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Physics 215A QFT Fall 2021
Assignment 2

Due 11:59pm Thursday, October 7, 2021

Thanks in advance for following the submission guidelines on hw01. Please ask me

by email if you have any trouble.

1. Brain-warmer on units. Show that we can convert between energy, momen-

tum, inverse length, and inverse time by multiplying by various factors of ~ and

c. Thus these dimensionful quantities are all directly comparable once we choose

units where ~ = c = 1. What are the length scale and time scale and mass scale

associated with 1 GeV = 109eV? What are the units of the Newton constant of

gravity, and what is its value expressed in terms of powers of GeV?

2. Momentum. In this problem we consider a scalar field theory in d spatial

dimensions. Consider the operator

~P ≡
∫

d̄dk~~ka†kak

where
∫

d̄dk... ≡
∫

ddk
(2π)d

....

(a) Find [~P, a†k], and [~P, ak].

(b) Show using 2a and the mode expansion of a scalar field that

[~P, φ(x)] = i~~∇φ(x).

(c) Conclude (using Taylor’s theorem) that

e−i~a·
~P/~φ(x)ei~a·

~P/~ = φ(x+ a)

and that therefore ~P generates translations. Therefore ~P is the operator

representing the momentum carried by the field (like the Poynting vector

for the electromagnetic field).

(d) Find ~P
∣∣∣~k1, ~k2...~kn〉, the action of this operator on a state of n phonons.

Conclude that ~~k is the momentum of the phonon labelled by wavenumber
~k.
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3. Complex scalar field and antiparticles.

[This problem is related to Peskin problem 2.2.] So far we’ve discussed scalar

field theory with one real scalar field. The particles created by such a field are

their own antiparticles.

To understand this statement better, consider a scalar field theory in d + 1

dimensions with two real fields φ1, φ2. Organize them into one complex field

Φ ≡ 1√
2

(φ1 + iφ2), with Φ? = 1√
2

(φ1 − iφ2), and let

S[Φ,Φ?] =

∫
ddxdt

(
1

2
µ∂tΦ∂tΦ

? − 1

2
µv2~∇Φ · ~∇Φ? − V (Φ?Φ)

)
for some potential function V (x).

(a) Show that

S[Φ,Φ?] =

∫ (∑
i=1,2

(
A (∂tφi)

2 −B~∇φi · ~∇φi
)
− V

(
(φ2

1 + φ2
2)/2

))
,

and where A,B are constants you must determine. If V (q2) = 1
2
m̃2q2, notice

that the action is just the sum of two copies of the action of the theory we

considered previously.

(b) Show by doing the Legendre transformation that the associated hamiltonian

is

H =

∫
ddx

(
CΠΠ? +D~∇Φ · ~∇Φ? + V (ΦΦ?)

)
where C,D are constants you must determine, and the canonical momenta

are

Π =
∂L
∂Φ̇

=
1

2
µΦ̇?, Π? =

∂L
∂Φ̇?

=
1

2
µΦ̇

with the Lagrangian density L defined by S =
∫
dtddxL.

(c) This theory has a continuous symmetry under which Φ→ eiαΦ,Φ? → e−iαΦ?

with α a real constant. Show that the action S does not change if I make

this replacement. 1

1This is called a U(1) symmetry: it is a unitary rotation (hence ‘U’) on a one-dimensional (hence

‘(1)’) complex vector. Notice that on the real components φ1, φ2 it acts as a two-dimensional rotation:(
φ1
φ2

)
→
(
cosα − sinα

sinα cosα

)(
φ1
φ2

)
.

The name for this group is SO(2). So U(1) is the same as SO(2).
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(d) The existence of a continuous symmetry means a conserved charge – a her-

mitian operator which commutes with the Hamiltonian, which generates the

symmetry (this is the quantum version of the Noether theorem). Show that

q ≡
∫
ddx i (Φ?Π? − ΠΦ)

generates this transformation, in the sense that the change in the field under

a transformation with infinitesimal α is

δΦ = iαΦ = −iα[q,Φ], and δΦ? = −iαΦ? = −iα[q,Φ?].

Show that [q,H] = 0.

(e) For the case where V (ΦΦ?) = 1
2
m̃2ΦΦ? the hamiltonian is quadratic. Diago-

nalize it in terms of two sets of creation operators and annihilation operators.

Work in the continuum. You should find something of the form

Φ =

√
~
2µ

∑
k

1
√
ωk

(
eikxak + e−ikxb†k

)
. (1)

(f) Write the canonical commutators

[Φ(x),Π(x′)] = i~δ(x− x′), [Φ(x),Π?(x′)] = 0

(and the hermitian conjugate expressions) in terms of a and b.

(g) Rewrite q in terms of the mode operators.

(h) Evaluate the charge of each type of particle created by a†k and b†k
(i.e. find [q, a†]).

I claim that the particle created by a† is the antiparticle of that created

by b† in the sense that they have opposite quantum numbers. This means

that we can add terms to the hamiltonian by which they can annihilate each

other, without breaking any symmetries. What might such a term look like?

4. Classical Maxwell theory. [Peskin problem 2.1, lightly edited] Classical elec-

tromagnetism follows from the action

S[A] =

∫
d4x

(
−1

4
FµνF

µν − jµAµ
)
, where Fµν = ∂µAν − ∂νAµ.

(a) Derive Maxwell’s equations as the Euler-Lagrange equations of this action,

treating the components Aµ(x) as the dynamical variables

0 =
δS[A]

δAµ(x)
.

Write the equations in the standard form by identifying Ei = −F 0i and

εijkBk = −F ij.
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(b) Construct the energy-momentum tensor for this theory, when jµ = 0. Note

that the usual procedure

T µν =
∂L

∂(∂µφ)
∂νφ− Lδµν

does not result in a symmetric tensor. (It is also not gauge invariant.) To

remedy that, we can add to T µν a term of the form ∂λK
λµν , where Kλµν

is antisymmetric in its first two indices. Such an object is automatically

divergenceless, so

T̂ µν ≡ T µν + ∂λK
λµν

is an equally good energy-momentum tensor with the same globally con-

served energy and momentum. Show that this construction, with

Kλµν = F µλAν ,

leads to an energy-momentum tensor T̂ that is symmetric and yields the

standard formulae for the electromagnetic energy and momentum densities:

E =
1

2

(
E2 +B2

)
, ~S = ~E × ~B.

(c) [Bonus problem] A better way to think about the energy-momentum tensor

is to regard it as the response to a change in the background metric. (This is

why it appears as a source in Einstein’s equations.) To couple the Maxwell

theory to a general background metric gµν , we replace all the ηµνs with gµνs:

S[A, g] =

∫
d4x
√
g

(
−1

4
FµνFρσg

µρgνσ + jµAµ

)
where the factor of

√
g ≡

√
| det g| is required to make the integration

measure coordinate-invariant, and gµν is the inverse metric: gµνgνρ = δµρ .

Compare the resulting energy-momentum tensor

T µνg =
2
√
g

δS[A, g]

δgµν
|gµν=ηµν .

with that of the previous part.

Notice that T µνg is automatically symmetric and gauge invariant.

[Some useful identities are:

δgµν(x)

δgρσ(y)
= −gµρgνσδD(x− y) and

δ det g(x)

δgµν(y)
= δD(x− y) det ggµν .

For proofs of these statements see page 93 of this document.]
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