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Solution Set 5
A little more on open strings, bosonization, superstring spectrum

Reading: Polchinski, Chapter 10.

Due: Thursday, November 8, 2007 at 11:00 AM in lecture.

1. The open string tachyon is in the adjoint rep of the Chan-Paton
gauge group.

Convince yourself that I wasn’t lying when I said that the pole in the Veneziano
amplitude (with no CP factors) at s = 0 cancels in the sum over orderings. Con-
vince yourself that this means that when CP factors are included the tachyon
is in the adjoint representation of the D-brane worldvolume gauge group.

The Veneziano amplitude is

SD2
(k1..k4) = 2ig4

0CD2 δ̃(
∑

k) (I(s, t) + I(t, u) + I(u, s))

with

I(s, t) =

∫ 1

0

dyy−α′s−2(1 − y)−α′t−2,

and α′(s + t + u) = −4. The 2 out front was the sum over orderings
of 2 and 3, or alternatively the sum over the two orientations of the
boundary. An analytic continuation of this which allows us to study
the region near s = 0 (the integral representation doesn’t converge
there) is

I(s, t) =
Γ(−α′s− 1)Γ(−α′t− 1)

Γ(−α′s− α′t− 2)
.

Near s→ 0, this has a pole of the form:

I(s→ 0, t) ∼ αt+ 2

α′s
.

The t-channel diagram gives

I(u, s→ 0) ∼ α′u+ 2

α′s
,
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while the other channel I(t, u) is regular when t+u ∼ −4. So the total
residue is

1

α′
(α′t+ 2 + α′u+ 2) |s=0 = 0.

With CP factors, the amplitude is instead

SD2
(k1, λ1; ..k4, λ4) = ig4

0CD2 δ̃(
∑

k) ×

[I(s, t)tr (1234 + 4321) + I(t, u)tr (4231 + 1324) + I(u, s)tr (1243 + 3421)]

where
1234 ≡ λ1λ2λ3λ4

and we determined the order of the CP matrices by the relative
orderings of the vertex operators in the y = y4 integral; note that the
two orientations of the boundary are no longer the same. The two
terms (first and third) that contribute a s = 0 pole are related by
4 ↔ 3 and so the sum of residues is now proportional to

α′−1 ((α′t+ 2) tr (1234 + 4321) + (α′u+ 2) tr (1243 + 3421)) = (t−u)tr[λ1, λ2][λ3, λ4].

Unitarity then relates this residue to the three-point coupling to the
gauge boson:

AD2(k1..k4) = i

∫

d26k

(2π)26

∑

ζ

AD2(k1, k2; k, ζ)AD2(−k, ζ ; k3, k4)

−k2 + iǫ
+reg. at s = 0.

If the tachyons are in the adjoint, the three-point coupling between
the gauge boson and the two tachyons looks like

tr(DT )2 ≡ tr(∂T − [A, T ])2tr∂T [A, T ] ∝ trλ2[λA, λ1] ∝ fA12

(fABC are the structure constants of the gauge group). Then the
tree-level s-channel diagram has the group theory structure

∑

A

fA12fA34 ∼ tr[λ1, λ2][λ3, λ4]

where A is the adjoint index of the gauge boson. This is exactly
what we found. (And the momentum dependence u − t comes from
the derivative acting on the scalar.)
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2. Bosonization of a Dirac fermion = Fermionization of a non-chiral
boson.

(a) Consider the CFT associated with compactification on a single circle of
radius R, i.e. one periodic free boson X ≃ X + 2πR. Show that the partition
function on a torus of modular parameter q = e2πiτ is ( in α′ = 2 units)

ZR(τ, τ̄) = trqL0−
1

24 q̄L̃0−
1

24

=
1

|η|2
∑

n,m∈ZZ

q
1

2
( n

R
+ mR

2
)
2

q̄
1

2
( n

R
−

mR
2

)
2

,

where the Dedekind eta function is

η(τ) ≡ q
1

24

∞
∏

n=1

(1 − qn).

Note that this function is invariant under T-duality:

ZR = Zα/R.

Our expression for L0 in terms of oscillators gives

ZR(τ, τ̄) = trq−
1

24 q̄−
1

24

∑

pL,pR

q
1

2
p2

L q̄
1

2
p2

R

∏

n

∑

Nn,Ñn

qnNn q̄nÑn

where

pL =
n

R
+
mR

2
, pR =

n

R
− mR

2
, n,m ∈ ZZ

are the allowed momenta. The bosonic oscillator sums are geometric
and using η−1(q) ≡ q−1/24

∏

∞

n=1(1 − qn) we have

ZR =
1

|η|2
∑

n,m∈ZZ

q
1

2
( n

R
+ mR

2
)
2

q̄
1

2
( n

R
−

mR
2

)
2

.

(b) Here we will study the special radius R = 1 =
√

α′/2 (or equivalently

R = 2 =
√

2α′, by T-duality). Show that at this special radius (which is
different from the self-dual radius, R =

√
2 =

√
α′!), the partition function can

be written as

Z1(τ, τ̄) =
1

2

1

|η|2





∣

∣

∣

∣

∣

∑

n

qn2/2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑

n

(−1)nqn2/2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑

n

q
1

2(n+ 1

2
)
2

∣

∣

∣

∣

∣

2


 .
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The trick here is just to break up the momentum sums into integers
and half-integers. (From our discussion of bosonization you know
that this is a good idea because the integer momenta will be NS states
(ψ ∼ eiH) and the half-integer momenta will be R states (Θ ∼ e

1

2
iH).)

The momentum sum is

|η|2Z1 =
∑

n,m∈ZZ

q
1

2
(n+ m

2
)
2

q̄
1

2
(n−m

2
)
2

=
∑

n,r∈ZZ

(

q
1

2
(n+r)2 q̄

1

2
(n−r)2 + q

1

2
(n+r+ 1

2
)
2

q̄
1

2
(n−r− 1

2
)
2
)

In the first term, r = 2m; in the second r = 2m + 1. These will be
related to the R and NS sectors of the fermion, respectively. Now,
we would like rewrite this as a sum over ‘conformal blocks’, i.e. as a
sum of products

∑

iMijfi(q)f̃ j(q̄); M will turn out to be diagonal. To
do this, define a = n+r, b = n−r. Notice that if n,m are integers then
a, b always have the same parity. We can implement this constraint
by inserting the projector P = 1

2

(

1 + (−1)a+b
)

: for any f

∑

n,m∈ZZ

f(n+m,n−m) =
1

2

∑

a,b∈ZZ

(

1 + (−1)a+b
)

f(a, b) ;

this is the (diagonal) GSO projection on fermion number. We find

|η|2Z1 =
∑

a

q
1

2
a2
∑

b

q̄
1

2
b2 +

∑

a

(−1)aq
1

2
a2
∑

b

(−1)bq̄
1

2
b2+

∑

a

q
1

2
(a+ 1

2
)
2 ∑

b

q̄
1

2
(b− 1

2
)
2

+
∑

a

(−1)aq
1

2
(a+ 1

2
)
2∑

b

(−1)bq̄
1

2
(b− 1

2
)
2

The last term on the RHS vanishes since the summand is odd under
a→ −a (and b→ −b, too, so it’s twice as zero). We’re left with

|η|2Z1 =

∣

∣

∣

∣

∣

∑

n

qn2/2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑

n

(−1)nqn2/2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∑

n

q
1

2
(n+ 1

2
)
2

∣

∣

∣

∣

∣

2

The sums in the squares are theta functions, specifically,

θ3(τ) = ϑ00(0|τ) =
∑

n

qn2/2

θ4(τ) = ϑ01(0|τ) =
∑

n

(−1)nqn2/2
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θ2(τ) = ϑ10(0|τ) =
∑

n

q
1

2
(n+ 1

2
)
2

,

which can be expressed as infinite products (instead of infinite sums),
as described on page 215 of Polchinski vol. I. Rewriting Z1(τ, τ̄) using
the product forms of the theta functions I get

Z1 =
1

2

∣

∣

∣
q−

1

24

∣

∣

∣

2





∣

∣

∣

∣

∣

∞
∏

r=1

(1 + qr− 1

2 )2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

∞
∏

r=1

(1 − qr− 1

2 )2

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

2q
1

8

∞
∏

r=1

(1 + qr)2

∣

∣

∣

∣

∣

2




(c) Show that this last form of Z is the partition function of a 2d Dirac fermion
(!). Note that ’Dirac fermion’ here means two left-moving MW fermions and
two right-moving MW fermions, and we are choosing the spin structures of
the right-moving and left-moving fermions in a correlated, non-chiral way –
the GSO operator is the (−1)F which counts the fermion number of all the
fermions at once, and we include only RR and NSNS sectors. This is called
the ’diagonal modular invariant’. Note that this is a different sum over spin
structures than the one in the system bosonized in Polchinski chapter 10 (and
this is why it can be modular invariant with fewer than eight fermions).

[Hint: (i) The three terms in Z1 arise from the three choices of spin structure
which give nonzero partition functions.

(ii) The sums in the squares are theta functions, specifically,

θ3(τ) = ϑ00(0|τ) =
∑

n

qn2/2

θ4(τ) = ϑ01(0|τ) =
∑

n

(−1)nqn2/2

θ2(τ) = ϑ10(0|τ) =
∑

n

q
1

2
(n+ 1

2
)
2

,

which can be expressed as infinite products (instead of infinite sums), as de-
scribed on page 215 of Polchinski vol. I. Rewrite Z1(τ, τ̄) using the product
forms of the theta functions.]

In the NS sector, the fermions are half-integer moded (this is really
the NSNS sector, i.e. NS on both sides).

ZNS = trNSe
−τ2H+iτ2P 1

2
(1 + (−1)F+F̃ ).

5



Remembering that each mode can be occupied at most once,

ZNS =
1

2





∣

∣

∣

∣

∣

qENS
0

∞
∏

m=1

(1 + qm−
1

2 )

∣

∣

∣

∣

∣

2 ∣
∣

∣

∣

∣

qENS
0

∞
∏

m=1

(1 − qm−
1

2 )

∣

∣

∣

∣

∣

2


 .

Using the zeropoint energy mnemonic, ENS
0 = 2(− 1

48
) for two antiperi-

odic fermions, and we get:

ZNS =
1

2

(

∣

∣

∣

∣

θ00
η

∣

∣

∣

∣

2

+

∣

∣

∣

∣

θ01
η

∣

∣

∣

∣

2
)

.

In the R sector, the fermions are integer-moded, including zero, so
there are four degenerate groundstates from {ψ0, ψ

⋆
0} = 1 and ψ̃0, ψ̃

⋆
0 =

1. These groundstates have opposite fermion numbers in pairs, hence

ZR = trRe
−τ2H+iτ2P 1

2
(1 + (−1)F+F̃ ).

=
1

2





∣

∣

∣

∣

∣

qER
0 (1 + 1)

∞
∏

m=1

(1 + qm)

∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

qER
0 (1 − 1)

∞
∏

m=1

(1 − qm)

∣

∣

∣

∣

∣

2


 .

Using the zeropoint energy for two periodic fermions, ER
0 = 2 1

24
, we

get directly the product version of the theta functions

ZR =
1

2

∣

∣

∣

∣

θ10
η

∣

∣

∣

∣

2

and altogether we’ve reproduced

Z1 = ZNS + ZR.

3. Superstring worldsheet vacuum energy.

Show that1
∞
∑

n=0

(n− j) −
∞
∑

n=0

n = −1

2
j(j + 1),

1Sorry for the typo here in the statement of the problem.
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where we can define the divergent sums by a regulator mass:

∞
∑

n=0

ωn ≡ lim
ǫ→0

∞
∑

n=0

ωne
−ǫωn .

Show that this reproduces the lightcone gauge vacuum energies for the NS and
R sectors.

Relatedly, you might want to do Polchinski problem 10.8.

Zǫ(j) ≡
∞
∑

n=0

(n− j)e−ǫ(n−j) = −∂ǫ

∞
∑

n=0

e−ǫ(n−j) = −∂ǫ

(

eǫj

1 − e−ǫ

)

= eǫj j(1 − e−ǫ) − (e−ǫ)

(1 − e−ǫ)2 = eǫj j − (j + 1)e−ǫ

(1 − e−ǫ)2

It’s not an accident that this looks like the generating function of
Bernoulli numbers. So

∑

n

ne−nǫ = Zǫ(j = 0) =
e−ǫ

(1 − e−ǫ)2

and the vacuum energy is the small ǫ limit of

Zǫ(j)−Zǫ(0) =
(j + 1)eǫ(j−1) − je+ǫj − e−ǫ

(1 − e−ǫ)2 =
1
2
(j + 1)(j − 1)2 − 1

2
j3 − 1

2
+ O(ǫ3)

ǫ2 + O(ǫ3)
.

Notice that the singular ǫ−2, ǫ−1 terms cancel between the bose and
fermi contributions. This is

Zǫ(j) − Zǫ(0) =
−1

2
j(j + 1)ǫ2 + O(ǫ3)

ǫ2 + O(ǫ3)

which gives

E0 = lim
ǫ→0

(Zǫ(j) − Zǫ(0)) = −1

2
j(j + 1).

For the NS sector of the lightcone superstring, 4 complex periodic
bosons and 4 complex antiperiodic fermions give

−4 × (−1

2
j(j + 1)) = 4

1

2
(−1

2
)(1 − 1

2
) = −1

2
.
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For the R sector, the change of fermion periodicity gives

ER
0 = −4 × (−1

2
× 0) = 0,

as required by supersymmetry.

For the NS sector, we find the contribution of one real antiperiodic
(j = −1

2
) fermion to be

ENS
0 /per fermion = −1

2

∞
∑

n=0

(n+
1

2
) =

1

24
− 1

2
(−1

2
)(1 − 1

2
) =

1

24
− 1

16
= − 1

48
.

For the R sector, we find the contribution of one real periodic (j = 0)
fermion to be

ER
0 /per fermion = −1

2

∞
∑

n=0

n =
1

24
− 1

2
(0)1 =

1

24
.

4. bispinors.

Make yourself happy about the field content of the RR sectors of the type II
superstrings. In particular, if η± are chiral spinors,

(1 ∓ γ)η± = 0, {γ, γi} = 0, ∀i = 1..8,

show that
η̃+γ

i1...iqη+ = 0

if q is odd and
η̃+γ

i1...iqη− = 0

if q is even.

There are two basic ideas. The first is that in tensoring together the
two spinors, we need only stick antisymmetrized combinations of γs.
This is true because the gammas satisfy {γi, γj} = 2ηij which means
that any symmetric part can be reduced to a lower-rank antisym-
metric part.

The second point is that on a chiral spinor, one can multiply for free
by the chirality projector:

η± =
1

2
(1 ± γ)η±.
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And since moving the γ through a γi gives a minus ({γ, γi} = 0), we
have

η̃+γ
i1...iqη± = η̃+γ

i1 ...γiq
1

2
(1 ± γ)η± ± perms

= η̃+γ
i1 ...γiq−1

1

2
(1 ∓ γ)γiqη± ± perms

= η̃+
1

2
(1 + (±)qγ)γi1...γiq

1

2
(1 ± γ)η± ± perms

which is zero if
(±)q = −1

which is when q is odd for + and when q is even for −.
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