University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215A QFT Fall 2016 Assignment 8

Due 11am Tuesday, November 29, 2016

1. Brain-warmer. Check that

$$(p \cdot \sigma) (p \cdot \bar{\sigma}) = p^2.$$

2. Symmetries of the Dirac lagrangian.

Find the Noether currents j^{μ} and j_5^{μ} associated with the transformations $\Psi \rightarrow e^{i\alpha\Psi}$ and $\Psi \rightarrow e^{i\alpha\gamma^5}\Psi$ of a free Dirac field. Show by explicit calculation that the former is conserved and the latter is conserved if m = 0.

3. Majorana mass. Show that a *majorana mass* term for a Weyl fermion

$$\mathcal{L}_{m} = m\psi_{R}^{t}\mathbf{i}\sigma^{2}\psi_{R} + h.c. = m\left(\psi_{R}\right)_{\alpha}\epsilon^{\alpha\beta}\left(\psi_{R}\right)_{\beta} + h.c.$$

is Lorentz invariant, but violates particle number. Figure out what the +h.c. is explicitly. Find the equations of motion. Why isn't $(\psi_R)_{\alpha} \epsilon^{\alpha\beta} (\psi_R)_{\beta} \stackrel{?}{=} 0$ given the antisymmetry under $\alpha \leftrightarrow \beta$?

4. Negative-energy solutions of the Dirac equation. Check that $\Psi(x) = v(p)e^{+\mathbf{i}p\cdot x}$ with

$$v^{s}(p) = \begin{pmatrix} \sqrt{p \cdot \sigma} \eta^{s} \\ -\sqrt{p \cdot \overline{\sigma}} \eta^{s} \end{pmatrix}, \quad s = 1, 2$$

solves the Dirac equation if $p^2 = m^2$ and $p^0 > 0$.

Assuming that η^s comprise an orthonormal basis of 2×2 spinors, check that

$$\sum_{s=1,2} v^s \bar{v}^s = p - m.$$

Check that $(v^s)^{\dagger}(p)v^{s'}(p) = 2\omega_p \delta^{ss'}$. (You might want to choose $\vec{p} = \hat{z}p^3$ and a basis of σ^3 eigenstates to do this.)

- 5. Supersymmetry. Peskin problem 3.5
- 6. Peskin 3.3 (spinor products)
- 7. Peskin 3.7a (P,C,T).