MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics
 String Theory (8.821) - Prof. J. McGreevy - Fall 2008

Problem Set 1

Reading: §4 of d'Hoker-Freedman http://arXiv.org/pdf/hep-th/0201253
Due: Tuesday, September 23, 2008.

1. Branes ending on branes.

The $\mathrm{D} p$-brane effective action contains a term of the form

$$
S \ni \int_{D p} F \wedge C_{p-1},
$$

where C_{p-1} is the RR $p-1$ form, which couples minimally to $\mathrm{D}(p-2)$-branes. Show that a $\mathrm{D}(p-2)$ brane can end on a $\mathrm{D} p$ brane without violating the Gauss law for the RR fields involved. Interpret the boundary of the $\mathrm{D}(\mathrm{p}-2)$-brane in terms of the worldvolume theory of the Dp brane. (If you like, focus on the case $p=3$.)

2. Timelike oscillators are evil.

Show that the commutation relation $\left[a, a^{\dagger}\right]=-1$ (which we found for the oscillators made from the time coordinates of the string) implies that either
a) the energy $H=-a^{\dagger} a+E_{0}{ }^{1}$ is unbounded below (if you treat a^{\dagger} as the annihilation operator)
or
b) there are states with negative norms.

3. Extremal Reissner-Nordstrom black hole.

As a warmup for the 10-d RR soliton, let's remind ourselves how the extremal RN black hole works.
a) Consider Einstein-Maxwell theory in four dimensions, with action

$$
S_{E M}=\frac{1}{16 \pi G_{N}} \int d^{4} x \sqrt{g}\left(\mathcal{R}-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}\right)
$$

[^0]Show that the Einstein equation $0=\frac{\delta S_{E M}}{\delta g^{\mu \nu}}$ implies that

$$
\mathcal{R}_{\mu \nu}=a G_{N}\left(2 F_{\mu} F_{\nu}-\frac{1}{2} g_{\mu \nu} F^{2}\right)
$$

for some constant a.
b) Consider the ansatz

$$
\begin{gathered}
d s^{2}=H^{-2}(\rho)\left(-d t^{2}\right)+H^{2}(\rho)\left(d \rho^{2}+\rho^{2} d \Omega_{2}^{2}\right), \\
F=b d t \wedge d\left(H(\rho)^{-1}\right)
\end{gathered}
$$

where b is some constant. Show that the Einstein equation $0=\frac{\delta S_{E M}}{\delta g^{\mu \nu}}$ and Maxwell's equation $0=\frac{\delta S_{E M}}{\delta A_{\mu}}$ are solved by the ansatz if H is a harmonic function on the \mathbb{R}^{3} whose metric is

$$
\gamma_{a b} d x^{a} d x^{b}:=d \rho^{2}+\rho^{2} d \Omega_{2}^{2} .
$$

Recall that H is harmonic iff $0=\square H=\frac{1}{\sqrt{\gamma}} \partial_{a}\left(\sqrt{\gamma} \gamma^{a b} \partial_{b} H\right)$.
c) Find the form of the harmonic function which gives a spherically symmetric solution; fix the two integration constants by demanding that i) the spacetime is asymptotically flat and ii) the black hole has charge Q, meaning $\int_{S^{2} \text { at fixed } \rho} \star F=Q$.
d) Take the near-horizon limit. Show that the geometry is $A d S_{2} \times S^{2}$. Determine the relationship between the size of the throat and the charge of the hole.
[If you get stuck on this problem, see Appendix F of Kiritsis' book.]
d) If you're feeling brave, add some magnetic charge to the black hole. You will need to change the form of the gauge field to

$$
F=b d t \wedge d H(\rho)+G(\rho) \Omega_{2}
$$

where Ω_{2} is the area 2-form on the sphere, and G is some function.

4. RR soliton.

In this problem we're going to check that the $R R$ soliton is a solution of the equations of motion. The action for type IIB supergravity, when only the metric and the RR 5 -form and possibly the dilaton are nontrivial can be written as

$$
S_{I I B}=\frac{1}{16 \pi G_{N}} \int d^{10} x \sqrt{g}\left(e^{-2 \Phi}\left(\mathcal{R}+4 \partial_{\mu} \Phi \partial^{\mu} \Phi\right)-\frac{1}{5!} F_{\ldots \ldots}^{5} F^{5} \ldots . .+\ldots\right)
$$

(The self-duality constraint $F^{5}=\star F^{5}$ must be imposed as a constraint, and means that $d F^{5}=0$ implies the equations of motion for F^{5}.) By the way, this is the action for the string frame metric.
a) Show that the equations of motion from this action imply

$$
\mathcal{R}_{\mu \nu}=a G_{N} e^{2 \Phi}\left(5 F_{\mu \ldots \ldots}^{5} F_{\nu}^{5} \cdots-\frac{1}{2} g_{\mu \nu}\left(F^{5}\right)^{2}\right)
$$

for some constant a.
b) Plug the following ansatz into the equations of motion:

$$
\begin{gathered}
d s^{2}=\frac{1}{\sqrt{H(r)}} \eta_{\mu \nu} d x^{\mu} d x^{\nu}+\sqrt{H(r)} d y^{2} \\
F=b(1+\star) d t \wedge d x^{1} \wedge d x^{2} \wedge d x^{3} \wedge d H^{-1} \\
\Phi=\phi_{0}
\end{gathered}
$$

(b, ϕ_{0} are constants.) Determine the constant b and the condition on the function H for this to solve the equations of motion.

To do this, there are two options - some kind of symbolic algebra program like Mathematica or Maple, or index-shuffling by hand. The latter is much more easily done using 'tetrad' or 'vielbein' methods. I always forget these and have to relearn them every time. For a lightning review of the vielbein method of computing curvatures, I recommend
d'Hoker-Freedman http://arXiv.org/pdf/hep-th/0201253, pages 100-101, or Argurio http://arXiv.org/pdf/hep-th/9807171, Appendix C. To help with the former option, I've posted an example curvature calculation in Mathematica on the pset webpage.

Note, by the way, that for values of p other than 3 , the dilaton is not constant. With hindsight, this specialness of $p=3$ is related to the fact that this is the critical dimension for YM theory, where $g_{Y M}$ is dimensionless.

[^0]: ${ }^{1}$ The -1 comes from $g^{00}=-1$.

