MASSACHUSETTS INSTITUTE OF TECHNOLOGY
 Department of Physics
 String Theory (8.821) - Prof. J. McGreevy - Fall 2007

Solution Set 5

A little more on open strings, bosonization, superstring spectrum
Reading: Polchinski, Chapter 10.

Due: Thursday, November 8, 2007 at 11:00 AM in lecture.

1. The open string tachyon is in the adjoint rep of the Chan-Paton gauge group.

Convince yourself that I wasn't lying when I said that the pole in the Veneziano amplitude (with no CP factors) at $s=0$ cancels in the sum over orderings. Convince yourself that this means that when CP factors are included the tachyon is in the adjoint representation of the D-brane worldvolume gauge group.

The Veneziano amplitude is

$$
S_{D_{2}}\left(k_{1} . . k_{4}\right)=2 i g_{0}^{4} C_{D^{2}} \tilde{\delta}\left(\sum k\right)(I(s, t)+I(t, u)+I(u, s))
$$

with

$$
I(s, t)=\int_{0}^{1} d y y^{-\alpha^{\prime} s-2}(1-y)^{-\alpha^{\prime} t-2}
$$

and $\alpha^{\prime}(s+t+u)=-4$. The 2 out front was the sum over orderings of 2 and 3 , or alternatively the sum over the two orientations of the boundary. An analytic continuation of this which allows us to study the region near $s=0$ (the integral representation doesn't converge there) is

$$
I(s, t)=\frac{\Gamma\left(-\alpha^{\prime} s-1\right) \Gamma\left(-\alpha^{\prime} t-1\right)}{\Gamma\left(-\alpha^{\prime} s-\alpha^{\prime} t-2\right)}
$$

Near $s \rightarrow 0$, this has a pole of the form:

$$
I(s \rightarrow 0, t) \sim \frac{\alpha t+2}{\alpha^{\prime} s}
$$

The t-channel diagram gives

$$
I(u, s \rightarrow 0) \sim \frac{\alpha^{\prime} u+2}{\alpha^{\prime} s}
$$

while the other channel $I(t, u)$ is regular when $t+u \sim-4$. So the total residue is

$$
\left.\frac{1}{\alpha^{\prime}}\left(\alpha^{\prime} t+2+\alpha^{\prime} u+2\right)\right|_{s=0}=0
$$

With CP factors, the amplitude is instead

$$
\begin{gathered}
S_{D_{2}}\left(k_{1}, \lambda_{1} ; . . k_{4}, \lambda_{4}\right)=i g_{0}^{4} C_{D^{2}} \tilde{\delta}\left(\sum k\right) \times \\
{[I(s, t) \operatorname{tr}(1234+4321)+I(t, u) \operatorname{tr}(4231+1324)+I(u, s) \operatorname{tr}(1243+3421)]}
\end{gathered}
$$

where

$$
1234 \equiv \lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}
$$

and we determined the order of the CP matrices by the relative orderings of the vertex operators in the $y=y_{4}$ integral; note that the two orientations of the boundary are no longer the same. The two terms (first and third) that contribute a $s=0$ pole are related by $4 \leftrightarrow 3$ and so the sum of residues is now proportional to
$\alpha^{\prime-1}\left(\left(\alpha^{\prime} t+2\right) \operatorname{tr}(1234+4321)+\left(\alpha^{\prime} u+2\right) \operatorname{tr}(1243+3421)\right)=(t-u) \operatorname{tr}\left[\lambda_{1}, \lambda_{2}\right]\left[\lambda_{3}, \lambda_{4}\right]$.
Unitarity then relates this residue to the three-point coupling to the gauge boson:
$\mathcal{A}_{D^{2}}\left(k_{1} . . k_{4}\right)=i \int \frac{d^{26} k}{(2 \pi)^{26}} \sum_{\zeta} \frac{\mathcal{A}_{D^{2}}\left(k_{1}, k_{2} ; k, \zeta\right) \mathcal{A}_{D^{2}}\left(-k, \zeta ; k_{3}, k_{4}\right)}{-k^{2}+i \epsilon}+$ reg. at $s=0$.
If the tachyons are in the adjoint, the three-point coupling between the gauge boson and the two tachyons looks like

$$
\operatorname{tr}(D T)^{2} \equiv \operatorname{tr}(\partial T-[A, T])^{2} \operatorname{tr} \partial T[A, T] \propto \operatorname{tr} \lambda_{2}\left[\lambda_{A}, \lambda_{1}\right] \propto f_{A 12}
$$

($f_{A B C}$ are the structure constants of the gauge group). Then the tree-level s-channel diagram has the group theory structure

$$
\sum_{A} f_{A 12} f_{A 34} \sim \operatorname{tr}\left[\lambda_{1}, \lambda_{2}\right]\left[\lambda_{3}, \lambda_{4}\right]
$$

where A is the adjoint index of the gauge boson. This is exactly what we found. (And the momentum dependence $u-t$ comes from the derivative acting on the scalar.)
2. Bosonization of a Dirac fermion $=$ Fermionization of a non-chiral boson.
(a) Consider the CFT associated with compactification on a single circle of radius R, i.e. one periodic free boson $X \simeq X+2 \pi R$. Show that the partition function on a torus of modular parameter $q=e^{2 \pi i \tau}$ is (in $\alpha^{\prime}=2$ units)

$$
\begin{gathered}
Z_{R}(\tau, \bar{\tau})=\operatorname{tr} q^{L_{0}-\frac{1}{24}} \bar{q}^{\tilde{L}_{0}-\frac{1}{24}} \\
=\frac{1}{|\eta|^{2}} \sum_{n, m \in \mathbb{Z}} q^{\frac{1}{2}\left(\frac{n}{R}+\frac{m R}{2}\right)^{2}} \bar{q}^{\frac{1}{2}\left(\frac{n}{R}-\frac{m R}{2}\right)^{2}},
\end{gathered}
$$

where the Dedekind eta function is

$$
\eta(\tau) \equiv q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Note that this function is invariant under T-duality:

$$
Z_{R}=Z_{\alpha / R}
$$

Our expression for L_{0} in terms of oscillators gives

$$
Z_{R}(\tau, \bar{\tau})=\operatorname{tr} q^{-\frac{1}{24}} \bar{q}^{-\frac{1}{24}} \sum_{p_{L}, p_{R}} q^{\frac{1}{2} p_{L}^{2}} \bar{q}^{\frac{1}{2} p_{R}^{2}} \prod_{n} \sum_{N_{n}, \tilde{N}_{n}} q^{n N_{n}} \bar{q}^{n \tilde{N}_{n}}
$$

where

$$
p_{L}=\frac{n}{R}+\frac{m R}{2}, \quad p_{R}=\frac{n}{R}-\frac{m R}{2}, \quad n, m \in \mathbb{Z}
$$

are the allowed momenta. The bosonic oscillator sums are geometric and using $\eta^{-1}(q) \equiv q^{-1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$ we have

$$
Z_{R}=\frac{1}{|\eta|^{2}} \sum_{n, m \in \mathbf{Z}} q^{\frac{1}{2}\left(\frac{n}{R}+\frac{m R}{2}\right)^{2}} \bar{q}^{\frac{1}{2}\left(\frac{n}{R}-\frac{m R}{2}\right)^{2}}
$$

(b) Here we will study the special radius $R=1=\sqrt{\alpha^{\prime} / 2}$ (or equivalently $R=2=\sqrt{2 \alpha^{\prime}}$, by T-duality). Show that at this special radius (which is different from the self-dual radius, $R=\sqrt{2}=\sqrt{\alpha^{\prime}}$! , the partition function can be written as

$$
Z_{1}(\tau, \bar{\tau})=\frac{1}{2} \frac{1}{|\eta|^{2}}\left(\left|\sum_{n} q^{n^{2} / 2}\right|^{2}+\left|\sum_{n}(-1)^{n} q^{n^{2} / 2}\right|^{2}+\left|\sum_{n} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}}\right|^{2}\right) .
$$

The trick here is just to break up the momentum sums into integers and half-integers. (From our discussion of bosonization you know that this is a good idea because the integer momenta will be NS states ($\psi \sim e^{i H}$) and the half-integer momenta will be \mathbf{R} states $\left(\Theta \sim e^{\frac{1}{2} i H}\right)$.) The momentum sum is

$$
|\eta|^{2} Z_{1}=\sum_{n, m \in \mathbf{Z}} q^{\frac{1}{2}\left(n+\frac{m}{2}\right)^{2}} \bar{q}^{\frac{1}{2}\left(n-\frac{m}{2}\right)^{2}}=\sum_{n, r \in \mathbf{Z}}\left(q^{\frac{1}{2}(n+r)^{2}} \bar{q}^{\frac{1}{2}(n-r)^{2}}+q^{\frac{1}{2}\left(n+r+\frac{1}{2}\right)^{2}} \bar{q}^{\frac{1}{2}\left(n-r-\frac{1}{2}\right)^{2}}\right)
$$

In the first term, $r=2 m$; in the second $r=2 m+1$. These will be related to the R and NS sectors of the fermion, respectively. Now, we would like rewrite this as a sum over 'conformal blocks', i.e. as a sum of products $\sum_{i} M_{i j} f_{i}(q) \tilde{f} j(\bar{q}) ; M$ will turn out to be diagonal. To do this, define $a=n+r, b=n-r$. Notice that if n, m are integers then a, b always have the same parity. We can implement this constraint by inserting the projector $P=\frac{1}{2}\left(1+(-1)^{a+b}\right)$: for any f

$$
\sum_{n, m \in \mathbf{Z}} f(n+m, n-m)=\frac{1}{2} \sum_{a, b \in \mathbf{Z}}\left(1+(-1)^{a+b}\right) f(a, b)
$$

this is the (diagonal) GSO projection on fermion number. We find

$$
\begin{gathered}
|\eta|^{2} Z_{1}=\sum_{a} q^{\frac{1}{2} a^{2}} \sum_{b} \bar{q}^{\frac{1}{2} b^{2}}+\sum_{a}(-1)^{a} q^{\frac{1}{2} a^{2}} \sum_{b}(-1)^{b} \bar{q}^{\frac{1}{2} b^{2}}+ \\
\sum_{a} q^{\frac{1}{2}\left(a+\frac{1}{2}\right)^{2}} \sum_{b} \bar{q}^{\frac{1}{2}\left(b-\frac{1}{2}\right)^{2}}+\sum_{a}(-1)^{a} q^{\frac{1}{2}\left(a+\frac{1}{2}\right)^{2}} \sum_{b}(-1)^{b} \bar{q}^{\frac{1}{2}\left(b-\frac{1}{2}\right)^{2}}
\end{gathered}
$$

The last term on the RHS vanishes since the summand is odd under $a \rightarrow-a$ (and $b \rightarrow-b$, too, so it's twice as zero). We're left with

$$
|\eta|^{2} Z_{1}=\left|\sum_{n} q^{n^{2} / 2}\right|^{2}+\left|\sum_{n}(-1)^{n} q^{n^{2} / 2}\right|^{2}+\left|\sum_{n} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}}\right|^{2}
$$

The sums in the squares are theta functions, specifically,

$$
\begin{gathered}
\theta_{3}(\tau)=\vartheta_{00}(0 \mid \tau)=\sum_{n} q^{n^{2} / 2} \\
\theta_{4}(\tau)=\vartheta_{01}(0 \mid \tau)=\sum_{n}(-1)^{n} q^{n^{2} / 2}
\end{gathered}
$$

$$
\theta_{2}(\tau)=\vartheta_{10}(0 \mid \tau)=\sum_{n} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}}
$$

which can be expressed as infinite products (instead of infinite sums), as described on page 215 of Polchinski vol. I. Rewriting $Z_{1}(\tau, \bar{\tau})$ using the product forms of the theta functions I get

$$
Z_{1}=\frac{1}{2}\left|q^{-\frac{1}{24}}\right|^{2}\left(\left|\prod_{r=1}^{\infty}\left(1+q^{r-\frac{1}{2}}\right)^{2}\right|^{2}+\left|\prod_{r=1}^{\infty}\left(1-q^{r-\frac{1}{2}}\right)^{2}\right|^{2}+\left|2 q^{\frac{1}{8}} \prod_{r=1}^{\infty}\left(1+q^{r}\right)^{2}\right|^{2}\right)
$$

(c) Show that this last form of Z is the partition function of a 2 d Dirac fermion (!). Note that 'Dirac fermion' here means two left-moving MW fermions and two right-moving MW fermions, and we are choosing the spin structures of the right-moving and left-moving fermions in a correlated, non-chiral way the GSO operator is the $(-1)^{F}$ which counts the fermion number of all the fermions at once, and we include only RR and NSNS sectors. This is called the 'diagonal modular invariant'. Note that this is a different sum over spin structures than the one in the system bosonized in Polchinski chapter 10 (and this is why it can be modular invariant with fewer than eight fermions).
[Hint: (i) The three terms in Z_{1} arise from the three choices of spin structure which give nonzero partition functions.
(ii) The sums in the squares are theta functions, specifically,

$$
\begin{gathered}
\theta_{3}(\tau)=\vartheta_{00}(0 \mid \tau)=\sum_{n} q^{n^{2} / 2} \\
\theta_{4}(\tau)=\vartheta_{01}(0 \mid \tau)=\sum_{n}(-1)^{n} q^{n^{2} / 2} \\
\theta_{2}(\tau)=\vartheta_{10}(0 \mid \tau)=\sum_{n} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}},
\end{gathered}
$$

which can be expressed as infinite products (instead of infinite sums), as described on page 215 of Polchinski vol. I. Rewrite $Z_{1}(\tau, \bar{\tau})$ using the product forms of the theta functions.]

In the NS sector, the fermions are half-integer moded (this is really the NSNS sector, i.e. NS on both sides).

$$
Z_{N S}=\operatorname{tr}_{N} S e^{-\tau_{2} H+i \tau_{2} P} \frac{1}{2}\left(1+(-1)^{F+\tilde{F}}\right)
$$

Remembering that each mode can be occupied at most once,

$$
Z_{N S}=\frac{1}{2}\left(\left|q^{E_{0}^{N S}} \prod_{m=1}^{\infty}\left(1+q^{m-\frac{1}{2}}\right)\right|^{2}\left|q^{E_{0}^{N S}} \prod_{m=1}^{\infty}\left(1-q^{m-\frac{1}{2}}\right)\right|^{2}\right)
$$

Using the zeropoint energy mnemonic, $E_{0}^{N S}=2\left(-\frac{1}{48}\right)$ for two antiperiodic fermions, and we get:

$$
Z_{N S}=\frac{1}{2}\left(\left|\frac{\theta_{00}}{\eta}\right|^{2}+\left|\frac{\theta_{01}}{\eta}\right|^{2}\right)
$$

In the \mathbf{R} sector, the fermions are integer-moded, including zero, so there are four degenerate groundstates from $\left\{\psi_{0}, \psi_{0}^{\star}\right\}=1$ and $\tilde{\psi}_{0}, \tilde{\psi}_{0}^{\star}=$ 1. These groundstates have opposite fermion numbers in pairs, hence

$$
\begin{gathered}
Z_{R}=\operatorname{tr}_{R} e^{-\tau_{2} H+i \tau_{2} P} \frac{1}{2}\left(1+(-1)^{F+\tilde{F}}\right) \\
=\frac{1}{2}\left(\left|q^{E_{0}^{R}}(1+1) \prod_{m=1}^{\infty}\left(1+q^{m}\right)\right|^{2}+\left|q^{E_{0}^{R}}(1-1) \prod_{m=1}^{\infty}\left(1-q^{m}\right)\right|^{2}\right) .
\end{gathered}
$$

Using the zeropoint energy for two periodic fermions, $E_{0}^{R}=2 \frac{1}{24}$, we get directly the product version of the theta functions

$$
Z_{R}=\frac{1}{2}\left|\frac{\theta_{10}}{\eta}\right|^{2}
$$

and altogether we've reproduced

$$
Z_{1}=Z_{N S}+Z_{R}
$$

3. Superstring worldsheet vacuum energy.

Show that ${ }^{1}$

$$
\sum_{n=0}^{\infty}(n-j)-\sum_{n=0}^{\infty} n=-\frac{1}{2} j(j+1)
$$

[^0]where we can define the divergent sums by a regulator mass:
$$
\sum_{n=0}^{\infty} \omega_{n} \equiv \lim _{\epsilon \rightarrow 0} \sum_{n=0}^{\infty} \omega_{n} e^{-\epsilon \omega_{n}}
$$

Show that this reproduces the lightcone gauge vacuum energies for the NS and R sectors.
Relatedly, you might want to do Polchinski problem 10.8.

$$
\begin{gathered}
Z_{\epsilon}(j) \equiv \sum_{n=0}^{\infty}(n-j) e^{-\epsilon(n-j)}=-\partial_{\epsilon} \sum_{n=0}^{\infty} e^{-\epsilon(n-j)}=-\partial_{\epsilon}\left(\frac{e^{\epsilon j}}{1-e^{-\epsilon}}\right) \\
=e^{\epsilon j} \frac{j\left(1-e^{-\epsilon}\right)-\left(e^{-\epsilon}\right)}{\left(1-e^{-\epsilon}\right)^{2}}=e^{\epsilon j} \frac{j-(j+1) e^{-\epsilon}}{\left(1-e^{-\epsilon}\right)^{2}}
\end{gathered}
$$

It's not an accident that this looks like the generating function of Bernoulli numbers. So

$$
\sum_{n} n e^{-n \epsilon}=Z_{\epsilon}(j=0)=\frac{e^{-\epsilon}}{\left(1-e^{-\epsilon}\right)^{2}}
$$

and the vacuum energy is the small ϵ limit of
$Z_{\epsilon}(j)-Z_{\epsilon}(0)=\frac{(j+1) e^{\epsilon(j-1)}-j e^{+\epsilon j}-e^{-\epsilon}}{\left(1-e^{-\epsilon}\right)^{2}}=\frac{\frac{1}{2}(j+1)(j-1)^{2}-\frac{1}{2} j^{3}-\frac{1}{2}+\mathcal{O}\left(\epsilon^{3}\right)}{\epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)}$.
Notice that the singular $\epsilon^{-2}, \epsilon^{-1}$ terms cancel between the bose and fermi contributions. This is

$$
Z_{\epsilon}(j)-Z_{\epsilon}(0)=\frac{-\frac{1}{2} j(j+1) \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)}{\epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right)}
$$

which gives

$$
E_{0}=\lim _{\epsilon \rightarrow 0}\left(Z_{\epsilon}(j)-Z_{\epsilon}(0)\right)=-\frac{1}{2} j(j+1)
$$

For the NS sector of the lightcone superstring, 4 complex periodic bosons and 4 complex antiperiodic fermions give

$$
-4 \times\left(-\frac{1}{2} j(j+1)\right)=4 \frac{1}{2}\left(-\frac{1}{2}\right)\left(1-\frac{1}{2}\right)=-\frac{1}{2} .
$$

For the R sector, the change of fermion periodicity gives

$$
E_{0}^{R}=-4 \times\left(-\frac{1}{2} \times 0\right)=0
$$

as required by supersymmetry.
For the NS sector, we find the contribution of one real antiperiodic ($j=-\frac{1}{2}$) fermion to be
$E_{0}^{N S} /$ per fermion $=-\frac{1}{2} \sum_{n=0}^{\infty}\left(n+\frac{1}{2}\right)=\frac{1}{24}-\frac{1}{2}\left(-\frac{1}{2}\right)\left(1-\frac{1}{2}\right)=\frac{1}{24}-\frac{1}{16}=-\frac{1}{48}$.
For the \mathbf{R} sector, we find the contribution of one real periodic $(j=0)$ fermion to be

$$
E_{0}^{R} / \text { per fermion }=-\frac{1}{2} \sum_{n=0}^{\infty} n=\frac{1}{24}-\frac{1}{2}(0) 1=\frac{1}{24} .
$$

4. bispinors.

Make yourself happy about the field content of the RR sectors of the type II superstrings. In particular, if $\eta_{ \pm}$are chiral spinors,

$$
(1 \mp \gamma) \eta_{ \pm}=0, \quad\left\{\gamma, \gamma^{i}\right\}=0, \forall i=1 . .8
$$

show that

$$
\tilde{\eta}_{+} \gamma^{i_{1} \ldots i_{q}} \eta_{+}=0
$$

if q is odd and

$$
\tilde{\eta}_{+} \gamma^{i_{1} \ldots i_{q}} \eta_{-}=0
$$

if q is even.
There are two basic ideas. The first is that in tensoring together the two spinors, we need only stick antisymmetrized combinations of $\gamma \mathrm{s}$. This is true because the gammas satisfy $\left\{\gamma^{i}, \gamma^{j}\right\}=2 \eta^{i j}$ which means that any symmetric part can be reduced to a lower-rank antisymmetric part.

The second point is that on a chiral spinor, one can multiply for free by the chirality projector:

$$
\eta_{ \pm}=\frac{1}{2}(1 \pm \gamma) \eta_{ \pm} .
$$

And since moving the γ through a γ^{i} gives a minus $\left(\left\{\gamma, \gamma^{i}\right\}=0\right.$), we have

$$
\begin{gathered}
\tilde{\eta}_{+} \gamma^{i_{1} \ldots i_{q}} \eta_{ \pm}=\tilde{\eta}_{+} \gamma^{i_{1}} \ldots \gamma^{i_{q}} \frac{1}{2}(1 \pm \gamma) \eta_{ \pm} \quad \pm \text { perms } \\
=\tilde{\eta}_{+} \gamma^{i_{1}} \ldots \gamma^{i_{q-1}} \frac{1}{2}(1 \mp \gamma) \gamma^{i_{q}} \eta_{ \pm} \quad \pm \text { perms } \\
=\tilde{\eta}_{+} \frac{1}{2}\left(1+(\pm)^{q} \gamma\right) \gamma^{i_{1}} \ldots \gamma^{i_{q}} \frac{1}{2}(1 \pm \gamma) \eta_{ \pm} \quad \pm \text { perms }
\end{gathered}
$$

which is zero if

$$
(\pm)^{q}=-1
$$

which is when q is odd for + and when q is even for - .

[^0]: ${ }^{1}$ Sorry for the typo here in the statement of the problem.

