# MASSACHUSETTS INSTITUTE OF TECHNOLOGY <br> Department of Physics <br> String Theory (8.821) - Prof. J. McGreevy - Fall 2007 

## Problem Set 5

A little more on open strings, bosonization, superstring spectrum
Reading: Polchinski, Chapter 10.
Due: Thursday, November 8, 2007 at 11:00 AM in lecture.

1. The open string tachyon is in the adjoint rep of the Chan-Paton gauge group.
Convince yourself that I wasn't lying when I said that the pole in the Veneziano amplitude (with no CP factors) at $s=0$ cancels in the sum over orderings. Convince yourself that this means that when CP factors are included the tachyon is in the adjoint representation of the D-brane worldvolume gauge group.
2. Bosonization of a Dirac fermion $=$ Fermionization of a non-chiral boson.
(a) Consider the CFT associated with compactification on a single circle of radius $R$, i.e. one periodic free boson $X \simeq X+2 \pi R$. Show that the partition function on a torus of modular parameter $q=e^{2 \pi i \tau}$ is ( in $\alpha^{\prime}=2$ units)

$$
\begin{gathered}
Z_{R}(\tau, \bar{\tau})=\operatorname{tr} q^{L_{0}-\frac{1}{24}} \bar{q}^{\tilde{L}_{0}-\frac{1}{24}} \\
=\frac{1}{|\eta|^{2}} \sum_{n, m \in \mathbb{Z}} q^{\frac{1}{2}\left(\frac{n}{R}+\frac{m R}{2}\right)^{2}} \bar{q}^{\frac{1}{2}\left(\frac{n}{R}-\frac{m R}{2}\right)^{2}},
\end{gathered}
$$

where the Dedekind eta function is

$$
\eta(\tau) \equiv q^{\frac{1}{24}} \prod_{n=1}^{\infty}\left(1-q^{n}\right)
$$

Note that this function is invariant under T-duality:

$$
Z_{R}=Z_{\alpha / R}
$$

(b) Here we will study the special radius $R=1=\sqrt{\alpha^{\prime} / 2}$ (or equivalently $R=2=\sqrt{2 \alpha^{\prime}}$, by T-duality). Show that at this special radius (which is
different from the self-dual radius, $R=\sqrt{2}=\sqrt{\alpha^{\prime}}$ ! , the partition function can be written as

$$
Z_{1}(\tau, \bar{\tau})=\frac{1}{2} \frac{1}{|\eta|^{2}}\left(\left|\sum_{n} q^{n^{2} / 2}\right|^{2}+\left|\sum_{n}(-1)^{n} q^{n^{2} / 2}\right|^{2}+\left|\sum_{n} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}}\right|^{2}\right)
$$

(c) Show that this last form of $Z$ is the partition function of a 2 d Dirac fermion (!). Note that 'Dirac fermion' here means two left-moving MW fermions and two right-moving MW fermions, and we are choosing the spin structures of the right-moving and left-moving fermions in a correlated, non-chiral way the GSO operator is the $(-1)^{F}$ which counts the fermion number of all the fermions at once, and we include only RR and NSNS sectors. This is called the 'diagonal modular invariant'. Note that this is a different sum over spin structures than the one in the system bosonized in Polchinski chapter 10 (and this is why it can be modular invariant with fewer than eight fermions).
[Hint: (i) The three terms in $Z_{1}$ arise from the three choices of spin structure which give nonzero partition functions.
(ii) The sums in the squares are theta functions, specifically,

$$
\begin{gathered}
\theta_{3}(\tau)=\vartheta_{00}(0 \mid \tau)=\sum_{n} q^{n^{2} / 2} \\
\theta_{4}(\tau)=\vartheta_{01}(0 \mid \tau)=\sum_{n}(-1)^{n} q^{n^{2} / 2} \\
\theta_{2}(\tau)=\vartheta_{10}(0 \mid \tau)=\sum_{n} q^{\frac{1}{2}\left(n+\frac{1}{2}\right)^{2}},
\end{gathered}
$$

which can be expressed as infinite products (instead of infinite sums), as described on page 215 of Polchinski vol. I. Rewrite $Z_{1}(\tau, \bar{\tau})$ using the product forms of the theta functions.]

## 3. Superstring worldsheet vacuum energy.

Show that

$$
\sum_{n=0}^{\infty}(n-j)-\sum_{n=0}^{\infty} n=-\frac{1}{2} j(j-1)
$$

where we can define the divergent sums by a regulator mass:

$$
\sum_{n=0}^{\infty} \omega_{n} \equiv \lim _{\epsilon \rightarrow 0} \sum_{n=0}^{\infty} \omega_{n} e^{-\epsilon \omega_{n}}
$$

Show that this reproduces the lightcone gauge vacuum energies for the NS and R sectors.

Relatedly, you might want to do Polchinski problem 10.8.

## 4. bispinors.

Make yourself happy about the field content of the RR sectors of the type II superstrings. In particular, if $\eta_{ \pm}$are chiral spinors,

$$
(1 \mp \gamma) \eta_{ \pm}=0, \quad\left\{\gamma, \gamma^{i}\right\}=0, \forall i=1 . .8
$$

show that

$$
\tilde{\eta}_{+} \gamma^{i_{1} \ldots i_{q}} \eta_{+}=0
$$

if $q$ is odd and

$$
\tilde{\eta}_{+} \gamma^{i_{1} \ldots i_{q}} \eta_{-}=0
$$

if $q$ is even.

