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In today’s lecture we will talk about:

1. AdS wave equation near the boundary.

2. Masses and operator dimensions: ∆(∆ −D) = m2L2.

Erratum: The massive geodesic equation ẍ + Γẋẋ = 0 assumes that the dot differentiates with
respect to proper time.

Recap: Consider a scalar in AdSp+2 (where p+ 1 is the number of spacetime dimensions that the
field theory lives in). Let the metric be:

ds2 = L2dz
2 + dxµdxµ

z2
, (1)

then the action takes the form:

S[φ] = −κ
2

∫

dp+1x
√
g ((∂φ)2 +m2φ2 + bφ3 + ...), (2)

where (∂φ)2 ≡ gAB∂Aφ∂Bφ and xA = (z, xµ). Our goal is to evaluate:

ln〈exp−
R

dDx φ0 O〉CFT = extremum[φ | φ→φ0 at z=ǫ]S[φ], (3)

where S[φ] ≡ S[φ∗(φ0)] ≡ W [φ0], i.e. by using the solution to the equation of motion subject to
boundary conditions. Now Taylor expand:

W [φ0] = W [0] +

∫

dDx φ0(x)G1(x) +
1

2

∫ ∫

dDx1d
Dx2 φ0(x1)φ0(x2)G2(x1, x2) + ... (4)

where

G1(x) = 〈O(x)〉 =
δW

δφ0(x)
|φ0=0, (5)

G2(x) = 〈O(x1)O(x2)〉c =
δ2W

δφ0(x1)δφ0(x2)
|φ0=0. (6)
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Now if there is no instability, then φ0 is small and so is φ, so you can ignore third order terms in
φ. From last time:

S[φ] =
κ

2

∫

AdSp+2

dp+2x
√
g [φ (−∇2 +m2) φ+ O(φ3)] − κ

2

∫

∂AdS

dp+1x
√
γ φ (n.∂) φ, (7)

where the last term is the boundary action, n is a normalized vector perpendicular to the boundary
and

∇2 =
1√
g
∂A(

√
ggAB∂B). (8)

Now if the scalar field satisfies the wave equation:

(−∇2 +m2)φ∗ = 0, (9)

W [φ0] = Sbdy[φ
∗[φ0]], (10)

then we can use translational invariance in p + 1 dimensions, xµ → xµ + aµ, in order to Fourier
decompose the scalar field:

φ(z, xµ) = eik.xfk(z). (11)

Now, substituting (11) into (9) and assuming that the metric only depends on z we get:

0 = (gµνkµkν − 1√
g
∂z(

√
ggzz∂z) +m2)fk(z) (12)

=
1

L2
[z2k2 − zD+1∂z(z

−D+1∂z) +m2L2]fk, (13)

where we have used gµν = (z/L)2δµν . The solutions of (12) are Bessel functions but we can learn a
lot without using their full form. For example, look at the solutions near the boundary (i.e. z → 0).
In this limit we have power law solutions, which are spoiled by the z2k2 term. Try using fk = z∆

in (12):

0 = k2z2+∆ − zD+1∂z(∆z
−D+∆) +m2L2z∆ (14)

= (k2z2 − ∆(∆ −D) +m2L2)z∆, (15)

and for z → 0 we get:
∆(∆ −D) = m2L2 (16)

The two roots for (16) are

∆± =
D

2
±

√

(

D

2

)2

+m2L2. (17)
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Comments

• The solution proportional to z∆
− is bigger near z → 0.

• ∆+ > 0 ∀ m, therefore z∆+ decays near the boundary.

• ∆+ + ∆− = D.

Next, we want to improve the boundary conditions that allow solutions, so take:

φ(x, z)|z=ǫ = φ0(x, ǫ) = ǫ∆−φRen
0 (x), (18)

where φRen
0 is the renormalized field. Now with this boundary condition, φ(z, x) is finite when

ǫ→ 0, since φRen
0 is finite in this limit.

Wavefunction renormalization of O (Heuristic but useful)

Suppose:

Sbdy ∋
∫

z=ǫ

dp+1x
√
γǫ φ0(x, ǫ)O(x, ǫ) (19)

=

∫

dDx

(

L

ǫ

)D

(ǫ∆−φRen
0 (x))O(x, ǫ), (20)

where we have used
√
γ = (L/ǫ)D. Demanding this to be finite as ǫ→ 0 we get:

O(x, ǫ) ∼ ǫD−∆
−O

Ren(x) (21)

= ǫ∆+O
Ren(x), (22)

where in the last line we have used ∆+ + ∆− = D. Therefore, the scaling of O
Ren is ∆+ ≡ ∆.

Comments

• We will soon see that 〈O(x)O(0)〉 ∼ 1
|x|2∆

.

• We had a second order ODE, therefore we need two conditions in order to determine a solution
(for each k). So far we have imposed:

1. For z → ǫ, φ ∼ z∆
−φ0 + (terms subleading in z). Now we will also impose

2. φ regular in the interior of AdS (i.e. at z → ∞).

Comments on ∆

1. The ǫ∆− factor is independent of k and x, which is a consequence of a local QFT (this fails
in exotic examples).
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2. Relevantness: Since m2 > 0 =⇒ ∆ ≡ ∆+ > D, so O∆ is an irrelevant operator. This means
that if you perturb the CFT by adding O∆ to the Lagrangian, then:

∆S =

∫

dDx (mass)D−∆
O∆, (23)

where the exponent is negative, so the effects of such an operator go away in the IR. For
example, consider a dilaton mode with l > 0, its mass is given by (for D = 4):

m2 =
(l + 4)l

L2
. (24)

The operator corresponding to this is:

tr(F 2Xi1 ... il), (25)

with ∆ = 4 + l > D, therefore it is an irrelevant operator. Now consider a dilaton mode with
l = 0: then m2 = 0, therefore, ∆ = D and hence it corresponds to a marginal operator (an
example of such operator is the Lagrangian). If m2 < 0, then ∆ < D, so it corresponds to a
relevant operator, but it is ok if m2 is not too negative (”Breitenlohner - Freedmasn (BF) -
allowed tachyons” with −|mBF |2 ≡ −(D/2L)2 < m2).

3. Instability: This occurs when a renormalizable mode grows with time without a source. But
in order to have S[φ] <∞, the solution must fall off at the boundary. This requires a gradient
energy that ∼ 1

L
. Note:

∆± =
D

2
±

√

(

D

2

)2

+m2L2. (26)

If:

m2L2 < (
D

2
)2 ≡ −|mBF |2, (27)

then ∆± is complex, therefore we have ∆− = D/2, which is larger than the unitary bound. In
this case, φ ∼ z∆

− decays near the boundary (i.e. in the UV). In order to see the instability
that occurs when m2L2 < (D

2 )2 more explicitly, rewrite (9) as a Schrodinger equation, by
writing φ(z) = A(z)ψ(z), where we choose A(z) in order to remove the first derivative of
ψ(z). Then, equation (9) becomes:

(−∂2
z + V (z))ψ(z) = Eψ(z), (28)

where E = ω2 − k2, V (z) = σ/z2 and σ = m2L2 − (D2 − 1)/4. An instability occurs when
E < 0, i.e. ω2 < 0 and hence φ ∼ eiωtφ(z) = e+|ω|tφ(z) grows with time. Now the claim is that
V = σ/z2 has no negative energy states if σ > −1/4. Note that the notion of normalizability
here and before are related (Pset 4):

||ψ||2 =

∫

dz ψ†ψ <∞, (29)

and S[φ] =

∫

dz
√
g ((∂φ)2 +m2) (30)

4. The formula we found before (expression (16)) depends on the spin. For a j−form in AdS we
have:

(∆ + j)(∆ + j −D) = m2L2. (31)
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For example, for Aµ massless we have:

∆(jµ) = D − 1 → conserved, (32)

for gµν massless we have:

∆(T µν) = D → required from CFT. (33)
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