
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Solution Set 4
String scattering, open strings, supersymmetry warmup.

Reading: Polchinski, Chapter 6. Please see course webpage for supersymmetry
refs.

Due: Thursday, October 25, 2007 at 11:00 AM, in lecture or in the box.

1. Another tree amplitude (Polchinski 6.11).

(a) For what values of ζµ,ν and kµ does the vertex operator

Oζ(k) = cc̃g′cζµν(k) : ∂Xµ∂̄Xν eik·X :

create a physical state of the bosonic string ?

We showed in class that an operator of the above form creates a
physical state as long as the object multiplying cc̃ (let’s call it V =
ζµν(k) : ∂Xµ∂̄Xν eik·X :) is a conformal primary operator of weight
(1,1). Let’s check:

Tzz(z)V(0) =
α′k2/4 + 1

z2
V(0) +

1

z
∂V(0) +

1

z2
ζµνα

′kµ : ∂̄Xν eik·X :

The extra term on the RHS vanishes if

ζµνk
µ = 0,

and in that case V is a primary of weight 1+α′k2/4 . Acting with Tz̄z̄,
we require

ζµνk
ν = 0.

If this condition isn’t satisfied, V is in fact a descendant:

ikµ : ∂Xµ∂̄Xν eik·X : = L−1 : ∂̄Xν eik·X :

Note that this is also the condition that the polarization isn’t lon-
gitudinal, i.e. gauge trivial in the target space: target space gauge
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symmetry is the first of the many conditions from the Vir constrat-
ints. Also we require k2 = 0, so h = 1.

(b) Compute the three-point scattering amplitude for a massless closed string
and two closed-string tachyons at tree level.

AS2(k1, ζ ; k2, k3) = g2
cg

′
ce

−2λζµν
〈

Oζ(k; z1, z̄1) : c̃ceik2·X(z2, z̄2) :: c̃ceik3·X(z3, z̄3) :
〉

S2
.

〈
3
∏

i=1

c(zi)c̃(zi)〉ghS2 =
3
∏

i<j

|zij |2Cgh

S2 .

〈

: ∂X∂̄Xeik1·X(z1, z̄1) :: eik2·X(z2, z̄2) :: eik3·X(z3, z̄3) :
〉X

S2
=

iCX
S2 δ̃(

3
∑

ki)

3
∏

i<j

|zij|α
′ki·kj ·

(

−iα
′

2

)(

kµ2
z12

+
kµ3
z13

)(

−iα
′

2

)(

kµ2
z̄12

+
kµ3
z̄13

)

Now we play with the kinematics. The mass-shell conditions are
α′k2

1 = 0, α′k2
2 = α′k2

3 = +4. These imply that

k1 · k2 = k1 · k3 = 0, α′k2 · k3 = 4.

Using this and the relation CS2 = Cgh

S2C
X
S2e−2λ = 8π

α′g2c
, and the condition

derived in part (a), ζµνk
µ
1 = 0, the 3-point amplitude can therefore be

written as

A = −i2πα′g′cδ̃(
∑

k)ζµν

∣

∣

∣

∣

z12z13
z23

∣

∣

∣

∣

2(
kµ2
z12

+
kµ3
z13

)(

kµ2
z̄12

+
kµ3
z̄13

)

= −πiα
′

2
g′cδ̃

26
(

∑

k
)

ζµνk
µ
23k

ν
23.

(c) Factorize the tachyon four-point amplitude on the massless pole (in say
the s-channel), and use unitarity to relate the massless coupling g′c to gc, the
coupling for the tachyon.

The Virasoro amplitude is

A(4)
S2 (k1, ..k4) =

8πig2
c

α′
δ̃26(

4
∑

k)

∫

C
d2z4|z4|−

α′u
2

−2|1 − z4|−
α′t
2

−2
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The massless s-channel pole comes from the next-to-leading term in
the expansion of the integrand near z4 → ∞; alternatively, we can
see it from properties of gamma functions as follows.

A(4)

S2 =
8πig2

c

α′
δ̃26(

4
∑

k)2π
Γ
(

−1 − α′s
4

)

Γ
(

−1 − α′t
4

)

Γ
(

−1 − α′u
4

)

Γ
(

−2 − α′s
4

)

Γ
(

−2 − α′t
4

)

Γ
(

−2 − α′u
4

)

Near x = −1, Γ(x) ∼ − 1
x+1

, so the massless s-channel pole (where
α′(t+ u) ∼ −16 ) comes from

Γ

(

−1 − α′s

4

)

s∼0≃ 4

α′s
.

Using Γ(x+ 1) = xΓ(x), the rest of the gammas give:

1

Γ(2)

Γ
(

−1 − α′t
4

)

Γ
(

−1 − α′u
4

)

Γ
(

−2 − α′t
4

)

Γ
(

−2 − α′u
4

) =

(

−2 − α′t

4

)(

−2 − α′u

4

)

= −4+

(

α′

2

)2

tu.

We will later realize that we should rewrite this using −16
α′

= (u+ t)2 =
(u− t)2 + 4ut as

−4 +

(

α′

2

)2

tu = −
(

α′

4

)2

(u− t)2.

So the four point factorizes as

A(4)(α′s ∼ 0) ∼ 16π2ig2
c

α′
δ̃26(

4
∑

k)

(

−
(

α′

4

)2
(u− t)2 .

(−α′s/4)

)

. (Elmo)

The optical theorem says

AS2(k1..k4) = i

∫

d26k

(2π)26

∑

ζ

AS2(k1, k2; k, ζ)AS2(−k, ζ ; k3, k4)

−k2 + iǫ
+ reg. at s = 0.

Using the above expression for A(3), this is

Aunitarity = −i
∑

ζ

π2(α′)2

4
(g′c)

2δ̃(
∑

k)
ζµνk

µ
12k

ν
12ζ

⋆
ρλk

ρ
34k

λ
34

s + iǫ

3



The sum over polarizations ζ runs over normalized ζµνζ
µν = 1 two-

tensors which are transverse to the momentum of the intermediate
state k = k1 + k2:

ζµνk
µ = 0 = ζµνk

ν .

One basis element for the space of such tensors is

eµν =
k12µk12ν

k2
12

which is transverse because k2
1 = k2

2. The sum over polarizations is

S ≡
∑

ζ

ζµνk
µ
12k

ν
12ζ

⋆
ρλk

ρ
34k

λ
34

In fact none of the other basis elements contribute, and we get

S = (k12 · k34)
2 .

Alternatively, just as the sum over polarizations of photons (see e.g.

Srednicki p.358) can be replaced with

∑

ǫ

ǫµ(k)ǫ
⋆
ν(k) → ηµν

when appearing in gauge-invariant amplitudes (the terms that are
missing on the LHS don’t couple by gauge invariance), here we would
find similar rule of the form

∑

ζ

ζµνζ
⋆
ρσ → ηµρηνσ + ηµσηνρ,

which reproduces the result above.

Some kinematical voodoo gives

S = (k12 · k34)
2 = (k1 · k3 − k2 · k3 + k2 · k4 − k1 · k4)

2 = (u− t)2.

This leaves us with

Aunitarity = −iπ
2(α′)2

4
(g′c)

2δ̃(
∑

k)
(u− t)2

s+ iǫ
(Kermit)
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Comparing (Elmo) and (Kermit) leads to the relation

g′c =
2

α′
gc,

which lets us eliminate g′c. Such a relation exists for every closed
string state.

2. High-energy scattering in string theory.1

Consider the tree-level scattering amplitude of N bosonic string states, with
momenta kµi :

A(n)({k1, ..., kn}) =

∫ n
∏

i=4

d2zi

〈

n
∏

i=1

Vki
(zi, z̄i)

〉

S2

.

In this problem we will study the limit of hard scattering (also called fixed-angle
scattering), where we scale up all the momenta uniformly,

kµi 7→ αkµi , α→ ∞;

in terms of the Lorentz-invariant Mandelstam variables, we are taking the limit
sij → ∞, sij/skl fixed. It was claimed in class that the 4-point function behaves
in this limit like e−sα

′f(θ) where θ is the scattering angle. In this limit, k2 ≫ m2

(if both aren’t zero) and we can ignore the parts of the vertex operators other
than eik·X .

(a) Notice that the integral over X is always gaussian, hence the action of the
saddle point solution gives the exact answer. Find the saddle-point configura-
tion of X(z) and evaluate the on-shell action.

A(n)({k1, ..., kn}) =

∫ n
∏

i=4

d2zi

〈

n
∏

i=1

: eiki·X(zi, z̄i) :

〉

S2

.

〈

n
∏

i=1

: eiki·X(zi, z̄i) :

〉

S2

=

∫

[DX] e−
1

2πα′

R

d2z(∂X·∂̄X+J ·X)

with
Jµ = −2πα′i

∑

i

kµi δ
2(z − zi).

1This discussion follows the papers of Gross and Mende.
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Complete the square:

∂X∂̄X + J ·X = ∂X̃∂̄X̃ − 1

4
J2

with

X̃(z) ≡ X(z) +
1

2

∫

d2z′G(z, z′)J(z′)

where G is the Green function: ∂∂̄G = δ2. Under this linear field
redefinition, the measure is [DX̃] = [DX] and we find

〈

n
∏

i=1

: eiki·X(zi, z̄i) :

〉

S2

= e−
1

2πα′

R

d2z J2

4 Z (Fred)

where

Z =

∫

[DX̃] e−
1

2πα′

R

d2z(∂X̃·∂̄X̃)

is just a number; the saddle point for X̃ is at X̃ = 0, which means
the saddle for X is at

X⋆ = −1

2

∫

d2z′G(z, z′)J(z′).

The Green function on the sphere is

G(z, z′) = − 1

2π
ln |z − z′|2

so plugging in our expression above for J we get

Xµ
⋆ =

1

4π

∫

d2z′ ln |z − z′|2J(z′)µ = −iα
′

2

n
∑

i=1

kµi ln |z − zi|2.

Notice that it’s imaginary! Crazy! Nevertheless we’ll see that it
gives the correct answer. Another expression which is sometimes
useful is

Xµ
⋆ (z) = −1

2

∫

d2z′G(z, z′)J(z′)µ = πiα′

n
∑

i

G(z, zi)k
µ
i (Eldridge).

The on-shell action is just minus the thing in the exponent in (Fred):

S⋆(k) =
1

2πα′

∫

d2z
J2

4
=

1

2πα′

∫

d2z
(

−X⋆∂∂̄X⋆ + JX⋆

)

.
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Using the saddle point equation ∂∂̄X = 1
2
J, this is

S⋆(k) =
1

4πα′

∫

d2zJX⋆ = − i

2

∑

i

ki ·X⋆(zi)

When we plug in the expression for the saddle point we will get terms
of the form k2

i ln |zi−zi|. These are exactly the terms we subtract when
we define the normal-ordered operators, and we ignore them for this
reason. With this in mind, we find:

S⋆(k) = −α
′

2

∑

i<j

ki · kj ln |zi − zj |2 .

(b) In the hard-scattering limit, the integral over the positions of the n − 3
unfixed vertex operators is also well-described by a saddle-point approximation.
Convince yourself that this is true; i.e. that the saddle point is well-peaked.

We want to study the saddle point of the integrals over zi in

A(n) =

∫ n
∏

i=4

d2zie
−S⋆(k) =

∫ n
∏

i=4

d2zi
∏

i<j

|zij |−
α′

2
ki·kj .

It’s useful to rewrite this using the definition sij ≡ (ki + kj)
2 and the

mass-shell condition k2
i = −m2

i :

ki · kj = −1

2
(sij −m2

i −m2
j ) ∼ −1

2
sij

where we used the hard-scattering approximation in the last step.
The action for zi in

∫

dze−S(z) is then

S(z) =
α′

4

∑

i<j

sij ln |zij |2.

The basic idea is that scaling up all the Mandelstam variables sij →
αsij scales up the action

S(z) → αS(z)

and sharpens any features it has, exactly like the ~ → 0 limit in QM.
More precisely, the condition for the saddle point

0 = ∂zi
S
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has solutions z⋆ which don’t scale with α, but the masses of fluctua-
tions at the saddle

∂i∂jS|z⋆

scale like α, making the van vleck determinant negligible as α→ ∞.

(c) For the four-point function, find the saddle-point for the z4 integral and
evaluate the action on the saddle. Compare to the claimed behavior of the
exact tree-level answer.

Using ln a+ ln b = ln ab, the action for the z4 integral in the four-point
function is

S(z) =
α′

2
(s ln |z12z34| + t ln |z13z24| + u ln |z14z23|)

which using s = −t− u (ignoring masses) is

S(z) =
α′

2

(

t ln

∣

∣

∣

∣

z13z24
z12z34

∣

∣

∣

∣

+ u ln

∣

∣

∣

∣

z14z23
z12z34

∣

∣

∣

∣

)

=
α′

2
(t ln |λ| + u ln |1 − λ|)

with the cross-ratio λ ≡ z13z24
z12z34

∂S(λ)

∂λ
∝ t

λ
+

u

1 − λ

whose solution is

0 = t(1 − λ⋆) − uλ⋆ =⇒ λ⋆ =
t

u+ t
= − t

s
.

Plugging back into the action, we find

S(λ⋆) =
α′

2

(

t ln |t/s| + u ln |s+ t

s
|
)

=
α′

2
(s ln s+ t ln t+ u lnu) .

And we get

A(4) ∼ e−S(λ⋆(k)) = e
α′

2
(s lnα′s+t lnα′t+u lnα′u) .

This is exactly what results from using Stirling’s formula on the gamma func-
tions in the exact tree amplitude. (Note that the α′s in the logs cancel between
the three terms and we could have put any scale there we wanted.) Notice
that all the factors of i in the saddle point configuration for X resulting in a
real action which suppresses the amplitude. This process doesn’t happen very
often!
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3. Open string boundary conditions. Polchinski Problems 1.6 and 1.7.

I don’t want to do this one. You all got it exactly right.

4. T-duality: not just for the free theory. Polchinski Problem 8.3.

Consider the sigma model whose action (in conformal gauge) is

S(∂X, Y ) = S(Y )+
1

4πα′

∫

d2z
(

δabGXX(Y )∂aX∂bX +
(

δabGµX + ǫabBµX

)

∂aX∂bY
µ
)

.

Here Y µ are a bunch of coordinates on which the background fields
depend in arbitrarily complicated ways. X only appears through its
derivatives.

Now to gauge this shift symmetry, we add a 2d gauge field A and
replace everywhere ∂aX −→ ∂aX + Aa, so that everything will be
invariant under local shifts

X → X + λ(z), Aa → Aa − ∂aλ.

Imagine I’ve typed this.

In order not to actually change anything, we also add a Lagrange
multiplier X̂ that kills the gauge field we’ve just added:

Sθ ≡ i

∫

d2zX̂F = i

∫

d2zX̂ǫab∂aAb,

where F = dA. X̂ couples like an axion, a dynamical theta-angle,
multiplying the otherwise-topological density F . Integrating over X̂,

∫

[Dhx]ei
R

d2zX̂ǫab∂aAb = δ[F ]

On a topologically trivial worldsheet, F = 0 says by the Poincare
lemma that A is pure gauge. In Lorentz gauge we learn that A is
constant, which just amounts to a constant shift of X, which we
can be absorbed by a field redefinition, and we recover the original
theory. The claim here is

e−S(∂X,Y ) =

∫

[DX̂DA]

Vol(G)
e−S(∂X+A,Y )+Sθ(A,X̂).
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If instead we use the gauge symmetry to fix X = 0, we find the action

S(Y )+
1

4πα′

∫

d2z
(

δabGXX(Y )AaAb +
(

δabGµX + ǫabBµX

)

Aa∂bY
µ − i∂aX̂ǫ

abAb

)

.

In the last step here I’ve integrated by parts the theta term. The A
integral is gaussian! Let’s do it. (Notice that the action for Y just
goes along for the ride here.) The important bit is:

L ≡ GXXA
2 + Aa(∂bY E

ab − i∂bX̂ǫ
ab)

where
∂bY E

ab ≡ ∂bY
µ
(

δabGµX + ǫabBµX

)

.

Notice that the X̂ term contributes in the same way as the BXµ field
here. Let’s complete the square:

L = GXX

(

A+
1

2
GXX

(

Eab∂bY − iǫab∂bX̂
)

)2

−G
XX

4

(

Eab∂bY − iǫab∂bX̂
)(

Ebc∂cY − iǫbc∂cX̂
)

The A integral now looks like
∫

[DA] e
1

4πα′

R

d2zL = e−
R

J2

∫

[DA] e−
R

d2z
GXX
4πα′

Ã2

with

J2 ≡ −G
XX

4

(

Eab∂bY − iǫab∂bX̂
)(

Ebc∂cY − iǫbc∂cX̂
)

and Ã ≡ A+ 1
2
GXX

(

Eab∂bY − iǫab∂bX̂
)

. We can change variables [DA] =

[DÃ] for free, and we just end up with

e−
R

J2

∫

[DÃ] e−
R

d2z
GXX
4πα′

Ã2

= e−
R

J2

det −1GXX

2α′
.

The determinant looks stupid but actually generates a correction
to the dilaton profile of the form Φ̂ = Φ − lnGXX; this is necessary
for T-duality to preserve the strength of gravity in the non-compact
directions.

The J2 term corrects the action for Y and X̂ in an important way.
In particular, it generates a kinetic term for X̂, which was previously
a lowly Lagrange multiplier. In particular, if GXµ = 0 = BXµ,

∫

J2 =

∫

d2z
(

−i2
) GXX

4πα′
ǫabǫbc∂aX̂∂cX̂ = +

1

4πα′

∫

d2zGXX∂aX̂∂
aX̂
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which is a positive kinetic term, and we see that X̂ has the opposite
radius from X: GXX = 1

GXX
.

More generally, if there is some KK gauge field GXµ it leads to a
nonzero B field in the T-dual:

B̂X̂µ = GXXGXµ !

(hats denote quantities in the T-dualized theory). Similarly, a B field
with one leg along the T-dualized circle leads to a KK gauge field:

ĜX̂µ = GXXBXµ !

This is exactly what we should expect given that we are interchanging
momentum (the charge to which the KK gauge field GXµ couples) and
string winding (the charge to which the AS tensor component BXµ

couples). There are also terms in J2 which correct the metric and
AS tensor for Y :

Gµν 7→ Ĝµν = Gµν −GXXGXµGXν +GXXBXµBXν .

Bµν 7→ B̂µν = Bµν −GXXGXµBXν +GXXBXµGXν .

The following problems are intended to get everyone up to speed with supersym-
metry and its consequences. They are more optional than the other ones.

1. Supersymmetric point particle.

Consider the action for a spinning particle

S =

∫

dτ

(

− ẋ
2

2e
+ e−1iẋµψµχ− iψµψ̇µ

)

.

The ψµs are real grassmann variables, fermionic analogs of xµ, which satisfy

ψµψν = −ψνψµ.

(a) Show that this action is reparametrization invariant, i.e.

δxµ = ξẋµ, δψµ = ξψ̇µ

δe = ∂τ (ξe), δχ = ∂τ (ξχ)
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is a symmetry of S.

(b) Show that the (local) supersymmetry transformation

δxµ = iψµǫ, δe = iχǫ

δχ = ǫ̇, δψµ =
1

2e
(ẋµ + iχψµ)ǫ.

with ǫ a grassmann variable, is a symmetry of S.

(c) Consider the gauge e = 1, χ = 0. What is the equation of motion for χ?
What familiar equation for ψ do we get?

2. Strings in flat space with worldsheet supersymmetry.

Consider the action for D free bosons and D free fermions in two dimensions:

S = − 1

2π

∫

d2σ
(

∂aX
µ∂aXµ − iψ̄µρa∂aψµ

)

.

The spacetime µ = 0..D − 1 indices are contracted with ηµν . Here ψµ are 2d
two-component majorana spinors, and ρa are 2d ’gamma’ matrices, i.e., they
participate in a 2d Clifford algebra {ρa, ρb} = −2ηab (we’ll work on a Lorentzian
worldsheet for this problem), and ψ̄ ≡ ψ†ρ0. Pick a basis for the 2d ’gamma’
matrices of the form

ρ0 =

(

0 −i
i 0

)

, ρ1 =

(

0 i
i 0

)

. (1)

(a) Show that the fermion part of the action above leads to the massless Dirac
equation for the worldsheet fermions ψ. Show that with the chosen basis of
gamma matrices ρα, the Dirac equation implies that ψ± is a function of σ±

only (where I’m letting the indices on ρaαβ run over α, β = ±).

The equation of motion for ψ results from

0 = δψS ∝ 2

∫

δ̄ψρa∂aψ

where the two comes from the fact that we get the same term from
varying both ψs after IBP. So the EOM is just the 2d Dirac equation

0 = ρa∂aψ.
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In the basis above, this is

0 =

((

0 −i∂0

i∂0 0

)

+

(

0 i∂1

i∂1 0

))

ψ = i

(

0 (−∂0 + ∂1)
(∂0 + ∂1) 0

)(

ψ−

ψ+

)

= i

(

∂−ψ+

∂+ψ−

)

.

Next we want to show that the (global) supersymmetry transformation

δXµ = ǭψµ

δψµ = −iρa∂aXµǫ

is a symmetry of the action S.

(b) A useful first step is to show that for Majorana spinors

χ̄ψ = ψ̄χ.

Since for Majorana spinors, χ̄ = χTρ0, we have χ̄ψ = χTρ0ψ. But ρ0

is an antisymmetric matrix, so rearranging the indices costs a minus
sign, but so does interchanging the two grassmann variables, and
we’re out.

(c) Show that the action S is supersymmetric.

Part (b) implies that

δψ̄µ = (δψµ)Tρ0(δψµ)†ρ0 = +i∂aX
µǫ†(ρa)†ρ0 = i∂aX

µǭρa

where I’ve used the slightly nontrivial but necessary fact that

ρ̄a ≡ (ρa)†ρ0 = ρ0ρa, a = 0, 1.

Armed with this, the variation of the lagrangian is

δ(∂aX∂
aX−iψ̄ρa∂aψ) = 2∂a(ǭψ)∂aX−i(iǭ∂bXρb)ρa∂aψ−iψ̄ρa∂a(−iρb∂bXǫ) ≡ A+B+C

A = 2∂a(ǭψ∂
aX) − 2ǭψ∂2X

where the first term is a total derivative which we can forget.

B = (−i)2∂a(ǭ∂bXρ
b)ρaψ + t.d. = −∂aǭ(∂bXρbρaψ) − ǭ∂a∂bXρ

bρaψ.
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The first term here I’m keeping for part (d), and the second, using
the clifford algebra, is

−ǭ∂a∂bXρbρaψ = −1

2
ǭ∂a∂bX(−2ηab)ψ = +ǭ∂2Xψ.

Similarly,

C = (−i)2ψ̄ρaρb∂a∂bXǫ+ (−i)2ψ̄ρaρb∂bX∂aǫ = +ψ̄∂2Xǫ− ψ̄ρaρb∂bX∂aǫ.

Altogether,

δL = t.d.− 2ǭψ∂2X + ǭ∂2Xψψ̄∂2Xǫ− ∂aǭ(∂bXρ
bρaψ) − ψ̄ρaρb∂bX∂aǫ.

The terms without derivatives of epsilon are

−2ǭψ∂2X + ǭψ∂2X + ψ̄ǫ∂2X = 0

using the result of (b).

If ǫ is a constant, therefore, δS = 0.

(d) What is the conserved Noether current associated to the supersymmetry?

From above, the terms proportional to derivatives of epsilon in the
variation of L are

δL = t.d.+ −∂aǭ(∂bXρbρaψ) − ψ̄ρaρb∂bX∂aǫ.

Using the Majorana property, these two terms are the same and we
find

δS = − 1

2π

∫

d2z∂aǭ(−2)∂bXρ
bρaψ ≡ −1

π

∫

d2z∂aǭ(TF )a.

So we have

(TF )a = −1

2
ρbρaψ

µ∂bXµ.

I’m not sure about the overall factor.

Note that the 2d identity ρaρbρa = 2ηabρa − ρbρaρa = ρb − ρb = 0 implies
that

0 = ρa(TF )a

which is the superpartner of the statement that T aa = 0, i.e. is a
consequence of superconformal symmetry.
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(e) [Optional] Show that the algebra enjoyed by the Noether supercharges
Qα ≡

∫

dσG0α under Poisson brackets (or canonical (anti)-commutators) is
of the form

{Qα, Qβ} = −2iρaαβPa (2),

where Pa is the momentum.

Or equivalently, show that the commutator of two supersymmetry transforma-
tions (acting on any field) acts as a spacetime translation:

[δǫ1, δǫ2 ]O = Aa∂aO

where A is a constant writeable in terms of ǫ1,2.

The easiest thing to do is just vary twice:

δǫ1δǫ2X = δǫ1(ǭ2ψ) = −iǭ2ρa∂aXǫ1.

Switching labels,
δǫ2δǫ1X = −iǭ1ρa∂aXǫ2.

The majorana property χ̄ψ = ψ̄χ with χ̄ = iρaǫ1 says

ǭ2iρ
aǫ1 = iρaǫ1ǫ2 = −iǭ1ρaǫ2

and we find
[δǫ1, δǫ2]X = 2iǭρaǫ2∂aX.

A similar expression holds for

[δǫ1 , δǫ2]ψ

upon using the EOM. In general

[δǫ1, δǫ2]O = va∂aO = −ivaPaO

with va = 2iǭ1ρ
aǫ2. Since the LHS of this equation is

[δǫ1, δǫ2]O = [ǭ1Q, ǭ2Q]O = ǭα1 ǫ
β
2{Qα, Q̄β}O,

(using the grassmann property of ǫ!) we have (using the form of va

above
{Qα, Q̄β} = −2ρaαβPa.

So I was wrong about the i.
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(f) Show that the algebra (2) above implies that a state is a supersymmetry
singlet (Q|ψ〉 = 0) if and only if it is a ground state of H .

The basic idea is that for any state ψ,

−2ρaαβ〈ψ|Pa|ψ〉 = 〈ψ|{QαQ̄β}|ψ〉 =

(

0 −2i〈ψ|Q2
−|ψ〉

2i〈ψ|Q2
+|ψ〉 0

)

.

The LHS is

−2ρaαβ〈ψ|Pa|ψ〉 =

(

0 2i〈ψ|(−P0 + P1)|ψ〉
2i〈ψ|(P0 + P1)|ψ〉 0

)

.

The basic thing we’ve just learned is an algebra statement:

Q2
± = P0 ± P1 ;

note that the BHS is a hermitean operator, so we have the factors
of is right now. So we have

0 ≤ ||Q+|ψ〉||2 = 〈ψ|Q2
+|ψ〉 = 〈ψ|(P0 + P1)|ψ〉

Similarly,
0 ≤ ||Q−|ψ〉||2 = 〈ψ|(P0 − P1)|ψ〉.

Adding the two inequalities (which preserves truthiness, while sub-
tracting does not), we get

0 ≤ 2〈ψ|P0|ψ〉 = 2Eψ

So the energy is positive semi-definite in a supersymmetric theory.
This inequality is saturated only if one or more of the Qs kills ψ. In
fact, in this case, since the ground state is (usually) translationally
invariant, P1|0〉 = 0, both supercharges must kill the E = 0 ground
state, if it exists.

(g) (1,1) superspace. Show that the action above can be rewritten as
∫

d2z

∫

dθ+dθ− D+X ·D−X

where θ± are real grassmann coordinates on 2d,N = (1, 1) superspace (i.e.
there is one real right-moving supercharge and one real left-moving super-
charge), and the (1,1) superfield is

X(z, z̄, θ+, θ−) ≡ X + θ−ψ− + θ+ψ+ + θ+θ−F+−,

16



and

D+ =
∂

∂θ+
+ θ+ ∂

∂σ−
, D− =

∂

∂θ−
+ θ−

∂

∂σ+

are (1,1) superspace covariant derivatives. Please note that the ± indices on
the θs are 2d spin, i.e. sign of charge under the 2d SO(2) ∼ U(1) of rotations;
so for example the object D± has spin ±1/2. The conservation of this quantity
is a useful check on the calculation.

D+X = ψ+ + θ−F + iθ+∂+X − iθ−θ+∂+ψ−

D−X = ψ− − θ+F + iθ+∂+X + iθ−θ+∂−ψ+

The superspace integral takes the coefficient of θ−θ+, which for D+X ·
D−X is

∂+X∂−X − F 2 + iψ+∂−ψ+ + iψ−∂+ψ−.

The EOM for F is F = 0 and we recover the action from part (a)
with the given basis of gamma matrices, if we set

S = − 1

2π

∫

dθ+dθ−D+XD−X.

3. N = (0, 2) and N = (2, 2) supersymmetry.

In the previous problem we studied a system with (1, 1) supersymmetry. Many
interesting theories have extended supersymmetry in two dimensions. A par-
ticularly interesting and familiar case is 2d,N = (2, 2) supersymmetry, which
arises by dimensional reduction from (the conceivably realistic) 4d,N = 1 su-
persymmetry. 2

(a) Consider the action
∫

d2z

∫

d2θ D̄XDX

where now θ is a complex grassmann variable, d2θ = dθdθ̄,

X(z, z̄, θ, θ̄) ≡ X + θψ + θ̄ψ̄ + θθ̄F

are 2d N = 2 superfields and

D =
∂

∂θ
+ θ̄∂z, D̄ =

∂

∂θ̄
+ θ∂̄z̄

2For this problem, we return to a euclidean worldsheet.
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are N = 2 superspace covariant derivatives. What does this look like in com-
ponents?

Note that I’ve reverted to the definition of D, D̄ in the original version
of the pset. I did this because now D has a definite charge under the
U(1) (R)-symmetry under which θ → eiαθ. Using this,

DX = ψ + θ̄(F + ∂X) − θθ̄∂ψ

D̄X = ψ̄ + θ(−F + ∂X) + θθ̄∂ψ

Not too surprisingly, this gives

DXD̄Xθθ̄ = −∂X∂̄X + 2ψ̄∂̄ψ + F 2

Note that the bar on the psi here is just complex conjugation:

√
2ψ ≡ ψ1 + iψ2,

√
2ψ̄ = ψ1 − iψ2,

both ψ1,2 are left-movers.

(b) Now we will discuss N = (2, 2) supersymmetry. This means that we
have a complex grassmann superspace coordinate of both chiralities α = ±1

2
:

θ+, θ̄+, θ−, θ̄−. And therefore we have four superspace derivatives:

Dα =
∂

∂θα
+ iρaαβ θ̄

β∂a, D̄α = − ∂

∂θ̄α
− iρaαβθ

β∂a.

A chiral superfield is one which is killed by half the supercharges:

D̄±Φ = 0.

Such a field can be expanded as (α = ±)

Φ(x, θ, θ̄) = φ(y) +
√

2θαψ
α(y) + θαθαF

where
ya = xa + iθασaαβ θ̄

β

and the ± indices are raised and lowered with ǫαβ .

Show that the action

Scanonical =

∫

d2z

∫

d2θ+d
2θ− Φ̄Φ .
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gives a canonical kinetic term for X and its superpartner, but no term with
derivatives of the auxiliary field F . 3

Using the basis of σs from the phases paper, the important bits of
Φ̄Φ are

Φ̄Φ|θ4 = −4φ̄∂+∂−φ− 8(∂+∂−φ̄)φ+ 4∂−φ̄∂+φ+ 4∂+φ̄∂−φ

+4F 2 + 2
(

−2iψ−∂+ψ̄− − 2iψ+∂−ψ̄+ − 2iψ̄−∂+ψ− − 2iψ̄+∂−ψ+

)

A more general kinetic term comes from a Kähler potential K,

SK

∫

d2z

∫

d2θ+d
2θ− K(Φ̄,Φ) ,

where before we made the special choice K = Φ̄Φ. What are the bosonic terms
coming from this superspace integral?

We can just taylor expand K in its argument and use the previous
result:

SK = (∂Φ̄∂ΦK) ∂aΦ̄∂
aΦ̄ + fermions.

For more than one chiral field, we get

SK = Kij∂aΦ̄
i∂aΦ̄j

where
Kij ≡ ∂Φ̄i∂ΦjK

is the kahler metric; K is called the kahler potential. Notice that the
transformation K → K + f + ḡ where f is a function only of chiral
superfields, and g only of antichiral fields, does not change the form
of the action. Please see the phases paper if you need the coefficients
of the fermion terms.

3It will be useful to note that the complex conjugate field Φ̄ is an antichiral multiplet satisfying
D̄αΦ̄ = 0, and can be expanded as

Φ̄ = φ̄(ȳ) +
√

2θ̄αψ̄
α(ȳ) + θ̄αθ̄

αF

where ȳa = xa − iθασa
αβ θ̄

β .
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Now consider a superpotential term, which can be written as an integral over
only half of the superspace:

SW =

∫

d2z

∫

dθ+dθ−W (Φ) + h.c..

Show that this term is supersymmetric if W depends only on chiral superfields
in a holomorphic way, ∂

∂Φ̄
W = 0.

The supersymmetry variation of this term is

(

ǭD + ǫD̄
)

∫

dθ+dθ−W.

We can rewrite
∫

dθ+dθ− =
1

2
[D+, D−].

The holomorphic D’s die using D2 = 0. The antiholomorphic D’s
because D̄W = 0, by the chiral superfield condition.

With the action
S = SK + SW

integrate out the auxiliary fields F, F̄ to find the form of the bosonic potential
for φ. 4 Describe the supersymmetric ground states of this system.

The bosonic bits of this action are of the form (Wi ≡ ∂ΦiW )

Kij̄

(

∂Φi∂Φ̄j̄ + F iF̄ j̄ + ferms
)

+WiF̄
i + W̄iF

i +Wijψ̄
iψj + h.c.

The equation of motion for the auxiliary field F̄ j is

KijF
i +Wi = 0;

which we can solve in terms of the inverse Kahler metric KijKjk = δik.
Plugging back in we get

V (Φ, Φ̄) = KijWiW̄j.

This has V = 0 minima where Wi = 0, i.e. at critical points of the
superpotential.

4It is often useful to label a superfield by its lowest component.
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4. Supersymmetric ghosts. Consider a (chiral) N = 2 multiplet of ghosts:

B = β + θb, C = c+ θγ ;

here θ is a coordinate on 2d N = 2 superspace, b, c are ordinary Grassmann bc
ghosts, with scaling weight λ, 1 − λ. β, γ are commuting ghosts with weights
λ− 1

2
and 1

2
− λ respectively.

Write the action

SBC =

∫

d2z

∫

d2θ BD̄C

in components; here D̄ = ∂
∂θ̄

+ θ̄∂̄z̄ is the same superspace covariant derivative
from before.

Find an expression for the supercurrent in this theory.

In components the action is

SBC =

∫

d2zd2θ (β + θb)
(

θ̄∂̄c+ θ̄θ∂̄γ
)

=

∫

d2z
(

β∂̄γ + b∂̄c
)

.
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