8.821 F2008 Lecture 14: Wave equation in AdS, Green's function

Lecturer: McGreevy Scribe: Mark Hertzberg

November 11, 2008

Topics for this lecture

- Find $\phi^{\left[\phi_{0}\right]}(x)$ by Green functions in x-space (efficient)
- Compute $\langle\mathcal{O O}\rangle$, counter terms
- Redo in p-space (general)

References

- Witten, hep-th/9802150
- GKP, hep-th/9802109

Solving Wave Equation I (Witten's method)

Let's study the wave equation in AdS in some detail. This first method uses a trick by Witten which is efficient but slightly obscure.

If we know "bulk-to-boundary" Green's function K regular in the bulk, such that

$$
\begin{align*}
& \left(-\square+m^{2}\right) K_{p}(z, x)=0 \tag{1}\\
& K_{p}(z, x) \rightarrow \epsilon^{\Delta_{-}} \delta_{\epsilon}^{D}(x-p), \quad z \rightarrow \epsilon \tag{2}
\end{align*}
$$

where p is some point on the boundary, then the field in the bulk

$$
\phi^{\left[\phi_{0}\right]}(z, x)=\int d^{D} x^{\prime} \phi_{0}^{\mathrm{Ren}}\left(x^{\prime}\right) K_{x^{\prime}}(z, x) \rightarrow z^{\Delta_{-}} \phi_{0}^{\mathrm{Ren}}(x)
$$

solves (1).

Euclidean AdS

Recall the metric on AdS with curvature scale L in the upper half plane coordinates:

$$
d s^{2}=L^{2} \frac{d z^{2}+d x^{2}}{z^{2}}
$$

Now here comes some fancy tricks, thanks to Ed:
Trick (1): Pick $p=$ "point at ∞ ". This implies that the Green's function $K_{\infty}(z, x)$ is x-independent.
The wave equation at $k=0$:

$$
0=\left[-z^{D+1} \partial_{z} z^{-D+1} \partial_{t}+m^{2}\right] K_{\infty}(z)
$$

can easily be solved. The solution is power law (recall that in the general- k wave equation, it was the terms proportional to k^{2} that ruined the power-law behavior away from the boundary)

$$
K_{\infty}(z)=c_{+} z^{\Delta_{+}}+c_{-} z^{\Delta_{-}}
$$

We can eliminate one of the constants: $c_{-}=0$, whose justification will come with the result.
Trick (2): Use AdS isometries to map $p=\infty$ to finite x. Let $x^{A}=\left(x^{\mu}, z\right)$, take $x^{A} \rightarrow\left(x^{\prime}\right)^{A}=$ $x^{A} /\left(x^{B} x_{B}\right)$. The inversion of this mapping is:

$$
I:\left\{\begin{array}{c}
x^{\mu} \rightarrow \frac{x^{\mu}}{z^{2}+x^{2}} \\
z \rightarrow \frac{z}{z^{2}+x^{2}}
\end{array}\right.
$$

Claim: I
A) is an isometry of AdS (also Minkowski version, see pset 4)

B) is not connected to $\mathbf{1}$ in $\operatorname{SO}(D, 2)$
C) maps $p=\infty$ to $x=0$, i.e., $I: K_{\infty}(z, x) \rightarrow K_{\infty}\left(z^{\prime}, x^{\prime}\right)=K_{0}(z, x)=c_{+} z^{\Delta_{+}} /\left(z^{2}+x^{2}\right)^{\Delta_{+}}$.

Some notes:
(i) That this solves the wave equation (1) as neccessary can be checked directly.
(ii) The Green's function is

$$
K_{x^{\prime}}(z, x)=c_{+} \frac{z^{\Delta_{+}}}{\left(z^{2}+\left(x-x^{\prime}\right)^{2}\right)^{\Delta_{+}}} \equiv K\left(z, x ; x^{\prime}\right)
$$

(iii) The limit of the Green's function as $z \rightarrow 0$, i.e. the boundary is

$$
K\left(z, x ; x^{\prime}\right) \rightarrow\left\{\begin{array}{c}
c z^{\Delta_{+}}
\end{array} \rightarrow 0, \quad \text { if } x \neq x^{\prime} .\right.
$$

(recall that $\Delta_{+}>0$ for any D, m). More specifically, the Green's function approaches a delta function:

$$
K\left(z, x ; x^{\prime}\right) \rightarrow \text { const } \cdot \epsilon^{\Delta_{-}} \delta^{D}\left(x-x^{\prime}\right)
$$

Clearly it has support only near $x=x^{\prime}$, but to check this claim we need to show that it has finite measure:

$$
\begin{aligned}
\int d^{D} x \epsilon^{-\Delta_{-}} K_{0}(\epsilon, x) & =\int d^{D} x \frac{c \epsilon^{\Delta_{+}-\Delta_{-}}}{\left(\epsilon^{2}+x^{2}\right)^{\Delta_{+}}} \\
& =\frac{c \epsilon^{D} \epsilon^{2 \Delta_{+}-D}}{\epsilon^{2 \Delta_{+}}} \int d^{D} \bar{x} \frac{1}{\left(1+\bar{x}^{2}\right)^{\Delta_{+}}} \\
& =c \frac{\pi^{\frac{D}{2}} \Gamma\left(\Delta_{+}-\frac{D}{2}\right)}{\Gamma\left(\Delta_{+}\right)}
\end{aligned}
$$

We will choose the constant c to set this last expression equal to one. Hence,

$$
\begin{aligned}
\phi^{\left[\phi_{0}\right]}(z, x) & =\int d^{D} x^{\prime} K_{x^{\prime}}(z, x) \phi_{0}^{\mathrm{Ren}}\left(x^{\prime}\right) \\
& =\int d^{D} x^{\prime} c \frac{x^{\Delta_{+}}}{\left(z^{2}+\left(x-x^{\prime}\right)^{2}\right)^{\Delta_{+}}} \phi_{0}^{\mathrm{Ren}}\left(x^{\prime}\right) ;
\end{aligned}
$$

this solves (1) and approaches $\epsilon^{\Delta_{-}} \phi_{0}^{\mathrm{Ren}}(x)$ as $z \rightarrow \epsilon$.
The action is related to expectation values of operators on the boundary:

$$
\begin{aligned}
S\left[\phi^{\left[\phi_{0}\right]}\right] & =-\ln \left\langle e^{-\int \phi_{0} \mathcal{O}}\right\rangle \\
& =-\frac{\eta}{2} \int_{\partial A d S} \sqrt{\gamma} \phi n \cdot \partial \phi \\
& =-\left.\frac{\eta}{2} \int d^{D} x \sqrt{g} g^{z z} \phi(z, x) \partial_{z} \phi(z, x)\right|_{z=\epsilon} \\
& =-\frac{\eta}{2} \int d^{D} x_{1} d^{D} x_{2} \phi_{0}^{\mathrm{Ren}}\left(x_{1}\right) \phi_{0}^{\mathrm{Ren}}\left(x_{2}\right) \mathcal{F}_{\epsilon}\left(x_{1}, x_{2}\right)
\end{aligned}
$$

where the "flux factor" is

$$
\left.\mathcal{F}_{\epsilon}\left(x_{1}, x_{2}\right) \equiv \int d^{D} x \frac{K\left(z, x ; x_{1}\right) z \partial_{z} K\left(z, x ; x_{2}\right)}{z^{D}}\right|_{z=\epsilon}
$$

The boundary behavior of K is:

$$
\left.K^{\Delta_{+}}\left(z, x ; x^{\prime}\right)\right|_{z=\epsilon}=\epsilon^{\Delta_{-}}\left(\delta_{\epsilon}^{D}\left(x-x^{\prime}\right)+\mathcal{O}\left(\epsilon^{2}\right)\right)+\epsilon^{\Delta_{+}}\left(\frac{c}{\left(x-x^{\prime}\right)^{2 \Delta_{-}}}+\mathcal{O}\left(\epsilon^{2}\right)\right)
$$

the first terms sets: $c^{-1}=\pi^{\frac{D}{2}} \Gamma\left(\Delta_{+}-\frac{D}{2}\right) / \Gamma\left(\Delta_{+}\right)$, the second term is subleading in z.

$$
\left.z \partial_{z} K\left(z, x ; x^{\prime}\right)\right|_{z=\epsilon}=\Delta_{+} \epsilon^{\Delta_{-}} \delta\left(x-x^{\prime}\right)+\Delta_{+} c z^{\Delta_{+}} \frac{1}{\left(x-x^{\prime}\right)^{2 \Delta_{+}}}+\ldots
$$

Ok, now for the 2-point correlation function on the boundary:

$$
G_{2}\left(x_{1}, x_{2}\right) \equiv\left\langle\mathcal{O}\left(x_{1}\right) \mathcal{O}\left(x_{2}\right)\right\rangle_{c}=\frac{\delta}{\delta \phi_{0}\left(x_{1}\right)} \frac{\delta}{\delta \phi_{0}\left(x_{2}\right)}\left(-S\left[\phi^{\left[\phi_{0}\right]}\right]\right)=\eta \mathcal{F}_{\epsilon}\left(x_{1}, x_{2}\right)
$$

We must be careful when evaluating the cases $x_{1} \neq x_{2}$ and $x_{1}=x_{2}$, which we do in turn.
Firstly, if $x_{1} \neq x_{2}$:

$$
\begin{aligned}
G_{2}\left(x_{1} \neq x_{2}\right) & =\frac{\eta}{2} \int_{z=\epsilon} d^{D} x z^{-D}\left(z^{\Delta_{-}} \delta^{D}\left(x-x_{1}\right)+\mathcal{O}\left(z^{2}\right)\right)\left(\left(\text { ignore by } x_{1} \neq x_{2}\right)+\frac{\Delta_{+} c z^{\Delta_{+}}}{\left(x_{1}-x_{2}\right)^{2 \Delta_{+}}}+\mathcal{O}\left(z^{2}\right)\right) \\
& =\frac{\eta}{2} c \Delta_{+} \epsilon^{-D+\Delta_{-}+\Delta_{+}} \frac{1}{\left(x_{1}-x_{2}\right)^{2 \Delta_{+}}}+\mathcal{O}\left(\epsilon^{2}\right) \\
& =\frac{\eta c \Delta_{+}}{2\left(x_{1}-x_{2}\right)^{2 \Delta_{+}}} .
\end{aligned}
$$

Good. This is the correct form for a two point function of a conformal primary of dimension Δ_{+} in a CFT; this is a check on the prescription.

Secondly, if $x_{1}=x_{2}$:
$G_{2}\left(x_{1}, x_{2}\right)=\eta\left(\Delta_{-} \epsilon^{2 \Delta_{-}-D} \delta^{D}\left(x_{1}-x_{2}\right)+\frac{c \Delta_{+}}{\left(x_{1}-x_{2}\right)^{2 \Delta_{+}}}+\Delta_{+} c^{2} \epsilon^{2 \Delta_{+}-D} \int d^{D} x \frac{1}{\left(x-x_{1}\right)^{2 \Delta_{+}}\left(x-x_{2}\right)^{2 \Delta_{+}}}\right)$
As $\epsilon \rightarrow 0$, the first term is divergent, the second term is finite, and the third term vanishes. The first term is called a "divergent contact term". It is scheme-dependent and useless.

Remedy: Holographic Renormalization. Add to $S_{\text {geometry }}$ the contact term

$$
\begin{aligned}
\Delta S=S_{\text {c.t. }} & =\frac{\eta}{2} \int_{\text {bdy }} d^{D} x\left(-\Delta_{-} \epsilon^{2 \Delta_{-}-D}\left(\phi_{0}^{\mathrm{Ren}}(x)\right)^{2}\right) \\
& =-\Delta_{-} \frac{\eta}{2} \int_{\partial A d S, z=\epsilon} \sqrt{\gamma} \phi^{2}(z, x) .
\end{aligned}
$$

Note that this doesn't affect the equations of motion. Nor does it affect $G_{2}\left(x_{1} \neq x_{2}\right)$.

Solving Wave Equation II (k-space)

Since the previous approach isn't always available (for example if there is a black hole in the spacetime), let's redo the calculation in k-space.

Return to wave equation

$$
0=\left[z^{D+1} \partial_{z}\left(z^{-D+1} \partial_{z}\right)-m^{2} L^{2}-z^{2} k^{2}\right] f_{k}(z)
$$

with $k^{2}=-\omega^{2}+\mathbf{k}^{2}>0$. The solution is

$$
f_{k}(z)=A_{K} z^{\frac{D}{2}} K_{\nu}(k z)+A_{I} z^{\frac{D}{2}} I_{\nu}(k z),
$$

with $\nu=\sqrt{(D / 2)^{2}+m^{2} L^{2}}=\Delta_{+}-D / 2$. Assume $k \in \mathbb{R}$ (real time issues later). As $z \rightarrow \infty$: $K_{\nu} \sim e^{-k z}$ and $I_{\nu} \sim e^{k z}$. The latter is not okay, so $A_{I}=0$.

At boundary:

$$
K_{\nu}(n) \sim n^{-\nu}\left(a_{0}+a_{1} n^{2}+a_{2} n^{4}+\ldots\right)+\left\{\begin{array}{l}
n^{\nu}\left(b_{0}+b_{1} n^{2}+b_{2} n^{4}+\ldots\right), \nu \notin \mathbb{R} \\
n^{\nu} \ln n\left(b_{0}+b_{1} n^{2}+b_{2} n^{4}+\ldots\right), \nu \in \mathbb{R}
\end{array}\right.
$$

Hence

$$
f_{k}(z)=A_{K} z^{D / 2} K_{\nu}(k z) \sim z^{\frac{D}{2} \pm \nu}=z^{\Delta_{ \pm}}, \quad \text { as } z \rightarrow 0 .
$$

