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I. BRANES ENDING ON BRANES

Let’s first remind ourselves why branes typically can’t end. A D(p − 2) brane action typically contains a term

S ⊃
∫

D(p−2)

Cp−1 (1)

where Cp−1 is a (p − 1) form gauge potential whose gauge transformation is given by δC(p−1) = dΛp−2, Λp−2 being
a (p − 2) form parametrizing the gauge freedom (compare with familiar electromagnetism, which has A1 and Λ0).
Under this gauge transform the variation of the action is

δS =

∫

D(p−2)

dΛp−2 =

∫

∂D(p−2)

Λp−2 (2)

where we have used Gauss’s law in fancy differential forms notation
∫

M
dF =

∫

∂M
F . This gauge variation must be

0 for all Λp−2; this means that the boundary ∂D(p − 2) must not exist, and thus the brane has no end.
On the other hand, consider adding the term mentioned in the problem set Snew =

∫

Dp
F ∧Cp−1, where Dp is some

other p-brane. The gauge variation of this new term is

δSnew =

∫

Dp

F ∧ dΛp−2 = −
∫

Dp

dF ∧ Λp−2 (3)

(where we have assumed that the Dp brane at least has no boundary to discard a boundary term) and thus the new
condition for the gauge invariance of the action is

δStotal =

∫

∂D(p−2)

Λp−2 −
∫

Dp

dF ∧ Λp−2 = 0 (4)

This condition can be satisfied only if the boundary ∂D(p − 2) sits on the Dp brane and dF 6= 0 on ∂D(p − 2). In
that case the D(p − 2) brane can certainly end on the Dp brane.

What does this look like from the point of view of the worldvolume theory on the Dp brane? Recall the equations
of motion for a 2−form field strength F,

d ⋆ F = ⋆je dF = ⋆jm (5)

in terms of electric and magnetic currents je and jm. dF 6= 0 thus implies the existence of something coupling
magnetically to the worldvolume gauge field. Some fun numerology shows that on a (p + 1) dimensional worldvoume,
je is always a 1-form (the gauge field couples electrically to a point-particle sweeping out a one-dimensional trajectory)
but jm is a (p−2) form; in our case this (p−2) form is related to the volume form of the (p−2) dimensional boundary
∂D(p − 2).

Finally lets specialize to p = 3; in that case we have D1 branes ending on D3 branes; their endpoints are just points
that look like magnetic monopoles to the d = 4 Yang-Mills theory living on the D3 brane.

II. TIMELIKE OSCILLATORS ARE EVIL

We have some offensive oscillators with [a, a†] = −1. Let’s do the problems in reverse order. Consider the normal
vacuum defined by a|0〉 = 0 and compute the norm of |1〉 ≡ a†|0〉. We have

〈0|aa†|0〉 = 〈0| − 1 + a†a|0〉 = −1〈0|0〉 (6)

Thus if the vacuum has positive norm the excited states have negative norm and vice-versa. Unfazed, we consider
a “funky vacuum” |0f〉 defined by a†|0f〉 = 0. Funky excited states defined by |nf 〉 = an|0f〉/n! will have positive
norm, and we appear to have a nice Hilbert space. We write the Hamiltonian as H = (E0 − 1)− aa† to suit our funky
interpretation. Unfortunately if we compute the energy of |1f 〉 we get

H |1f〉 = (E0 − 1 − aa†)a|0f 〉 = (E0 − 2)a|0f〉 (7)

and the energy is less than that of the ground state (E0 − 1)! The energy keeps getting more negative the more we
excite the funky vacuum, and we see that it is unbounded below. We conclude that timelike oscillators are evil.
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III. EXTREMAL REISSNER-NORDSTROM BLACK HOLE

We start with the action

SEM =
1

16πGN

∫

d4x
√−g

(

R − 1

4
FµνFµν

)

(8)

and vary with respect to gµν . The variation of the Einstein-Hilbert term R gives the normal Einstein tensor (see e.g.
Carroll’s GR book chapter 4). Varying the Maxwell part has two pieces; one part from the variation of

√−g, which
(leaving out the overall 1/16πGN) is + 1

8FρσF ρσgµν and one from the variation of the metric tensors tying together

the indices, which is − 1
2FµρF ρ

ν . The full equations of motion work out to be

Rµν − 1

2
Rgµν = −1

8
F 2gµν +

1

2
FµρF

ρ
ν (9)

which is of the form claimed in the problem set.
Before computing the curvature tensors, note that taking the trace gives R = 0 as the right-hand side is identically

traceless. The fact that the stress tensor of electromagnetism is traceless is a consequence of the classical scale
invariance of the Maxwell action and implies that a spacetime supported only by the Maxwell action has vanishing
Ricci scalar.

We will eventually need the curvature tensors in a ten-dimensional spacetime; thus for generality we will find them
for a D dimensional spacetime containing a d-dimensional flat Poincare piece parametrized by xi and a n dimensional
flat Euclidean piece (the “transverse space”) parametrized by ya. Our ansatz for the metric is

ds2 =
1

H2(y)
ηijdxidxj + H2(y)δabdyadyb (10)

This is slightly more general than the ansatz in the problem set as that only had H depending on one of the y
coordinates whereas we are letting it depend on all of them. Also note I am not using polar coordinates on this
transverse space but flat ones; the conversion to polar is trivial at the end but for now the flat coordinates simplify life
quite a bit. We now compute the curvature. This is straightforward but tedious 1. I am not providing details of the
calculation, as a much nicer explanation of a similar (slightly simpler) calculation can be found in Carroll, Appendix
J. The answer is

Rµν =
ηµν

H4

[

(∂H)2

H2
(n − d − 3) +

�H

H

]

(11)

Rab =
∂aH∂bH

H2
(2n − 4 − 4d) +

∂a∂bH

H
(2 − n + d) + δab

(

(∂H)2

H2
(d + 3 − n) − �H

H

)

(12)

Here (∂H)2 =
∑

a(∂aH)2 and �H =
∑

a ∂2
aH ; these are all with respect to the “transverse space”. Ok, for now we

just set n = 3, d = 1. This gives

Rtt = − 1

H4

[−(∂H)2

H2
+

�H

H

]

(13)

Rab = −2
∂aH∂bH

H2
+ δab

(

(∂H)2

H2
− �H

H

)

(14)

and taking the trace of this we find the Ricci scalar

R = − 2

H3
�H = 0 (15)

which we know is 0 by the Einstein equations. Thus it appears that we need H to be a harmonic function on the
transverse space. Next we turn to the Maxwell equation of motion

∇µFµν =
1√−g

∂µ(
√−gFµν) = 0 (16)

1 By which I mean that it was incredibly un-straightforward for me, but in principle if you make no algebra mistakes it isn’t too bad.
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Plugging in the ansatz Fta = b∂aH
H2 we find that all factors of H2 cancel and this becomes

∑

a

∂a∂aH = �H = 0 (17)

Thus Maxwell equations are also satisfied. We are not done yet, we also need to verify that all of the components of
Einstein’s equations (9) are satisfied. We write the intermediate results

F 2 = −2b2 (∂H)2

H4
FtρF

ρ
t = b2 (∂H)2

H6
FaρF

ρ
b = −b2 ∂aH∂bH

H2
(18)

Combining these to form the right-hand side of (9) we see that all the Einstein equations can be satisfied provided b = 2.
Hooray! We now write down the most general form of H (subject to the boundary condition that H(y → ∞) = 1.
We know what this is from old-fashioned electromagnetism; it is the potential from a series of point charges.

H(ya) = 1 +
∑

i

Ai

|y − yi|
(19)

where {yi} provides a set of 3-vectors and Ai a set of corresponding “charges”, both of which are arbitrary. This
function is harmonic everywhere except at the poles y = yi, and it is an exact solution to the Einstein-Maxwell
equations. It describes a multi-center black hole solution, where we have a set of black holes with centers located
at yi, held somehow in a stable configuration by a delicate interplay of gravitational and electromagnetic forces.
Beautiful.

What is Ai? To find this we finally focus on a one black-hole solution and use polar coordinates. We also let H

depend only on ρ. We obtain Fρt = −2
∂ρH

H2 , and

Q ≡
∫

S2

⋆F = −
∫

S2

FρtH
2ρ2 sin(θ)dθ ∧ dφ =

∫

dθdφ sin(θ)2A = 8πA (20)

Thus the full (one-black hole) metric is

ds2 = − 1

H2
dt2 + H2(dρ2 + ρ2dΩ2) H(ρ) = 1 +

Q

8πρ
(21)

Next, we look at the “near-horizon” limit, which is where ρ → 0. We obtain

ds2 = −ρ2

(

8π

Q

)2

dt2 +

(

Q

8πρ

)2

dρ2 +

(

Q

8π

)2

dΩ2 (22)

This is the metric on AdS2 × S2 with AdS length L = Q
8π

.
Finally, let us add some magnetic charge. To get the solution, let’s use the fact that the Hodge dual of a solution

with electric charge is one with magnetic charge. We take the dual of a solution with a pure radial electric field Fe

Fm = ⋆Fe = b∂ρH sin(θ)ρ2dθ ∧ dφ (23)

Now we superpose these two solutions to obtain something dyonic, i.e. with both electric and magnetic charge

Fdyonic = ∂ρH

(

b

H2
dρ ∧ dt + aρ2 sin(θ)dθ ∧ dφ

)

(24)

From here the analysis proceeds exactly as above. I will not go into details; suffice to say that we now require
a2 + b2 = 4 and the final solution with electric charge Q and magnetic charge P has metric given by (21) except now
with

H(ρ)dyonic = 1 +

√

Q2 + P 2

8πρ
(25)
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IV. RR SOLITON

Despite its horrifying name and birthplace, this is actually almost exactly the same problem as the one we just did,
only with 2.5 times as many indices. We start with the action

SIIB =
1

16πGN

∫

d10x
√−g

(

e−2φ(R + 4∂Mφ∂Mφ) − 1

5!
(F 5)2

)

(26)

We now need to vary this with respect to gMN . Note that if the dilaton φ is not constant this is a bit trickier than
you might expect, as the variation of the Einstein-Hilbert term will result in extra pieces that are normally a total
derivative but now are not. Thus the Einstein equations of motion will contain extra pieces depending on gradients
of the dilaton. Luckily we will examine only configurations where the dilaton is constant, so I will not keep track of
these terms but you should know that they are there. Anyway, we obtain simply

e−2φ

(

RMN − 1

2
gMNR

)

= − 1

2.5!
(F 5)2 +

1

4!
FM....F

....
N (27)

Taking the trace again we obtain as before R = 0 (The RR five-form is classically scale invariant in ten dimensions,
etc. etc.) A new ingredient is provided by the self-duality of the five-form; this means that F = ⋆F , and thus
F 2 ∼ F ∧ ⋆F = F ∧ F = 0. The equation becomes

RMN =
e2φ

4!
FM....F

....
N (28)

Recall also that the ansatz is

ds2 =
1

√

h(y)
ηµνdxµdxν +

√

h(y)δabdyadyb (29)

Luckily we already worked out the curvature, once we make the substitution H2 =
√

h, n = 6, d = 3 in the formulas
(11) and (12):

Rµν =
ηµν

4h

[

�h

h
− (∂h)2

h2

]

(30)

Rab = −1

2

∂ah∂bh

h2
+

δab

4

(

(∂h)2

h2
− �h

h

)

(31)

We now proceed in direct analogy to what we did above. Taking the trace we find R = − 1
2

�h
h

= 0, implying that h is
harmonic on the transverse space. We should check that the Maxwell equations for the five-form are satisfied. These
equations are just

∂M (
√−gFMNOPQ) = 0 (32)

Our ansatz for F is

F = b(1 + ⋆) dt ∧ dx ∧ dy ∧ dz ∧ d(h−1) (33)

which satisfies Ftxyza = − b
h2 ∂ah. Plugging this into the equation above and using gµν =

√
hηµν , gab = 1/

√
hδab,√−g =

√
h, we get

∂a

[√
h(
√

h)4(
√

h)−1Ftxyza

]

= −b∂a

[

h2 ∂ah

h2

]

= 0, (34)

implying yet again that the Maxwell equation is satisfied iff h is harmonic. By now you probably believe me that
this is a solution, but we should conscientiously check that all of the other components of the Einstein equations are
satisfied. If we skipped this step, not only would we not have the pleasure of contracting F 5 with itself in entertaining
ways, but we would also not be able to fix the value of b.

So we compute the right-hand side of the Einstein equation, FM....F
....
N . The easy one first:

Fµ....F
....
ν = −4!b2 (∂h)2

h3
ηµν (35)
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To understand this, note that if we fix say the two indices t in Ft....F
....
t and let all the rest vary, it is clear from the

form (33) that to contribute the remaining indices must be a permutation of {x, y, z, ya}, where all a can contribute
(I apologize for the bad notation; y with no superscript is one of the coordinates along the Poincare piece xµ. ya

with a superscript is a coordinate along the transvers space). There are 4! such permutations for each choice of ya,
resulting in the structure shown. Now the hard one, the computation of Fa....F

....
b . To do this we first note that

⋆(dt ∧ dx ∧ dy ∧ dz ∧ dy1) ≡ 1

5!
ǫtxyzy1

MNOPQdxM ∧ dxN ∧ dxN ∧ dxO ∧ dxP ∧ dxQ = (36)

= h2dy2 ∧ dy3 ∧ dy4 ∧ dy5 ∧ dy6 (37)

Thus for example we see from (33) that F23456 ≡ Fy2y3y4y5y6 = −b∂1h; if all the indices are ya’s, then the value of
the component is the derivative of h with respect to the one y that isn’t in the string. Now we are ready. There are
two cases, start with a 6= b and take a = 1, b = 2 for concreteness. Then

F1....F
....
2 = F1µνρσFµνρσ

2 + F1abcdF
abcd
2 = 4!

(

−h2F1txyzF2xyzt +
1

h2
F13456F23456

)

(38)

= −2.4!b2 ∂1h∂2h

h2
(39)

Thus for a 6= b, Fa....F
....
b = −2.4!b2 ∂ah∂bh

h2 . Now the case a = b = 1; going through an analogous computation we get

F1....F
....
1 = F1µνρσFµνρσ

1 + F1abcdF
abcd
1 =

4!b2

h2



−∂1h∂1h +
∑

a6=1

∂ah∂ah



 (40)

We can summarize these two relations in the combined form

Fa....F
....
b = 2.

4!b2

h2

(

−∂ah∂bh +
δab

2
(∂h)2

)

(41)

Comparing with (30) and the equation of motion (27), we see that the Einstein equations are satisfied if the value of
b is fixed to be b = ±e−φ/2. Hooray! Once again we see that we have a beautiful multi-center solution

h(y) = 1 +
∑

i

R4
i

|y − yi|4 (42)

where we can move the centers yi of the D3 branes wherever we like in the transverse 6-dimensional space and they
will stay where we leave them due to the delicate yet strangely robust cancellation of the RR five-form field with
gravity. As mentioned in lecture, this bizarre property manifests itself in the dual field theory description of this
configuration–remember from lecture 6 that the X i in N = 4 SYM parametrize movement in a 6N dimensional space
along which the potential of the field theory is flat; there is no energy cost associated with changes in X . Now you
know “why”.

Finally we restrict to one D3 brane in a spherically symmetric setup. Doing the integral Q =
∫

S5 ⋆F = 2e−φR4π3

we find that R4 ∼ gsQ, where we have used gs = eφ. Q is the RR charge, and is quantized in appropriate units.
Essentially we have found that

R4 ∼ l4sgsN (43)

where ls is the string length scale and N is the integer number of RR flux quanta. This is the reason why AdS/CFT
maps a classical gravity setup to a dual configuration with a large t’Hooft coupling–we need gsN = g2

Y MN → ∞
to obtain a setup where R (the curvature scale of the solution) is much larger than ls and the classical supergravity
solution can be trusted.


