dP,

−
(
∂S

∂P

)
T

=

(
∂V

∂T

)
S

G is for “Gibbs’ Free Energy”. The 4th and last thermodynamic potential (for a hydrostatic
system): E,F,G,H.

You should be able to quickly recreate this derivation of the four Maxwell relations.

DO NOT MEMORIZE THIS STUFF.

Note that you can do this operation for any pair of conjugate variables. In systems with
more thermodynamic variables, there are more thermodynamic potentials. For example in
a system with a magnetization, E = E(S, V,M) so

dE = TdS − PdV +HdM

and we can construct a new thermodynamic potential whose name is not standard:

I = I(S, V,H) ≡ E −HM
for which

dI = TdS − PdV −MdH.
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Conditions for equilibrium (The point of F and G, and why they are called ‘free’
energies.)

1. Consider a system in contact with a bath at temperature T . Suppose the system is
equilibrating at constant V .

As it equilibrates, the 2nd Law tells us: dS ≥ d̄Q

Tbath

.

Since V is constant, dV = 0 =⇒ d̄W = 0 so the 1st Law is: dE = d̄Q:

dS ≥ dE

Tbath

=⇒ d (E − TbathS) ≤ 0

dF ≤ 0 at constant V, Tbath

So: at constant V, T , the system evolves so as to minimize F .

2. Suppose instead that work can be done, dV 6= 0, as the system equilibrates, but P is
held constant.

dS ≥ d̄Q

Tbath

=
dE + PdV

Tbath

=⇒ d

(
E − TbathS + P︸︷︷︸

assumed constant

V

)

=⇒ dG ≤ 0 at constant P, Tbath

So: at constant P, T , the system evolves so as to minimize G.

Note also that at fixed P ,
d (E − TS) ≤ −PdV

=⇒ dF ≤ +d̄W

=⇒ −dF ≥ −d̄W

−d̄W is the work done by the system.

During relaxation to equilibrium at constant T and P , the work done by the system is
less than or equal to the (magnitude of the) change in F , as F decreases.

This is why F is called the ‘Free Energy’ or ‘available energy’.

This is all the thermodynamics we’re going to need, except for Chapter 8: Chemical Po-
tential.

Next: the version of Stat Mech that we actually use.
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