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I. BULK VECTOR FIELDS

In this problem we will evaluate a certain three-point function using AdS/CFT, to verify that it has the form
required by conformal symmetry. This will require some machinery, and I will follow the approach taken in [1]. We
work with AdSd+1 with metric given by

ds2 =
1

x2
0

(

dx2
0 +

d
∑

i=1

dxidxi

)

≡ 1

x2
0

dxAdx
A (1)

For this problem we will work in Euclidean signature i runs over all d dimensions of the boundary theory, and
xA = xA = (x0, x

i).

A. Warmup

First, we will study the gauge field bulk-boundary propagator KMN . The equations of motion for a massless gauge
field in AdSd+1 were worked out in Problem Set 4. If we assume there is no momentum in any of the field theory
directions, these equations reduce to (see (40) in Problem Set 4 solutions)

x2
0∂0Ai + (3 − d)x0∂0Ai = 0 (2)

We then have the immediate solution

Ai = ǫix
d−2
0 (3)

where ǫi is some polarization vector (we work in a gauge where Az = 0). Now let us consider the effect of the infamous
inversion on this solution. Recall that the inversion is a relation between coordinate systems

xA =
x̄A

x̄Ax̄A
(4)

I denote the coordinates of the gauge field in the new barred coordinate system by ĀB; these take the form

ĀB(x̄) = AC(x(x̄))
∂xC

∂x̄B
(5)

Working out the Jacobian of the coordinate transformation (done previously in Problem Set 4, problem 1) we find
that the solution (3) becomes

ĀB(x̄C) =
x̄0

d−2

x̄2(d−1)

(

δA
B − x̄Ax̄B

x̄2

)

δi
Aǫi (6)

This is precisely the bulk-boundary propagator from a point in the bulk xC to the point xi = 0 on the boundary. This
can be verified in exactly the same way as was done in class for the scalar case. To recap briefly: by construction this
is a solution to the equations of motion. Furthermore at x0 = 0 the propagator vanishes at all points where xi 6= 0,
and a scaling argument shows that

∫

ddxAi(x) is independent of x0 and proportional to ǫi, showing that the boundary
value of this propagator is a delta function, as desired. Thus, dropping the bars, the bulk-to-boundary propagator
from an arbitrary point yi at the boundary to a point xA in the bulk is just

KAi(x
A; yi) = c

xd−2
0

(x2
0 + (x− y)i(x − y)i)d−1

(

δAi −
(x− y)A(x− y)i

x2

)

(7)

This is (almost) the form claimed in the problem set. As it turns out, we will not actually require this explicit form
for the rest of the computation.
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B. 3-point function

Next, we turn to the computation of the following CFT three-point function

〈O(x1)O∗(x2)Ji(x3)〉CFT (8)

Here Ji is a symmetry current and O is an operator of dimension ∆ that is charged under that symmetry. Let us take
Ji to be a U(1) current for simplicity; it is then dual to a bulk U(1) gauge field AM , and O is dual to a bulk massive
scalar field φ that is charged under that U(1). The covariant derivative of this field φ is then

DMφ = (∂M − igAM )φ (9)

Thus the bulk scalar action contains a term

Sbulk ⊃ −igAM(φ∂Mφ∗ − φ∗∂Mφ) (10)

This is the term that will be relevant for us. Indeed, as discussed in lecture it is rather clear that the three point
function that we want is proportional to

〈O(x1)O∗(x2)Ji(x3)〉CFT ∼ g

∫

dd+1z
√−ggMNKMi(z;x3) [K∆(z;x1)∂NK∆(z;x2) −K∆(z;x2)∂NK∆(z;x1)] , (11)

where KMi is the gauge field bulk-boundary propagator found above and K∆(z;xi) is the familiar scalar dimension-∆
bulk-boundary propagator

K∆(z, xi) = c∆

(

z0
z2
0 + (z − x)i(z − x)i

)∆

(12)

At first glance, this integral looks completely and utterly impossible. We are going to do it anyway. We make our
lives simpler with the following steps:

1. First, set x3 = 0. It should be clear there is no loss of generality here.

2. Next, we stare hard at the right-hand side of (11). Clearly we can do this integral in any coordinate system we
want; let us thus do it in a coordinate system related to the one where x3 = 0 by an inversion. Why does this
help us? After the inversion, the point x3 (which is at the AdS boundary) becomes the point at infinity; but
this means that for the gauge field propagator we can use the hilariously simple solution (3) rather than the
messy (7). Let us thus work out how everything on the right-hand side of (11) transforms under an inversion

xA = x̄A

x̄Ax̄A
:

(x− y)2 =

(

x̄

x̄2
− ȳ

ȳ2

)2

=

(

1

x̄2
+

1

ȳ2
+

(x̄− ȳ)2 − (x̄2 + ȳ2)

x̄2ȳ2

)

=
(x̄− ȳ)2

x̄2ȳ2
(13)

K∆(z;xi) =

(

z̄0z̄
2x̄2

z̄2(z̄ − x̄)2

)∆

= K∆(z̄; x̄i) x̄2∆ (14)

Note that in the first formula x and y are vectors xA, yA labeling a point in AdS and in the second x = (0, xi)
should be viewed as a (d+1) dimensional vector but restricted to the boundary of AdS. Putting these pieces
together the integral becomes

g(x̄1x̄2)
2∆

∫

dd+1z̄
1

z̄

[

(

z̄0
(z̄ − x̄1)2

)∆

∂zi

(

z̄0
(z̄ − x̄2)2

)∆
]

− (x1 ↔ x2) (15)

This looks more tractable.

3. Finally, we “do” an integral:

F (~x, ~y) ≡
∫

∞

0

dz0

∫

dd~z
za
0

(z2
0 + (~z − ~x)2)b(z2

0 + (~z − ~y)2)c
= const × |~x− ~y|1+a+d−2b−2c (16)

Note that it is clear from translational and scale invariance in ~x, ~y that the answer can only be a power law
in |~x − ~y|, and dimensional analysis then tells us the exponent. To get the overall factor one must work much
harder; I believe it can be done with Feynman parameters (eq (22) in [1]), but I am not going to do it here.
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With this result our work is actually done; if we trade the derivative ∂zi
for a derivative ∂xi

2
in (15) and use the

integral result above, the answer is simply

〈O(x1)O∗(x2)Ji(0)〉 = const × (x̄1x̄2)
2∆∂x̄i

2
|x̄1 − x̄2|d−2∆ − (x1 ↔ x2) (17)

Here the barred coordinates should be viewed as functions of the unbarred ones. Thus taking the derivative and
expressing everything in terms of the unbarred coordinates, we obtain

〈O(x1)O∗(x2)Ji(0)〉 = const ×
(

x1

x2
1

− x2

x2
2

)

i

|x1 − x2|d−2∆−2

(|x1||x2|)d−2
(18)

It is clear how to extend this to points x3 6= 0; translational invariance means that we simply replace x2 with x2 −x3,
etc. This expression is exactly the form required by conformal invariance (as discussed in lecture), and it is a rather
nontrivial check of the AdS/CFT correspondence that we could obtain this form from this somewhat involved gravity
calculation.

II. RELATION BETWEEN ADS PROPAGATORS

Here we will establish a useful relation between bulk-boundary and bulk-to-bulk propagators in AdS space. Switch-
ing notation for simplicity, we will work now with AdS space in the form

ds2 =
1

z2

(

dz2 + (dxi)2
)

(19)

Let K∆(z, x;x′) be the bulk-boundary propagator defined in (12). This is a solution to the bulk equations of motion
that satisfies

lim
z→ǫ

K∆(z, x;x′) = ǫ∆−δd(x − x′) (20)

and let G∆(z, x; z′, x′) be the bulk-bulk propagator, defined as the normalizable solution to the bulk equations of
motion, but with source:

(�x −m2)G(z, x; z′, x′) =
1√
g
δd(x− x′)δ(z − z′) (21)

Finally, we consider ”Green’s second identity”, applicable to any two functions φ and ψ:

∫

U

dd+1x
√
g
[

φ(�x −m2)ψ − ψ(�x −m2)φ
]

=

∫

∂U

ddx
√
γ(φn · ∂ψ − ψn · ∂φ) (22)

Now: set φ(z, x) = G∆(z, x; z1, x1) and ψ(z, x) = K∆(z, x;x2) in that case we end up with the following:

−K∆(z1, x1;x2) = lim
z→ǫ

∫

∂AdS

ddxz1−d [G∆(z, x; z1, x1)∂zK∆(z, x;x2) −K∆(z, x;x2)∂zG∆(z, x; z1, x1)] (23)

Now, if z and z1 are separated, then the fact that G is a normalizable solution to the AdS wave equation means that
asymptotically it must behave as G ∼ z∆+ . Using this fact and the known behavior of the scalar propagator (20) to
evaluate the radial derivatives, we end up with

−K∆(z1, x1;x2) = ǫ∆−−d

∫

ddx
(

G∆(ǫ, x; z1, x1)[∆− − ∆+]δd(x − x2)
)

(24)

Thus using ∆+ + ∆− = d, we finally end up with

K∆(z1, x1;x2) =
∆+ − ∆−

ǫ∆+
G∆(ǫ, x2; z1, x1), (25)

which is the desired relation.
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III. WILSON LINE WITH CUSP

We are now going to compute the value of a Wilson loop with a “cusp” with opening angle v. This (and several
related computations) have been done in [2], which I will mostly follow. We begin (as always) by reducing an impossible
strongly coupled QFT problem to a fun classical mechanics exercise via the prescription discussed in lecture,

〈W [v]〉CFT = exp(−S[v]) (26)

where S[v] is the classical action of a string worldsheet whose boundary on ∂AdS has the cusp with opening angle v.
Note that this action is the normal Nambu-Goto action,

S[v] =
1

2πα′

∫

d2σ

√

(Ẋ ·X ′)2 − Ẋ2X ′2 (27)

For this problem we will work with the AdS metric in the following form:

ds2 =
L2

z2

(

dz2 + dr2 + r2dφ2 + r2(angles that will not matter to us)
)

(28)

We will use r, φ as coordinates on the string worldsheet as well; thus our task is to determine the function z(r, φ),
which completely determines the embedding of the string in the bulk geometry. Now at first this problem looks very
difficult: finding the string solution that asymptotes to a shape as peculiar as a line with a cusp seems like a nontrivial
endeavor. Life is made easier by the fact that the boundary conditions are invariant under a scale transformation
r → λr. This means that the bulk worldsheet solution should also be invariant under the bulk diffeomorphism
r → λr, z → λz, leading us to the following scale-invariant ansatz for the string solution:

z(r, φ) =
r

f(φ)
(29)

In that case the string action (27) becomes

S =
L2

2πα′

∫

drdφ

r

√

f4 + f2 + f ′2 (30)

and we need only solve for f(φ). This action does not explicitly depend on φ; thus it admits a conserved “energy” E,
which works out to be

E =
f2 + f4

√

f4 + f2 + f ′2
(31)

Finally, the boundary conditions for the cusp are

z(r, 0) = z(r, v) = 0 (32)

This simply says that at the AdS boundary z = 0 the opening angle is v. Thus we have a setup where f(φ = 0) is
∞, it dips down to finite values for φ ∈ (0, v) before shooting off to ∞ again at φ = v. We would like to relate the
opening angle v to the parameter E which will be more useful for evaluating the action integral. To do this, note that
the minimum value f0 of f(φ) will happen at φ = v/2, where f ′(v/2) = 0 and thus we have

E = f0

√

1 + f2
0 (33)

so we can write

v

2
=

∫ v/2

0

dφ = −
∫

∞

f0

df

[

f
√

1 + f2

(

f2(1 + f2)

f2
0 (1 + f2

0 )
− 1

)1/2
]−1

(34)

where in the second integral we have changed integration variables from φ to f and used (31) and (33) to relate df/dφ
to f0. In principle this integral can be done as a function of f0 and inverted to give f0 as a function of v. In reality,
this turns out to involve elliptic integrals and is rather unenlightening; thus let us instead expand in powers of f0.
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It is not immediately clear why you might want to do this, but if we press on we find that the leading term in the
integral is

v

2
= −

∫

∞

f0

df
f0

f
√

1 + f2
√

f2 + f4
+ O(f2

0 ) = arctan

(

1

f0

)

+ O(f2
0 ) (35)

Thus we see that the limit f0 → 0 corresponds to v → π, i.e. a small opening angle. We will work in this limit for
the remainder of the problem (note that there is no problem in principle in extending this to arbitrary opening angle;
however the number of elliptic integrals proliferates and so I prefer to avoid this).

Next we express the area in terms of f0; starting with (30) and expanding in powers of f0, we obtain eventually
the very simple expression

S =
L2

πα′

∫

dr

r

∫

∞

f0

df + O(f2
0 ) (36)

This is divergent at large f ; however if we look back at the definition of f in (29), we see that if we have a UV cutoff
on z at z = ǫ, we should really only integrate up to r/ǫ. Thus we find

S =
L2

πα′

∫

dr

(

1

ǫ
− f0

r

)

=

√
λ

π

(

1

ǫ
rmax − f0 log

(

rmax

rmin

))

(37)

We are done. The first term is proportional to the length of the Wilson line and is just the usual linear divergence; the
second term is the extra contribution from the discontinuity in the Wilson line. Note it has the expected dependence
on the IR and UV cutoffs rmax and rmin and indeed vanishes as f0 → 0, i.e. as v → π from (35).

IV. SURFACE GRAVITY

Here we study the properties of metrics of the form

ds2 = Ω(z)

(

f(z)dy2 +
dz2

f(z)
+ ds2other

)

(38)

where the function f(z) has a first-order zero at z = zm and Ω(z) is well-behaved there. We begin by Taylor expanding
f(z) near z = zm,

ds2 = Ω(zm)

(

(z − zm)f ′(zm)dy2 +
dz2

(z − zm)f ′(zm)
+ ...

)

(39)

This peculiar-looking metric is actually something that we are very familiar with. To understand this, imagine picking
a coordinate r such that

dz2 Ω(zm)

(z − zm)f ′(zm)
= dr2 → (z − zm) =

f ′(zm)

4Ω(zm)
r2 (40)

to obtain the second inequality I integrated the first relation in a small neighborhood of zm. In terms of this new
coordinate r, the metric near zm simply becomes

ds2 =
r2f ′(zm)2

4
dy2 + dr2 + ... (41)

This should look even more familiar if we define a coordinate θ = yf ′(zm)/2, giving us simply

ds2 = r2dθ2 + dr2 + ... (42)

This is precisely the metric of Euclidean 2d space in polar coordinates! However we know well that this spacetime
has a conical singularity at the origin unless θ has a periodicity of 2π. This means that

y ∈
[

0,
4π

f ′(zm)

]

(43)
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Thus we have found the periodicity of y. Note that metrics such as (38) can arise as the analytic continuations of
black holes to Euclidean space, in which case y is imaginary time and its periodicity is nothing less than the inverse
temperature of the black hole.

We now work out some examples. First we do the analytic continuation of the ordinary 4d Schwarzschild black
hole in flat space, for which we have

f(z) = 1 − 2GM

z
Ω = 1 (44)

Taking the derivative and evaluating at z = zm = 2GM , we get ymax = 8πGM as the periodicity of y. Note this
means the black hole has a temperature of T = 1

8πGM , a rather famous result that we have quickly re-derived.
Next, we move on to the Euclidean AdS black hole with planar horizon, which has

f(z) = 1 −
(

z

zm

)4

Ω =
1

z2
(45)

From here we obtain ymax = πzm, and thus T = 1
πzm

.
Finally we turn to a slightly different way to compute this periodicity using the surface gravity κ, defined by

κ2 =
1

2
∇aξ

b∇cξ
dgbdg

ac

∣

∣

∣

∣

z=zm

(46)

where xi is the tangent vector to the shrinking circle, ξ = ∂y. Note that the analysis of the earlier section showed us
that the near-horizon metric could be written in the form

ds2 = α2r2dy2 + dr2 (47)

where α = f ′(zm)/2. Now to compute the relevant covariant derivatives we need the Christoffel symbols; the relevant
components work out to be

Γy
ry =

1

r
Γr

yy = −rα2 (48)

As the “upper” coordinates of ξa are all constant (ξa = δa
y), only the Christoffel symbols contribute to the expression

(46), and we obtain

κ2 =
1

2

[

(Γy
yrgyyg

rr)2 + (Γr
yygrrg

yy)2
]

= α2 (49)

Thus we find the following simple result for the surface gravity

κ =
f ′(zm)

2
=

2π

ymax
, (50)

telling us that the surface gravity is simply related to the inverse periodicity (and thus the temperature) of the black
hole.
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