
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Physics

String Theory (8.821) – Prof. J. McGreevy – Fall 2007

Solution Set 3
2d CFT

Due: Thursday, October 11, 2007 at 11:00 AM, in the 8.821 lockbox.
Reading: Ginsparg CFT notes §1,2,3,6. Try §4. Polchsinski, Chapter 2. GSW,
Chapter 3 (note that the CFT is hidden in §3.2, entitled ’BRST quantization’).

1. Warmup. Compute the scaling dimension of the operator Ok ≡: eikX : in the
free boson theory whose stress tensor is T (z) = − 1

α′
: ∂X∂X(z) :, using the

TOk OPE.

T (z)Ok(0) = − 1

α′ : ∂X∂X(z) :: eikX(0) :

= − 1

α′

(

(ik)2 (∂z〈X(z)X(0)〉)2 + ik · ∂X(z)∂z〈X(z)X(0)〉
)

: eikX(0) :

When T has the given normalization (as in Polchinski), the propa-
gator is

〈X(z)X(0)〉 = −α′

2
ln z + antiholomorphic

∂z〈X(z)X(0)〉 = −α′

2z

Which gives

T (z)Ok(0) =

(

α′k2

4

1

z2
+

1

z
∂

)

: eikX(0) : +regular.

2. Linear dilaton CFT.

The linear dilaton theory is a 2d CFT made from a free boson in the presence of
a ’background charge.’ This means that the boson X has some funny coupling
to the worldsheet gravity, which can be described by a linear dilaton term
in the action SΦ =

∫

d2σΦ(X)R(2), Φ(X) = QX, Q is a constant. On a
flat worldsheet, the quantization of X proceeds as before. In that case, the
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only difference from the ordinary free boson is that the stress tensor (which is
sensitive to how the theory is coupled to gravity) has the form

TQ = − 1

α′ : ∂X∂X : +V ∂2X

(where V ∼ Q).

[Optional: relate V to Q.]

(a) Verify that TQ has the right OPE with itself to be the stress tensor for a
CFT. Compute the Virasoro central charge for the linear dilaton theory.

The best way to relate V and Q is to extract the stress tensor from the
coupling to gravity: Tab = 2√

g
δS

δgab . To derive it from Noether’s method

one needs to realize that X will shift under conformal transformations,
as you can check by studying δξX = −

∮

dz
2πi

ξ(z)TQ(z)X.

TQ(z)TQ(w) =

(

− 1

α′ : ∂X∂X(z) : +V ∂2X(z)

)(

− 1

α′ : ∂X∂X(w) : +V ∂2X(w)

)

The propagator for X is as before (the EOM is unchanged by the
linear dilaton term). The contractions between the ∂X2 terms give
the same answer as we got for ordinary free bosons:

(

− 1

α′

)2

: ∂X∂X(z) :: ∂X∂X(w) :=

2

α′2

(

(

∂z∂w

(−α′

2

)

ln(z − w)

)2

+ 2 : ∂X(z)∂X(w) : ∂z∂w

(−α′

2

)

ln(z − w)

)

=
1/2

(z − w)4
+

2

(z − w)2
: − 1

α′∂X(w)2 : +
∂w

z − w
: − 1

α′∂X(w)2 :

One cross term is:

− 1

α′ : ∂X∂X(z) : V ∂2X(w) = −2
V

α′∂z∂
2
w〈X(z)X(w)〉∂X(w)

= +
2

(z − w)3

(

∂X(w) + (z − w)∂2X(w) +
1

2
(z − w)2∂3X(w) + ...

)
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= − 2V

(z − w)3
∂X(w) +

2V

(z − w)2
∂2X(w) +

V

(z − w)
∂3X(w) + regular.

The other cross term is:

− 1

α′V ∂2X(z) : ∂X∂X(w) := −2
V

α′∂
2
z∂w〈X(w)X(z)〉∂X(z)

= +
2V

(w − z)3
∂X(w)

The V 2 term only contributes to c:

V ∂2X(z)V ∂2X(w) = V 2∂2
z∂

2
w

−α′

2
ln(z − w) = +

α′V 2

2

6

(z − w)4

Adding these up gives:

TT =
1

(z − w)4

(

1 + 6α′V 2

2

)

+
1

(z − w)3

−V

2α′

(

2

(z − w)3
∂X(w) − 2

(z − w)3
∂X(w)

)

+
2

(z − w)2

(

: − 1

α′∂X(w)2 : +V ∂2X(w)

)

+
1

z − w
∂w

(

: − 1

α′∂X(w)2 : +V ∂2X(w)

)

so the dangerous (z − w)−3 terms die a grisly death leaving exactly
the usual TT OPE with central charge

c(V ) = 1 + 6α′V 2.

(b) Compute the scaling dimension of the operator : eikX : in the linear dilaton
theory.

Extra stimulation: Can you interpret the result of (b) in terms of a target space
effective action?

The terms where the (∂X)2 hits the vertex op is just like in the first
problem. The rest is

V ∂2X(z) : eikX(0) := ik·V ∂2
z

(

−α′

2
ln z

)

: eikX(0) :=
1

z2

(

−α′

2
ik · V

)

: eikX(0) :

This corrects the conformal dimension to

hV (k) =
α′k2

4
− α′

2
ik · V.
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Recalling that physical states satisfy h = 1, the mass shell condition
for the tachyon vertex in a linear dilaton theory is of the form

0 = hV (k) − 1 =
α′k2

4
− α′

2
ik · V − 1.

This should be the momentum-space wave equation for the target
space theory of the tachyon. The tree level terms quadratic in the
tachyon are

S2[T, Φ] = −
∫

dDx e−2Φ(x)
(

∂µT∂µT + m2
T T 2

)

,

where the e2Φ prefactor comes from the fact that the euler character
of the sphere is 2. If the dilaton has a profile Φ(x) = Qx, the equation
of motion for T is

0 =
δS

δT (y)
= −2

∫

dDx e−2Qx
(

∂µδ
D(x − y)∂µT + m2

T Tδd(x − y)
)

.

When we integrate by parts to get the derivative off the delta func-
tion, it hits the linear dilaton:

0 = −2Q∂xT + ∂2T − m2
T T

which in momentum space gives the equation we got from hV (k).
Apparently Q = V .

3. The stress tensor is not a conformal primary if c 6= 0. 1

(a) For any 2d CFT, use the general form of the TT OPE to show that the
transformation of T under an infinitesimal conformal transformation z 7→ z +
ξ(z) is

−δξT (w) = (ξ∂ + 2∂ξ)T (w) +
c

12
∂3ξ. (1)

The variation of T under a conformal transformation parametrized
by a holomorphic vector field ξ(z) is 2

1I got this problem from Robbert Dijkgraaf.
2Note that the expression in the first version of this pset differs by a sign from the one in

Polchinski; the sign comes from δξT (0) = i[L[ξ], T (0)] and L[ξ] = i
∮

ξT . It could be absorbed by
ξ → −ξ, but gets confusing when we consider the finite transformation next (i.e. −ξ generates the
inverse transformation).
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−δξT (0) =

∮

C0

dz

2πi
ξ(z)T (z)T (0)

=

∮

C0

dz

2πi
ξ(z)

(

c/2

z4
+

2T

z2
+

∂T

z
+ reg.

)

=
c∂3ξ(0)

2 · 3!
+ 2∂ξ(0)T (0) + ξ(0)∂T (0).

(b) Consider the finite conformal transformation z 7→ f(z). Show that (1) is
the infinitesimal version of the transformation law

Tzz(z) = (∂f)2Tff (f(z)) +
c

12
{f, z} (Elephant)

where

{f, z} ≡ ∂f∂3f − 3
2
(∂2f)2

(∂f)2

is called a Schwarzian derivative.

[Optional: verify that this extra term does the right thing when composing two
maps z → f(z) → g(f(z)).]

Infinitesimally, f(z) = z+ξ, ∂f = 1+∂ξ, ∂2f = ∂2ξ..., and the Schwarzian
deriv is

{z + ξ, z} =
(1 + ∂ξ)∂3ξ − 3(∂2ξ)2

(1 + ∂ξ)2
= ∂3ξ + O(ξ2).

So (Elephant) becomes

Tzz(z) = (1+∂ξ)2Tff(z+ξ)+
c

12
{z+ξ, z} = Tff (z)+2∂ξT (z)+ξ∂T+

c∂3ξ

12
+O(ξ2)

which gives

δξT = (Tff − Tzz)f=z+ξ = −
(

2∂ξT (z) + ξ∂T +
c∂3ξ

12

)

+ O(ξ2)

which agrees with our expression (1) from the part (a).

To show that (Elephant) is the correct exponentiation of the infinites-
imal transformation we also need to show that it composes correctly
under successive transformations. This means

Tzz(z) 7→ (∂f)2Tff (f(z))+
c

12
{f, z} = (∂zf)2

(

(∂fg)2Tgg(g(f(z))) +
c

12
{g, f}

)

+
c

12
{f, z}
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This should give the same result as

Tzz(z) 7→ (∂g)2Tgg (g(z)) +
c

12
{g, z}

which requires that

{g, z} − {f, z} = (∂zf)−2{g, f}
which is the case since the BHS can be seen (after a bit of cooking)
to equal

BHS =
2 (∂3g(∂f)2∂g − ∂3f(∂g)2∂f) − 3 ((∂2g)2(∂f)2 − (∂2f)2(∂g)2)

2(∂zg)2(∂zf)−4
.

(c) Given that the conformal map from the cylinder to the plane is z = e−iw,
show that (b) means that

Tcyl(w)(dw)2 =
(

Tplane(z) +
c

24

)

(dz)2.

Use this relation to show that the Hamiltonian on the cylinder

H =

∫

dσ

2π
Tττ

is

H = L0 + L̃0 −
c + c̄

24
.

Comment: After all this complication, the result has a very simple physical
interpretation: when putting a CFT on a cylinder, the scale invariance is spon-
taneously broken by the fact that the cylinder has a radius, i.e. the cylinder
introduces a (worldsheet) length scale into the problem. The term in the en-
ergy extensive in the radius of the cylinder (and proportional to c) is actually
experimentally observable.

Given that ∂zw = i
z

, the Schwarzian is

{w, z} =
(2i/z3)(i/z) − 3/2(−i/z2)2

(i/z)2
= z−2(2 − 3/2) =

1

2z2
= −1

2
(∂zw)2.

Therefore, our previous expression gives

Tzz(z) = Tww(w)(∂zw)2 +
c

12
{w, z} =

(

Tww(w) − c

24

)

(∂zw)2.

Multiplying by (dz)2, this gives the desired relation. The relation for
the hamiltonian just requires remembering that Tττ = Tzz + Tz̄z̄.
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4. Constraints from Unitarity. Show that in a unitary CFT, c > 0, and h ≥ 0
for all primaries. Hint: consider 〈φ|[Ln, L−n]|φ〉.
Consider a primary state |φ〉 of weight h in a unitary CFT. In such
a CFT (unlike the CFT with X0 or FP ghosts), for any n,

0 ≤ ||L−n|φ〉||2 = 〈φ|LnL−n|φ〉 = 〈φ|[Ln, L−n]|φ〉 (Roger)

where in the last equality we used the fact that φ is primary and
hence annihilated by Ln, n > 0. Consider first n = 1, and use Vir
(actually just sl(2)) to say:

0 ≤ 〈φ|[L1, L−1]|φ〉 = 〈φ|(2L0)|φ〉2h|||φ〉||2

which is true iff h ≥ 0. The inequality is only saturated (h = 1) if
L1|φ〉 = 0, which means that the state is killed by the whole sl(2),
which identifies it as the conformal vacuum, i.e. the image of the
identity operator under the state-operator correspondence. More
precisely, it means that the operator φ satisfies ∂φ(z) = 0 (remember
L1 ∼ ∂), i.e. it’s constant, which means that it must be proportional
to the identity operator (see p. 48 of Polchinski for the argument).

To see that c > 0, let’s use Vir on (Roger) to get

0 ≤ 〈φ|[Ln, L−n]|φ〉 = 2nh + c(n3 − n) = n(2h − c) + n3c.

For small n, this could be true with negative c if h were big enough,
but for large enough n, the second, n3, term kicks the pants off the
first term and had better have a positive coefficient.

5. SU(2)1 current algebra from a circle.

Consider the closed bosonic string compactified on a circle of radius R =
√

α′.
In lecture 4 all kinds of ridiculous claims were made about this theory. Here we
will study the CFT describing the strings on this circle and verify that there is
in fact an SU(2)L × SU(2)R gauge symmetry involving winding modes. We’ll
focus on the holomorphic (L) part; the antiholomorphic part will be identical.

Label the circle coordinate X25 ≡ X ∼ X + 2πR. Define

J±(z) ≡: e±2iX(z)/
√

α′

:, J3 ≡ i

√

2

α′∂X(z).

(a) Show that J3, J± are single-valued at the ’self-dual radius’ R =
√

α′.
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(b) At the self-dual radius, do J±, J3 have the right conformal dimension to
create physical string states which are massless?

Clearly the J3 current is just the ordinary momentum current which
we’ve previously checked has dimension (1, 0). To save typing, let’s
define k ≡ 2i√

α′
. The TJ± OPE is

T (z)J±(0) ∼ − 1
α′

(

k−α′

2z

)2
J±(0) + O(1/z) = h

z2J± + O(1/z)

with

h = −k2α′

4
= 1.

(c) Defining J± ≡ 1√
2
(J1±iJ2) show that the operator product algebra of these

currents is

Ja(z)J b(0) ∼ δab

z2
+ i

√
2ǫabc J

c(0)

z
+ ...

J1 =
1√
2
(J+ + J−), J1 = − i√

2
(J+ − J−).

J3(z)J1(0) = i

√

2

α′∂X(z)
1√
2

(

e+kX + e−kX
)

∼ i√
α′

∂z(−
α′

2
ln z)k :

(

e+kX − e−kX
)

(0) := −1

z
i

√
α′

2

2i√
α′

:
(

e+kX − e−kX
)

(0) :

=
1

z
:
(

e+kX − e−kX
)

(0) := i
√

2J1(0).

Let’s check for the kronecker delta term:

J1(z)J1(0) =

(

1√
2

)2
(

e+kX + e−kX
) (

e+kX + e−kX
)

∼ 1

2

(

z
−α′

2
k2

: ekX(z)+kX(0) : +z
−α′

2
(−k)2 : e−kX(z)−kX(0) :

+z−
−α′

2
k(−k)

(

: ekX(z)−kX(0) : + : ekX(0)−kX(z) :
)

)

(1)
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∼ 1

2

(

1

z2

(

2 + O(z2)
)

+ O(z2)

)

An interesting one is

J1(z)J2(0) =

(

1√
2

)2

(−i)
(

e+kX + e−kX
) (

e+kX − e−kX
)

= − i

2

[

1

z2

(

: e−kX(z)+kX(0) : − : e−kX(0)+kX(z) :
)

+ O(z2)

)

= − i

2

[

1

z2

(

: e−k(z∂X(0)+...) : − : e+k(z∂X(z)+...) :
)

]

= − i

2

1

z
(−2k∂X(0)) + ...

∼ i
√

2

z
J3(0).

The others are similar.

(d) [Bonus tedium] Defining modes as usual for a dimension 1 operator,

Ja(z) =
∑

n∈ZZ

Ja
nz−n−1

show that
[Ja

m, J b
n] = i

√
2ǫabcJc

m+n + mkδabδm+n

with k = 1, which is an algebra called Affine SU(2) at level k = 1. Note that
the m = 0 modes satisfy the ordinary SU(2) lie algebra.

[Ja
m, J b

n] =

∮

C0

dw

2πi

∮

Cw

dz

2πi
Ja(z)J b(w) =

∮

C0

dw

2πi

∮

Cw

dz

2πi

(

δab

(z − w)2
+ i

√
2ǫabc J

c(w)

z − w

)

=

∮

C0

dw

2πi
wm
(

∂zz
n|z=wδab + i

√
2ǫabczn|z=wJc(w)

)

=

∮

C0

dw

2πi

(

nwm+n−1δab + i
√

2ǫabcJc(w)wm+n
)

which gives the desired mode algebra.

(e) Think about how the results of (a)-(d) verify the claim that the spectrum
of the compactified theory at this special radius really has non-abelian gauge
symmetry, with the extra gauge bosons made from wound strings. Specifically,
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construct the physical vertex operators for the three SU(2)L gauge bosons by
tensoring Ja with some right-moving operator (remember to level-match) and
some factor that allows the resulting state to have (null) momentum in the
noncompact dimensions. Remember that an operator eikLXLeikRXR creates a
string mode with nonzero winding if kL 6= kR.

A good set of closed-string vertex operators for the gauge bosons are

V aµ(k) ≡ Ja(z)∂̄Xµ(z̄) : ei
P

24

µ=0
kµXµ

: .

These create massless vectors because they have a vector index, and
the condition that (h, h̄) = (1, 1) is kµk

µ = 0. It is a winding mode
because k25

L 6= k25
R .
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