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1. Classical Maxwell theory. [Peskin problem 2.1, lightly edited] Classical elec-
tromagnetism follows from the action

1
S[A] = /d4:c (_ZFWFW — j”A#> , where F,, =90,A, —0,A,.

(a) Derive Maxwell’s equations as the Euler-Lagrange equations of this action,
treating the components A, (x) as the dynamical variables
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- 0Au(z)
Write the equations in the standard form by identifying E* = —F% and

€ikpk — —Fi,
(b) Construct the energy-momentum tensor for this theory, when j* = 0. Note
that the usual procedure
oL
T =
does not result in a symmetric tensor. (It is also not gauge invariant.) To

remedy that, we can add to T a term of the form 0yK¥, where K

is antisymmetric in its first two indices. Such an object is automatically

8y — L3"

divergenceless, so
TH =T + O\KM

is an equally good energy-momentum tensor with the same globally con-
served energy and momentum. Show that this construction, with

K/\,uu — F'u)\AV,

leads to an energy-momentum tensor T that is symmetric and yields the
standard formulae for the electromagnetic energy and momentum densities:

E=>(E*+B?, S=ExB.
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(¢) [Bonus problem] A better way to think about the energy-momentum tensor
is to regard it as the response to a change in the background metric. (This is
why it appears as a source in Einstein’s equations.) To couple the Maxwell
theory to a general background metric g, we replace all the n,,s with g,,s:

1 .
S[A, g] = /d4x\/§ (_ZFWFPUQM)QW —i—j“A“)

where the factor of /g = +/|detg]| is required to make the integration
measure coordinate-invariant, and g"” is the inverse metric: ¢g"”g,, = 4.
Compare the resulting energy-momentum tensor

TH — 1M|
G g T

with that of the previous part.
Notice that T} is automatically symmetric and gauge invariant.

[Some useful identities are:

69" (x)
5900(9)

ddet g(x)

= —g"¢"" 6P (z — y) and
g0 e ~u) 09, (Y)

= 0P (x — y) det gg".

For proofs of these statements see page 93 of this document.]

2. Maxwell’s equations, quantumly.

(a) Check that the oscillator algebra for the photon creation and annihilation
operators
Ayl = 6 (k — K)o 1)

implies (using the mode expansion for A) that
[A(7), E;(7)] = —ih /dsk? eiF-(F=7) <5ij — I%¢I%j>

(and also [A;(7), A;(")] = 0 and [E;(7), E;(7")] = 0).
Conclude that it’s not possible to simultaneously measure E,(7) and B, (7).

(b) Using the result of the previous part, check that the wave equation for A;(z)
follows from the Heisenberg equations of motion

—

S|
E=—-H E|
at h[ I ]


https://mcgreevy.physics.ucsd.edu/f13/225A-lectures.pdf

3. Goldstone boson. Here is a simple example of the Goldstone phenomenon,
which I mentioned briefly in lecture. Consider again the complex scalar field
from a previous assignment.

Suppose the potential is
V(®*P) = g (9 — 0?)”

where g,v are constants. The important features of V' are that (1) it is only
a function of |®|? = ®®*, so that it preserves the particle-number symmetry
generated by q which was the hero a previous homework problem, and (2) the
minimum of V(z) away from = = 0.

Treat the system classically. Write the action S[®, ®*] in polar coordinates in
field space:
®(z,t) = pet

where both p, 6 are functions of space and time.

(a) Consider constant field configurations, and show that minimizing the po-
tential fixes p but not the phase 6.

(b) Compute the mass® of the p field about its minimum, m? = 392V ,—,.

(¢) Now ignore the deviations of p from its minimum (it’s heavy and slow and
hard to excite), but continue to treat 6 as a field. Plug the resulting expres-
sion

P = Uei@(x,t)
into the action. Show that € is a massless scalar field.
(d) How does the U(1) symmetry generated by q act on 67
4. Casimir force is regulator-independent. [Bonus problem| Suppose we use a

different regulator for the sum in the vacuum energy » ; hwj. The regulator we’ll
use here is an analog of Pauli-Villars. We replace

f(d) ~ %Z%’K(%‘)

where the function K is

K(w) :an A

w+ A,

We impose two conditions on the parameters c,, Ay:



e We want the low-frequency answer to be unmodified:
K(w) 31

— this requires ) ¢, = 1.

e We want the sum over j to converge; this requires that K (w) falls off faster
than w=2. Taylor expanding in the limit w > A,, we have

K(w) WQWEZCQAQ—$ZCQA3+... _

w
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So we also require > c,Ay =0 and Y coAZ = 0.

First, verify the previous claims about K (w).

Then compute f(d) and show that with these assumptions, the Casimir force is
independent of the parameters ¢, A,.

[A hint for doing the sum: use the identity

1 oo
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inside the sum to make it a geometric series. To do the remaining integral over
s, Taylor expand the integrand in the regime of interest.]

5. Casimir energy from balls and springs. [More difficult bonus problem]
Regularize the Casimir energy of a 1d scalar field by discretizing space. If you
suppose there are N = d/a € Z lattice points in the left cavity

| —d—|+— L—d — |

what answer do you find for the force on the middle plate?

[Hint: you will find the wrong answer! The problem is that with these assump-
tions d cannot vary continuously. One way to allow d to vary continuously is to
impose ¢(0) = 0 = ¢(d), but do not assume d corresponds to a lattice site.]

6. Gaussian integrals are your friend.

o0
1.2 ; 2m 52
/ dre 207 TI% — \/—e%*a.
o a

[Hint: square the integral and use polar coordinates.]

(a) Show that



(b) Consider a collection of variables x;,i = 1..N and a real, symmetric matrix
Qjj- Show that

N N/2
/de‘e—émmijmj-i-ﬂxi _ (271’) / G%Jia;lej
7 - .
iy Vdeta
(Summation convention in effect, as always.)
[Hint: change integration variables to diagonalize a. deta = [] a;, where a;

are the eigenvalues of a.]

(¢) Tinclude this problem partly because it might be helpful for a future prob-
lem. In that regard, for any function of the N variables, f(x), let

Nod i — 30T N X i
<f(l')> = f Hz:l ;[jz O] f<x>7 Z[J] _ /dei€2$iaijxj+J @i
=1

Show that
(zix;) = 85,05, log Z[J]] =0 = az;'

Also, convince yourself that

(d) Note that the number N in the previous parts may be infinite. This is really
the only path integral we know how to do.

7. Gaussian identity. Show that for a gaussian quantum system
(eifa) — o~ A (a?)

and determine A(K). Here (...) = (0]...|0), vacuum expectation value. Here
by ‘gaussian’ I mean that H contains only quadratic and linear terms in both
q and its conjugate variable p (but for the formula to be exactly correct as
stated you must assume H contains only terms quadratic in q and p; for further
entertainment fix the formula for the case with linear terms in H).

[ recommend using the path integral representation (with hints from the previous
problem). Alternatively, you can use the harmonic oscillator operator algebra.
Or, even better, do it both ways.



