
8.821 F2008 Lecture 12:

Boundary of AdS; Poincaré patch; wave equation in AdS

Lecturer: McGreevy Scribe: Francesco D’Eramo

October 16, 2008

Today:
1. the boundary of AdS
2. Poincaré patch
3. motivate boundary value problem
4. wave equation in AdS.

1 The boundary of AdS

We defined the Lorentzian AdSp+2 as the locus {ηabX
aXb = −L2} ⊂ IRp+1,2, where

ηabX
aXb = −X2

0 +

p+1
∑

i=1

X2
i − X2

p+2 = −L2 (1)

The metric is
ds2

AdS = ηabX
aXb|(1) = L2

[

− cosh2 ρ dτ2 + dρ2 + sinh2 ρ dΩ2
p

]

(2)

1.1 Projective boundary

Take a solution V =
(

X0, ~X,Xp+2

)

of equation (1). Reach the boundary by rescaling X, preserving

(1). Let X = λX̃ , then equation (1) becomes

ηabX̃
aX̃b = −L2

λ2
(3)

We now take λ → ∞, the boundary is

{ηabX̃
aX̃b = 0} / {X̃ ∼ λX̃} ≃ IRp,1 (4)
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Figure 1: Lorentzian AdS: The left-right axis is the ρ direction. At ρ = 0, the Sp in the lower figure
shrinks to zero size (like sinh ρ), while the radius of the τ direction, depicted in the top figure,
approaches a constant (like cosh ρ).

This relation can also be read as follows: the boundary of AdS is the set of lightrays in IRp+1,2,
modulo the rescaling. Recall that this is exactly parametrized by points in IRp,1 as:

ρa = κ

(

Xµ,
1

2
(1 − X2),

1

2
(1 + X2)

)

. (5)

We used this fact earlier to make write the SO(p + 1, 2) action of the conformal group on IRp,1 in
a linear way. The fact that the conformal group of IRp,1 has a nice action on the boundary of AdS
is very encouraging.
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Alternative decomposition I

Fix λ by imposing 1 = ~X2 =
∑p+1

i=1 X2
i . Then we have

X2
0 + X2

p+2 = ~X2 = 1 ⇒ ∂AdS = S1 × Sp (6)

Alternative decomposition II

Let u± = X0 ± iXp+1. Then (1) ⇒ −u+u− + ~X2 = 0.

If u+ 6= 0 set u+ = 1 ⇒ u− = ~X2

If u− 6= 0 set u− = 1 ⇒ u+ = ~X2

Then ~̃X =
~X
~X2

. u− is ’the point at ∞’. The boundary is compact.

1.2 Penrose diagram (one more description of the boundary)

Let dΘ = dρ
cosh ρ

(this variable was called ‘squiggle’ in lecture). The metric in these new coordinates
results in

ds2 = cosh2 ρ

[

−dτ2 + dΘ2 + tan2 Θ

2
dΩ2

p

]

(7)

and therefore

tan
Θ

2
= tanh

ρ

2
Θ ∈ [0, π/2] (8)

The boundary is {Θ = π/2} ∼ IR×Sp. Note that the metric on the boundary is only specified up

Figure 2: The squiggle variable Θ runs from 0 to π/2 as ρ goes from 0 to ∞

to rescaling, i.e. a Weyl transformation.

But why do we care about this boundary more than say the conformal boundary of Minkowski
space? The answer is in the next two subsections.
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1.3 Massless geodesics

The massless geodesics are given by the condition ds2 = 0, which implies

0 = ds2 = L2
(

− cosh2 ρ dτ2 + dρ2
)

⇒ cosh ρ =
dρ

dτ
⇒ dτ =

dρ

cosh ρ
= dΘ (9)

Θ is the time elapsed for a static observer. Whether the lightray reflects off the boundary depends
on the BC’s. Hence: Cauchy problem problem.

Figure 3: Massless geodesics

1.4 Massive geodesics

The action for a massive relativistic point particle is

S = m

∫

ds = m

∫
√

gµνẊµẊν Ẋµ = ∂τX
µ (10)

The equation of motion is

δS

δXµ
= 0 ⇒ Ẍµ + Γµ

νλẊνẊλ = 0 (11)
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where the second equation follows if Ẋ = ∂sX where s is proper time. If we assume Ω̇ = 0 the
action is

S = mL

∫

dτ

√

cosh2 ρ − (∂τρ)2.

You will show on problem set 3 that this has an oscillatory solution around ρ = 0, it never reaches
∞.

2 Poincaré patch

Pick out Xp+1 from among the Xi. This will break the SO(p + 1) symmetry of the p-sphere. Let






Xµ = L
z
xµ

Xp+2 + Xp+1 = L
z

−Xp+2 + Xp+1 = v

(12)

Equation (1) and the metric become

L

τ
v − L2

z2
xµxµ = −L2

ds2 = L2 dz2 + dxµ dxµ

z2

(13)

(same cancellation as UHP). This is the metric which we showed has

Rµν − 1

2
gµνR = Λgµν Λ = −(p + 1)(p + 2)

2L2
(14)

NOTE: it covers part of AdS. As z → ∞, ∂/∂t becomes NULL (Poincaré horizon).

CLAIM: relation between Poincaré patch and global time is state-operator correspondence.

EVIDENCE: symmetries → SO(p, 1) × IRp+1 and SO(p + 1) × SO(2).

2.1 Towards CFT correlators from fields in AdS

Our goal is to evaluate 〈e−
R

φ0 O〉CFT ≡ e−WCF T [φ0].
Conjecture: 〈e−

R

φ0 O〉CFT = Zstrings in AdS [φ0], but we cannot compute it. The pratical version is
the following

WCFT [φ0] = − ln〈e
R

φ0O〉CFT ≃ extremumφ|z=ǫ=φ0

(

N2ISUGRA [φ]
)

+ O

(

1

N2

)

+ O

(

1√
λ

)

(15)

A few comments:

• The supergravity description is valid for large N and large λ. In (15) we’ve made the N -
dependence explicit: in units of the AdS radius, the Newton constant is 1

GN
= N2 . ISUGRA

is some dimensionless action.
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Figure 4: Poincaré patch

• anticipating divergences at z → 0, we introduce a cutoff (which will be a UV cutoff in the
CFT) and set boundary conditions at z = ǫ.

• Eqn (15) is written as if there is just one field in the bulk. Really there is a φ for every
operator O in the dual field theory.

We’ll say ‘φ couples to O’ at the boundary. How to match? We give four examples

1. Dilaton field.
Before near horizon limit, we have D3-branes in IR10; the asymptotic value of the dilaton
determines the string coupling constant gs = 〈eφ(x→∞)〉. The YM coupling on D3’s is g2

Y M =
gs.
Changing φ → φ + δφ we get

δS =

∫

δφ

g2
s

Tr
[

F 2 + . . .
]

(16)

where the dots stand for all the CP-even term in the lagrangian. In conclusion we have

Zstrings [φ → φ + δφ] ≃ 〈e
1

g2
s

R

δφTr[F 2]〉CFT (17)

The dilaton couples to all the terms in the lagrangian which are CP invariant.

2. RR axion.
We have that τstr = i

gs
+ χ

2π
tranforms under SL(2,C) nicely, like τ = i

gs
+ θ

2π
. Therefore

χ ↔ Tr[F ∧ F ] (18)

This time CP-odd terms
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3. Stress energy tensor.
The tensor Tµν is the response of a local QFT to local change in the metric. SQFT ⊃

∫

γµνT
µν .

Here we are writing γµν for the metric on the boundary. In this case

gµν ↔ Tµν (19)

4. IIB in AdS5 × S5.
Isometry on S5 → SO(6) Kaluza-Klein (KK) gauge fields ↔ SO(6)R = SU(4)R. In this case
the correspondence is between these gauge fields and the R-current operators

AKK a
µ ↔ Jµ a

R (20)

i.e. Sbdy ∋
∫

Aa
µJµ

a

2.2 Useful visualization

Figure 5: Feynman graphs in AdS. We do the one with two ext. legs first

Classical field theory in bulk (boundary value problem).
Extr. of classical action (expand about quadratic solution in powers of φ0) = tree level SUGRA
Feynman graphs.
BUT: usually (QFT in IRD,1), ext. legs of graphs = wavefunction of asymptotic states (example:
plane waves).
In AdS: ext. legs of graphs determined by boundary behavior of φ (‘bulk-to-boundary propagators’).

3 Wave equation in AdS

We work in Poincaré coordinates. The metric is

ds2 = L2 dz2 + dxµ dxµ

z2
≡ gABdzAdzB A = 0, . . . , p + 1 (21)

The action for a scalar field is

S = −η

2

∫

dp+2x
√

g

[

gAB∂Aφ∂Bφ +
1

2
m2φ2 + bφ3 + . . .

]

(22)
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For this metric
√

g =
√

|det g| =
(

L
z

)2
.

Since φ is a scalar field we can rewrite the kinetic term as

gAB∂Aφ∂Bφ = (∂φ)2 = gABDAφDBφ (23)

where DA is the covariant derivative. Thus we can use DA(gBC ) = 0 to move the Ds around the
gs with impunity. By integrating by parts we can rewrite the action as

S = −η

2

∫

dp+2x
[

∂A

(√
g gABφ∂Bφ

)

− φ∂A

(√
g gAB ∂Bφ

)

+
√

g
(

m2φ2 + . . .
)]

(24)

and finally by using the Stokes theorem we can rewrite the action as

S = −η

2

∫

∂AdS

dp+1x
√

g gzBφ∂Bφ − η

2

∫ √
g φ

(

−� + m2
)

φ + O(φ3) (25)

where we define �φ = 1√
g
∂A

(√
g gAB ∂B

)

φ = DADAφ.

We can rewrite it more covariantly as

∫

M

√
g DAJA =

∫

∂M

√
γ nAJA (26)

The metric tensor γ is defined as

ds2|z=ǫ ≡ γµνdxµdxν =
L2

ǫ2
ηµνdxµdxν (27)

i.e. it is the induced metric on the boundary surface z = ǫ. The vector nA is a unit vector normal
to boundary (z = ǫ). We can find an expression for it

nA ∝ ∂

∂z
gABnAnB |z=ǫ = 1 ⇒ n =

1√
gzz

∂

∂z
=

z

L

∂

∂z
(28)
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