University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215A QFT Fall 2016 Assignment 3

Due 11am Thursday, October 13, 2016

1. Momentum. Starting from the expression for the stress energy tensor we derived for free scalar field theory, find the generator of spatial translations $\overrightarrow{\mathbf{P}}$. Show that a state of n particles of definite wavenumber

$$
\mathbf{a}_{\vec{k}_{1}}^{\dagger} \cdots \mathbf{a}_{\vec{k}_{n}}^{\dagger}|0\rangle
$$

is an eigenstate of $\overrightarrow{\mathbf{P}}$ with a reasonable answer for the eigenvalue.

2. Vacuum energy from the propagator.

Consider a scalar field with

$$
\mathbf{H}=\int d^{d} x \frac{1}{2}\left(\pi^{2}+(\vec{\nabla} \phi)^{2}+m^{2} \phi^{2}\right) .
$$

Reproduce the formal expression for the vacuum energy

$$
\langle 0| \mathbf{H}|0\rangle=V \int \mathrm{~d}^{d} k \frac{1}{2} \hbar \omega_{\vec{k}}
$$

using the two point function

$$
\langle 0| \phi(x)^{2}|0\rangle=\langle 0| \phi(0) \phi(0)|0\rangle=\lim _{\vec{x}, t \rightarrow 0}\langle 0| \phi(x) \phi(0)|0\rangle
$$

and its derivatives. (V is the volume of space.)
Later we will learn to draw this process as a Feynman diagram which is a circle (a line connecting a point to itself).

3. The identity does nothing twice.

Check our relativistic state normalization by squaring our expression for the identity in the 1-particle sector:

$$
\mathbb{1}_{1}^{2} \stackrel{!}{=} \mathbb{1}_{1}=\int \frac{\mathrm{d}^{d} p}{2 \omega_{\vec{p}}}|\vec{p}\rangle\langle\vec{p}| .
$$

4. The retarded propagator is a Green's function.

Consider the retarded propagator for a real, free, massive scalar field:

$$
D_{R}(x-y) \equiv \theta\left(x^{0}-y^{0}\right)\langle 0|[\phi(x), \phi(y)]|0\rangle .
$$

Show that it is a Green's function for the Klein-Gordon operator, in the sense that

$$
\left(\partial_{x}^{2}+m^{2}\right) D_{R}(x-y)=a \delta^{d+1}(x-y) .
$$

Find a.
Use this to generalize the mode expansion of the scalar field to the situation with an external source, i.e.when we add to the lagrangian density $\phi(x) j(x)$ for some fixed c-number function $j(x)$.

