
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Solution Set 6
Superstrings

Reading: Polchinski, Chapters 10, 11, 12, except for the bits about unoriented
strings.

Due: Tuesday, November 20, 2007 at 11:00 AM in lecture or in the box.

1. Bosonization for interacting theories.

There are many ways to deform the free boson = free complex fermion theory,
besides the linear dilaton deformation discussed in class.

(a) Change the radius of the boson. What operator accomplishes this in the
boson theory? Describe this operator in terms of the fermions. Adding this
operator to the free fermion lagrangian makes it no longer free (though still
solvable); it’s called the Thirring model.

To change the radius of a boson X, we add to the lagrangian the
operator

∆L = δR2∂X∂̄X,

which has dimension (1,1) and therefore can be added to the action
(at least with an infinitesimal coefficient) without spoiling conformal
invariance. That it can be added to the action with a finite coefficient
is a more nontrivial thing in general; in this case, the theory with any
value of R is clearly still free, and still a CFT. Notice that this X is the
sum of left-moving and right-moving fields: X(z, z̄) = XL(z) + XR(z̄).
Also, notice that ∂X = −ij, ∂̄X = −ij̃ is the translation current for
the boson. This deformation of the action is

∆L = −δR2jj̃.

When the boson arises by bosonizing complex fermions of both chiri-
alities,

ψ = eiH , ψ̃ = eiH̃

ψ⋆ = e−iH , ψ̃⋆ = e−iH̃ ,

1



and there are again left-moving and right-moving currents:

j = ψ⋆ψ, j̃ = ψ̃⋆ψ̃,

which map to the momentum currents above. In terms of the fermions,
the deformation is therefore

∆L = −δR2jj̃ = −δR2ψ⋆ψψ̃⋆ψ̃,

a four-fermion interaction.

(b) Add a mass for the fermions. Describe this operator in terms of the bosons.
The result is called the sine-Gordon model.

If you get stuck here, or want to learn more, see page 246 of Coleman, Aspects

of Symmetry, or Phys. Rev. D11 (1975) 2088.

The mass term for the fermions is something like

∆L = −m(ψψ̃ + ψ⋆ψ̃⋆)

(where I’ve chosen to break the vectorlike fermion number ψ →
αψ, ψ̃ → αψ̃ and preserve the axial fermion number ψ → βψ, ψ̃ →
β−1ψ̃). In terms of bosons, this is

∆L = −m
(

eiHeiH̃ + e−iHe−iH̃
)

since H, H̃ have no OPE singularity, this is

∆L = −m
(

ei(H+H̃) + e−i(H+H̃)
)

= −2m cosH(z, z̄),

a sine-gordon interaction.

A few comments:

(i) If we had chosen the mass term to break the axial current instead,
this would have been a condensate of a winding mode,

cos Ĥ, Ĥ(z, z̄) ≡ H(z) − H̃(z̄).

(ii) This operator cosH, unlike the change-of-radius operator is not
dimension (1,1), at least in the absence of the four-fermion term. It
is a relevant operator which drives an RG flow towards a mass gap.
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The fact that the dimension of the cosine depends on the radius of the
boson (and in particular can vary from irrelevant to relevant) is the
origin of the Kosterlitz-Thouless phase transition of the XY model
in two spatial dimensions (see e.g. Chaikin and Lubensky Principles of

Condensed Matter Physics, §9.2)

2. Operator algebra of spin fields.

(a) Using bosonization and constraints from Lorentz invariance, convince your-
self that

ψµ(z)Θα(0) ∼ 1√
2

1√
z
Γµ

αβΘβ(0)

and

Θα(z)Θβ(0) ∼ Cαβ
1

z5/4
+

1√
2

1

z3/4
(CΓµ)αβψµ(0)

where C is the charge conjugation matrix CΓµC−1 = −(Γµ)T . It may help to
note that these are closely related to eqns (12.4.7) and (12.4.18) of Polchinski,
and that the power of z is determined by dimensional analysis. Note that
the first term in the second equation vanishes when the Θs have the same
chiralities, such as in part (b) of this problem.

If you want to worry about signs and factors, it might be helpful to come to
terms with the equations of p. 77 of Peskin’s notes, where he gives an explicit
prescription for the cocyles for the spin fields.

First, bosonize:

1√
2

(

ψ2a ± iψ2a+1
)

= e±iHa

,
1√
2

(

±ψ0 + iψ1
)

= e±iH0

Θα = eiαaHa

where αa = ±1
2
. H is a free boson so

: eiα·H : (z) : eiβ·H : (0) = zα·βei(α+β)·H(0) + ...

where note that I’m using as indices the weight vectors α (sometimes
called s).

The fusion of the spinor and the vector gives

e±iHa(z)Θα(0) ∼ zαaei(αb+eb)H
b
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where eb is a vector of zeros with a 1 in the bth entry. If αa = −1
2
, this

is singular, and in that case αa + ea = +1
2
; the spin has been flipped.

If αa = +1
2
, this OPE is nonsingular. Therefore, the singular part

of the OPE is exactly the action of the Γ matrices in the creation-
annihilation basis we contructed (see Appx B of Polchinski)

Γ0± =
1

2

(

±Γ0 + Γ1
)

, Γa± =
1

2

(

±Γ2a ± iΓ2a+1
)

and we find

ψµ(z)Θα(0) ∼ 1√
2

1√
z
Γµ

αβΘβ(0) + O(
√
z)

Θα(z)Θβ(0) = eiαaHa

(z)eiβbHb

(0).

∼ zαaβaei(αa+βa)Ha(0) + ...

Only if αa = −βa for a given a – i.e. if the spins along that plane differ
– does a given Ha make a singular contribution to the OPE. The pos-
sible values of the exponent

∑

a αaβa are −5/4,−3/4,−1/4, 1/4, 3/4, 5/4
depending on how many components of α and β differ. If we allow
the Θs to have different chirality (i.e. different parity of the number
of up spins), then all five can be different, which gives a term going
like

z5/4Cαβ

– Cαβ is the matrix in the spin space which is only nonzero if all the
components of α and of β are different.

If α and β have the same chirality, the most singular bit comes from
flipping four out of five spins. The power of z from this is

−1

4
− 1

4
− 1

4
− 1

4
+

1

4
= −3

4
.

This leaves a single component of α and β the same, and that entry
(say αb = βb) will add instead of cancelling in αa + βa, this entry will
add up to:

αb + βb = 2βb = ±1

which gives
ei

P

a(αa+βa)Ha

= ei2αbHb

(no sum on b).
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The object on the RHS here is exactly

ei2αbHb

=
1√
2

(

ψ2b ± iψ2b+1
)

(where we make an exception when b = 0 to allow for the existence
of time (whose idea was that?)). Since the Lorentz-covariant object
which intertwines between the vector and spinor representations is
exactly a gamma matrix, we have

Θα(z)Θβ(0) ∼ Cαβ
1

z5/4
+

1√
2

1

z3/4
(CΓµ)αβψµ(0) +

1

z1/4
Cαβ + regular

where Cαβ is a matrix which only has nonzero elements if α and β
differ by three spins, and I suppose has two fermions in it – again,
the first and third terms are zero if the Θs have the same chirality,
which they always will in a sensible CFT, exactly because these terms
would prevent a local OPE between Θs of opposite chirality. This
is yet another point where we are saved from dragons by the GSO
projection.

(b) Verify the algebra of spacetime supersymmetry generators

Qα =

∮

dz

2πi
Vα(z) =

∮

dz

2πi
e−φ/2Θα(z).

By the usual contour argument, using the mysterious fact that VαVβ =
−VβVα, we have

{Qα, Qβ} =

∮

C0

dz

2πi

∮

Cz

dw

2πi
Vα(w)Vβ(z)

where Cz is a contour centered on z. The VV OPE, which is the ΘΘ
OPE in part a (for Θs of the same chirality) times

: e−φ(w)/2 :: e−φ(z)/2 :∼ 1

(w − z)1/4
: e−φ(z) : +...

gives

{Qα, Qβ} =

∮

C0

dz

2πi

∮

Cz

dw

2πi

1√
2

1

w − z
e−φ(z)(CΓµ)αβψµ(z) + ...
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=

∮

C0

dz

2πi

1√
2
e−φ(z)(CΓµ)αβψµ(z).

This is the momentum generator in a different picture, i.e. an object
which when you act on it with a picture changing operator (which will
always be available in an amplitude where you have an opportunity
to use this algebra, and the answer is independent of where we put
the PCOs) you get

∮

∂X. This is true because

P+1e
−φψµ(z) = lim

z′→z
eφTF (z′)e−φψµ(z) = lim

z′→z
(z′ − z)

1

z′ − z
i

√

2

α′
∂Xµ(z)

The momentum of the (left-moving bit of the) closed string is

pµ =
1

α′

∮

dz

2π
∂Xµ

which gives

P+1{Qα, Qβ} =
1√
2
(CΓµ)αβ

∮

C0

dz

2πi
i

√

2

α′
∂Xµ =

1
√
α
′
(CΓµ)αβpµ.

I don’t have anything useful to say about the
√
α′.

3. A little more superstring scattering.

Polchinski, problem 12.8.

This problem asks us to study the tree-level scattering of three closed
superstring bosons, two RR and one NSNS. The amplitude, with
pictures chosen to saturate the sphere ghost anomaly of −2 on left
and right, is

A(3)
S2 =

〈

cc̃V
(− 1

2
,− 1

2
)

1 (z1)cc̃V
(− 1

2
,− 1

2
)

2 (z2)cc̃V
(−1,−1)
3 (z3)

〉

S2

where the vertex operators are

V (− 1

2
,− 1

2
)(z) = gce

−φ/2−φ̃/2ΘαΘ̃βe
ik·XF αβ

and
V (− 1

2
,− 1

2
)(z) = gce

−φ−φ̃ψµψ̃νeik·Xζµν .
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The correlators we need are

〈cc̃(z1)cc̃(z2)cc̃(z3)〉S2 = Cgh
S2 |z12z23z31|2

〈e−φ/2−φ̃/2(z1)e
−φ/2−φ̃/2(z2)e

−φ−φ̃(z3)〉S2 = Csgh
S2 |z12|−1/2|z13z23|−1.

〈
3

∏

i=1

: eiki·X :〉S2 = CX
S2

∏

i<j

|zij|α
′ki·kj δ̃10(

∑

k).

〈Θα(z1)Θγ(z2)ψ
µ(z3)〉S2 = z

−3/4
12 z

−1/2
13 z

−1/2
23

1√
2
(CΓµ)αγ

and similarly for the tilded objects with z → z̄.

This gives

A(3)
S2 = CS2 δ̃10

(

∑

k
)

F αβ
1 F γδ

2 ζµν(CΓµ)αγ(CΓν)βδ|z12|−1/2−3/2+2|z23|−1−1+2|z31|−1−1+2
∏

i<j

|zij|α
′ki·kj

where I’ve lumped all the path integral normalizations into one along
with the vertex normalizations and the dilaton-dependence; applying
the optical theorem relates these to the string coupling. Using k2

1 =
0,

∑

k = 0, we see that ki · kj = 0, so the z-dependence dies as it must.
We get

A(3)
S2 = CS2 δ̃10

(

∑

k
)

F αβ
1 F γδ

2 ζµν(CΓµ)αγ(CΓν)βδ.

4. The bosonic tachyon and the superstring.

The bosonic string tachyon, whose vertex operator is eik·X , is not a physical
state of the superstring because it isn’t supersymmetric, i.e. it is not killed
by the TF part of the BRST operator. However, a skeptic might worry that it
would somehow try to appear in interactions of allowed states (even though the
BRST construction guarantees that it does not). In fact, it comes dangerously
close to appearing, as follows. 1

Consider the OPE of two (-2)-picture NS tachyons (ignore the contribution of
the superconformal ghosts here, which gives an extra factor of e−2φ):

V
(−2)
k ≡ ik · ψeik·X .

1This problem follows some comments in section 9.13 of Polyakov’s book.
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Show that it contains pole terms that look very much like the bosonic tachyon
vertex eik·X. Become afraid. Then show that the coefficient of this term van-
ishes when the on-shell condition for the superstring tachyon is imposed.

V
(−2)
k1

(z)V
(−2)
k2

(0) =: ik1 · ψ(z)eik1·X(z) :: ik2 · ψ(0)eik2·X(0) :

∼ −kµ
1k

ν
2

(

δµν

z
+ z : ψ∂ψ : +...

)

zα′k1·k2 : eik1·X(z)+ik2·X(0) :

∼ −k1 · k2
1

z1+α′k1·k2

: ei(k1+k2)·X(0) : (1 + O(z))

which looks dangerously like we’ve produced the bosonic tachyon,
which could go on shell if its momentum p = k1 + k2 satisfied

α′p2 = 2. (Irma)

But now we must realize that the tachyons are on-shell:

α′k2
i = 1, i = 1, 2

which using (Irma) implies

2k1 · k2 = (k1 + k2)
2 − k2

1 − k2
1 = 2 − 1 − 1 = 0,

and so the residue of the would-be on-shell bosonic tachyon pole is
zero. Thank goodness.

The following problems don’t actually require a written response:

5. Anomalies. Read Polchinski section 12.2 about anomalies in type I super-
gravity, and their cancellation using the Green-Schwarz mechanism. Look at
section 12.6 where JP shows that for the heterotic string the required B∧tr F 4

term is generated at one loop.

6. The oracle speaks on GSO.

Try to understand the following statements in favor of the GSO projection,
from Polyakov’s book (p. 251). “...only under the above prescription [i.e. only
when making the GSO projection and summing over R and NS sectors] is it

possible to treat the system in terms of spin operators [i.e. is it equivalent to
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an Ising model]. For that matter, take an Ising model on a surface with high

genus. We know that usually [i.e. on the plane] this model can be replaced

by free fermions. Is this still true? In fermionization of Ising spins a crucial

role is played by Kramers-Wannier duality... Fermionic lines are essentially

the boundaries of drops containing reversed spins. However, if the surface

is homologically nontrivial [i.e. genus > 0], there are closed paths which do

not form boundaries of anything. We must ensure that fermionic trajectories

corresponding to these paths do not contribute. The way to achieve this is just

to sum over spin structures, since then each homologically nontrivial path will

be cancelled by one of the opposite spin structure.”

7. Geometry.

Soon we are going to start using some fancy geometry. Start looking at section
2 of hep-th/9702155.
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