University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2016 Assignment 4

Due 11am Tuesday, October 25, 2016

1. Non-Abelian currents.

In the previous two homeworks, we studied a complex scalar field. Now, we make a big leap to two complex scalar fields, $\Phi_{\alpha=1,2}$, with

$$
S\left[\Phi_{\alpha}\right]=\int d^{d} x d t\left(\frac{1}{2} \partial_{\mu} \Phi_{\alpha}^{\star} \partial^{\mu} \Phi_{\alpha}-V\left(\Phi_{\alpha}^{\star} \Phi_{\alpha}\right)\right)
$$

Consider the objects

$$
Q^{i} \equiv \int d^{d} x \mathbf{i}\left(\Pi_{\alpha}^{\dagger} \sigma_{\alpha \beta}^{i} \Phi_{\beta}^{\dagger}\right)+h . c .
$$

where $\sigma^{i=1,2,3}$ are the three Pauli matrices.
(a) What symmetries do these charges generate (i.e. how do the fields transform)? Show that they are symmetries of S.
(b) If you want to, show that $\left[Q^{i}, H\right]=0$, where H is the Hamiltonian.
(c) Evaluate $\left[Q^{i}, Q^{j}\right]$. Hence, non-Abelian.
(d) To complete the circle, find the the Noether currents J_{μ}^{i} associated to the symmetry transformations you found in part 1a.
(e) Generalize to the case of N scalar fields.

2. Recovering non-relativistic quantum mechanics.

Consider a complex scalar field, in the non-relativistic limit,

$$
\Phi=\sqrt{2 m} e^{-\mathbf{i} m t} \Psi, \quad|\dot{\Psi}| \ll m \Psi
$$

Recall that in this limit, the antiparticles disappear and the mode expansion is

$$
\Psi(x)=\int \mathrm{d}^{d} p e^{-\mathbf{i} \vec{p} \cdot \vec{x}} \mathbf{a}_{p}, \quad \Psi^{\dagger}(x)=\int \mathrm{d}^{d} p e^{\mathrm{i} p \cdot \vec{x}} \mathbf{a}_{p}^{\dagger}
$$

(a) Show that

$$
\hat{P}_{i} \equiv \int \mathrm{~d}^{d} p p_{i} \mathbf{a}_{p}^{\dagger} \mathbf{a}_{p}
$$

is the generator of translations and commutes with the Hamiltonian.
(b) Let

$$
\hat{X}^{i} \equiv \int d^{d} x \Psi^{\dagger}(x) x^{i} \Psi(x)
$$

A state of one particle at location \vec{x} is

$$
|x\rangle=\Psi^{\dagger}(x)|0\rangle .
$$

Show that

$$
\hat{X}^{i}|x\rangle=x^{i}|x\rangle .
$$

(c) Consider the general one-particle state

$$
|\psi\rangle=\int d^{d} x \psi(x) \Psi^{\dagger}(x)|0\rangle=\int d^{x} x \psi(x)|x\rangle
$$

Show that

$$
\hat{X}^{i}|\psi\rangle=\int d^{d} x x^{i} \psi(x)|x\rangle
$$

and (a little more involved)

$$
\hat{P}^{i}|\psi\rangle=\int d^{d} x\left(-\mathbf{i} \frac{\partial}{\partial x^{i}} \psi(x)\right)|x\rangle,
$$

which is the usual action of these operators on single-particle wavefunctions $\psi(x)$.

