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0.1 Introductory remarks

Quantum field theory (QFT) is the quantum mechanics of extensive degrees of freedom.

What I mean by this is that at each point of space, there’s some stuff that can wiggle.

It’s not surprising that QFT is so useful, since this situation happens all over the

place. Some examples of ‘stuff’ are: the atoms in a solid, or the electrons in those

atoms, or the spins of those electrons. A less obvious, but more visible, example is the

electromagnetic field, even in vacuum. More examples are provided by other excitations

of the vacuum, and it will be our job here to understand those very electrons and atoms

that make up a solid in these terms. The vacuum has other less-long-lasting excitations

which are described by the Standard Model of particle physics.

Some examples of QFT are Lorentz invariant (‘relativistic’). That’s a nice simplifi-

cation when it happens. Indeed this seems to happen in particle physics. We’re going

to focus on this case for most of this quarter. Still I would like to emphasize: though

some of the most successful applications of QFT are in the domain of high energy

particle physics, this is not a class on that subject, and I will look for opportunities to

emphasize the universality of the subject.

A consequence of relativity is that the number of particles isn’t fixed. That is: there

are processes where the number of particles changes in time. This is a crucial point

of departure for QFT, worth emphasizing, so let me stop and emphasize it. (Later on

we’ll understand in what sense it’s a necessary consequence of Lorentz symmetry. The

converse is false: particle production can happen even without relativity.)

Single-particle QM. In classes with the title ‘Quantum Mechanics’, we generally

study quantum systems where the Hilbert space H1 holds states of a single particle (or

sometimes a fixed small number of them).

The observables of such a system are represented by hermitian operators acting on

H1. For example, the particle has a position ~x and a momentum ~p each of which is a

d-vector of operators (for a particle in d space dimensions). The particle could be an

electron (in which case it also has an inherent two-valuedness called spin) or a photon

(in which case it also has an inherent two-valuedness called polarization).

Time evolution is generated by a Hamiltonian H which is made from the position

and momentum (and whatever internal degrees of freedom it has), i~∂t |ψ〉 = H |ψ〉.
Finally, the fourth (most ersatz) axiom regards measurement: when measuring an

observable A in a state |ψ〉 ∈ H, we should decompose the state the eigenbasis A |a〉 =

a |a〉, |ψ〉 =
∑

a 〈a|ψ〉 |a〉; the probability to get the answer a is | 〈a|ψ〉 |2.
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By the way: The components of the state vector in the position basis 〈~x|ψ〉 = ψ(~x)

is a function of space, the wavefunction. This looks like a field. It is not what we mean

by a field in QFT. Meaningless phrases like ‘second quantization’ may conspire to try

to confuse you about this.

Now suppose you want to describe quantumly the emission of a photon from an

excited electron in an atom. Surely this is something for which we need QM. How do

you do it?

In the first section of this course we’ll follow an organic route to discovering an

answer to this question. This will have the advantage of making it manifest that the

four axioms of QM just reviewed are still true in QFT. It will de-emphasize the role of

Lorentz symmetry; in fact it will explicitly break it. It will emerge on its own!

‘Divergences’. Another intrinsic and famous feature of QFT discernible from the

definition I gave above is its flirtation with infinity. I said that there is ‘stuff at each

point of space’; how much stuff is that? Well, there are two senses in which ‘the number

of points of space’ is infinite: space can go on forever (the infrared (IR)), and, in the

continuum, in between any two points of space are more points (the ultraviolet (UV)).

The former may be familiar from statistical mechanics, where it is associated with the

thermodynamic limit, which is where interesting things happen. For our own safety,

we’ll begin our discussion in a padded room, protected on both sides from the terrors

of the infinite.

Sources and acknowledgement. The material in these notes is collected from

many places, among which I should mention in particular the following:

Peskin and Schroeder, An introduction to quantum field theory (Wiley)

Zee, Quantum Field Theory (Princeton, 2d Edition)

Le Bellac, Quantum Physics (Cambridge)

Schwartz, Quantum field theory and the standard model (Cambridge)

David Tong’s lecture notes

Many other bits of wisdom come from the Berkeley QFT course of Prof. Lawrence

Hall.
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0.2 Conventions

Following most QFT books, I am going to use the + − −− signature convention for

the Minkowski metric. I am used to the other convention, where time is the weird one,

so I’ll need your help checking my signs. More explicitly, denoting a small spacetime

displacement as dxµ ≡ (dt, d~x)µ, the Lorentz-invariant distance is:

ds2 = +dt2 − d~x · d~x = ηµνdx
µdxν with ηµν = ηµν =


+1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


µν

.

(spacelike is negative). We will also write ∂µ ≡ ∂
∂xµ

=
(
∂t, ~∇x

)µ
, and ∂µ ≡ ηµν∂ν . I’ll

use µ, ν... for Lorentz indices, and i, k, ... for spatial indices.

The convention that repeated indices are summed is always in effect unless otherwise

indicated.

A consequence of the fact that english and math are written from left to right is

that time goes to the left.

A useful generalization of the shorthand ~ ≡ h
2π

is

d̄k ≡ dk

2π
.

I will also write /δ
d
(q) ≡ (2π)dδ(d)(q). I will try to be consistent about writing Fourier

transforms as ∫
ddk

(2π)d
eikxf̃(k) ≡

∫
d̄dk eikxf̃(k) ≡ f(x).

IFF ≡ if and only if.

RHS ≡ right-hand side. LHS ≡ left-hand side. BHS ≡ both-hand side.

IBP ≡ integration by parts. WLOG ≡ without loss of generality.

+O(xn) ≡ plus terms which go like xn (and higher powers) when x is small.

+h.c. ≡ plus hermitian conjugate.

We work in units where ~ and the speed of light, c, are equal to one unless otherwise

noted. When I say ‘Peskin’ I mean ‘Peskin & Schroeder’.

Please tell me if you find typos or errors or violations of the rules above.
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1 From particles to fields to particles again

Here is a way to discover QFT starting with some prosaic ingredients. Besides the

advantages mentioned above, it will allows us to check that we are on the right track

with simple experiments.

1.1 Quantum sound: Phonons

Let’s think about a crystalline solid. The specific heat of solids (how much do you have

to heat it up to change its internal energy by a given amount) was a mystery before

QM. The first decent (QM) model was due to Einstein, where he supposed that each

atom is a (independent) quantum harmonic oscillator with frequency ω. This correctly

predicts that the specific heat decreases as the temperature is lowered, but is very

crude. Obviously the atoms interact: that’s why they make a nice crystal pattern,

and that’s why there are sound waves, as we will see. By treating the elasticity of

the solid quantum mechanically, we are going to discover quantum field theory. One

immediate benefit of this will be a framework for quantum mechanics where particles

can be created and annihilated.

As a more accurate toy model of a one-dimensional crystalline solid, let’s consider

a linear chain of particles of mass m, each connected to its neighbors by springs with

spring constant κ. When in equilibrium, the masses form a regular one-dimensional

crystal lattice (equally spaced mass points). Now let qn denote the displacement of the

nth mass from its equilibrium position xn and let pn be the corresponding momentum.

Assume there are N masses and (for simplicity) impose periodic boundary conditions:

qn+N = qn. The equilibrium positions themselves are

xn = na, n = 1, 2...N

where a is the lattice spacing. The Hamiltonian for the collection of particles is:

H =
N∑
n=1

(
p2
n

2m
+

1

2
κ (qn − qn−1)2

)
+ λq4. (1.1)

Notice that this system is an ordinary QM system, made of particles. In particular,

the whole story below will take place within the fixed Hilbert space of the positions of

the N particles.

I’ve included a token anharmonic term λq4 to remind us that we are leaving stuff

out; for example we might worry whether we could use this model to describe melting.

Now set λ = 0. (It will be a little while before we turn back on the interactions
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resulting from nonzero λ; bear with me.) This hamiltonian above describes a collection

of coupled harmonic oscillators1, with a matrix of spring constants V = kabqaqb. If

we diagonalize the matrix of spring constants, we will have a description in terms of

decoupled oscillators, called normal modes.

Since our system has (discrete) translation invariance, these modes are labelled by

a wavenumber k2:

qk =
1√
N

N∑
n=1

eikxnqn, pk =
1√
N

N∑
n=1

eikxnpn,

(Notice that in the previous expressions I didn’t use boldface; that’s because this step is

really just classical physics. Note the awkward (but in field theory, inevitable) fact that

1In case you are rusty, or forget the numerical factors like I do, here is a review of the operator

solution of the SHO:

H =
p2

2m
+

1

2
mω2q2 =

~ω
2

(
P2 + Q2

)
= ~ω

(
a†a +

1

2

)
with

a ≡ 1√
2

(Q + iP) , a† ≡ 1√
2

(Q− iP) .

Here I’ve defined these new operators to hide the annoying factors:

Q ≡
(mω

~

)1/2
q, P ≡

(
1

m~ω

)1/2

p.

[q,p] = i~1 =⇒ [a,a†] = 1.

The number operator N ≡ a†a satisfies

[N,a] = −a, [N,a†] = +a† .

So a and a† are lowering and raising operators for the number operator. The eigenvalues of the number

operator have to be positive, since

0 ≤ ||a |n〉 ||2 = 〈n|a†a |n〉 = 〈n|N |n〉 = n 〈n|n〉

which means that for n = 0 we have a |n = 0〉 = 0. If it isn’t zero (i.e. if n ≥ 1), a |n〉 is also an

eigenvector of N with eigenvalue n− 1. It has to stop somewhere! So the eigenstates of N (and hence

of H = ~ω
(
N + 1

2

)
are

|0〉 , |1〉 ≡ a† |0〉 , ..., |n〉 = cn
(
a†
)n |0〉 ...

where we must choose cn to normalize these states. The answer which gives 〈n|n〉 = 1 is cn = 1√
n!

.
2The inverse transformation is:

qn =
1√
N

2π/a∑
k>0

e−ikxnqk, pn =
1√
N

2π/a∑
k>0

e−ikxnpk. (1.2)
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we’ll have (field) momentum operators pk labelled by a wavenumber aka momentum.)

The nice thing about the fourier kernel is that it diagonalizes the translation operator:

Teikx ≡ eik(x+a) = eikaeikx.

Regulators: Because N is finite, k takes discrete values (1 = eikNa); this is a

long-wavelength “IR” property. Because of the lattice structure, k is periodic (only

eikan, n ∈ Z appears): k ≡ k+2π/a; this is a short-distance “UV” property. The range

of k can be taken to be

0 ≤ k ≤ 2π(N − 1)

Na
.

Because of the periodicity in k, we can equivalently label the set of wavenumbers by3:

0 < k ≤ 2π

a
or − π

a
< k ≤ π

a
. (1.3)

Summary: Because the system is in a box (periodic), k-space is discrete. Because

the system is on a lattice, k-space is periodic. There are N oscillator modes altogether.

The whole hamiltonian is a bunch of decoupled oscillators, labelled by these funny

wave numbers:

H =
∑
k

(
pkp−k

2m
+

1

2
mω2

kqkq−k

)
(1.4)

where the frequency of the mode labelled k is

ωk ≡ 2

√
κ

m
sin
|k|a

2
. (1.5)

Why might we care about this frequency? For one thing, consider the Heisenberg

equation of motion for the deviation of one spring:

i∂tqn = [qn,H] =
pn
m
, i∂tpn = [pn,H]

Combining these gives:

mq̈n = −κ ((qn − qn−1)− (qn − qn+1)) = −κ (2qn − qn−1 − qn+1) .

In terms of the fourier-mode operators:

mq̈k = −κ (2− 2 cos ka) qk .

3This range of independent values of the wavenumber in a lattice model is called the Brillouin

zone. There is some convention for choosing a fundamental domain which prefers the last one but I

haven’t found a reason to care about this.
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Plugging in a fourier ansatz in time qk(t) =
∑

ω e
−iωtqk,ω

turns this into an algebraic equation which says ω2 = ω2
k =(

2κ
m

)
sin2 |k|a

2
for the allowed modes. We see that (the classical

version of) this system describes waves:

0 =
(
ω2 − ω2

k

)
qk,ω

k�1/a
'

(
ω2 − v2

sk
2
)
qk,ω.

The result for small k is the fourier transform of the wave equation:(
∂2
t − v2

s∂
2
x

)
q(x, t) = 0 . (1.6)

vs is the speed of propagation of the waves, in this case the speed of sound. Comparing

to the dispersion relation (1.5), we have found

vs =
∂ωk
∂k
|k→0 = a

√
κ

m
.

The wave looks something like this:

So the story I am telling is a quantization of sound waves. Soon we will quantize

electromagnetic (EM) waves, too.

So far the fact that quantumly [qn,pn′ ] = i~δnn′1 hasn’t really mattered in our

analysis (go back and check – we could have derived the wave equation classically).

For the Fourier modes, this implies the commutator

[qk,pk′ ] =
∑
n,n′

UknUk′n′ [qn,pn′ ] = i~1
∑
n

UknUk′n = i~δk,−k′1.

(In the previous expression I called Ukn = 1√
N
eikxn the unitary matrix realizing the

discrete Fourier kernel.)

10



To make the final step to decouple the modes with k and −k, introduce the anni-

hilation and creation operators4

For k 6= 0: qk =

√
~

2mωk

(
ak + a†−k

)
, pk =

1

i

√
~mωk

2

(
ak − a†−k

)
.

They satisfy

[ak, a
†
k′ ] = δkk′1.

In terms of these, the hamiltonian is

H0 =
∑
k

~ωk
(

a†kak +
1

2

)
+

p2
0

2m

– it is a sum of decoupled oscillators, and a free particle describing the center-of-mass.

The discovery of Fock space (aka particle phononemology5). The ground

state satisfies ak |0〉 = 0 for all k (and has eigenvalue zero for the center-of-mass mo-

mentum, p0 = 0). The first excitation above the ground state

a†k |0〉 ∝ |one phonon with momentum ~k〉 (1.7)

has energy ~ωk. It is called a phonon with momentum ~k.6 This is what in undergrad

QM we would have called “|k〉”; we can make a state with one phonon in a position

eigenstate by taking superpositions:

|one phonon at position x〉 =
∑
k

eikx |one phonon with momentum ~k〉 ∼
∑
k

eikxa†k |0〉 .

The number operator (of the SHO with label k) Nk ≡ a†kak counts the number of

phonons with momentum k. The ground state is the state with no phonons. We can

also make a state with two phonons:

|k, k′〉 = a†ka
†
k′ |0〉

whose energy is E = ωk + ωk′ . Note that all these states have non-negative energy.

So this construction allows us to describe situations where the number of particles

N =
∑

k Nk can vary! That is, we can now describe dynamical processes in which the

4You might notice that when k = 0, ωk = 0. This last step applies to the modes with ωk 6= 0,

hence k 6= 0. The ‘zero-mode’ must be treated specially. It is neglected in many treatments of this

topic but actually as a lot of physics in it. If you are curious see this discussion, page 11.
5This little gem is due to Sami Ortoleva.
6I put ‘proportional to’ rather than ‘equal’ in (1.7) because there can be a k-dependent normaliza-

tion factor. We’ll see soon that Lorentz symmetry prefers a particular normalization here which we

will adopt.
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number of particles changes. Let me emphasize: In QM, we would describe the hilbert

space of two (distinguishable) particles as a tensor product of the hilbert space of each.

How can we act with an operator which enlarges the hilbert space?? We just figured

out how to do it.

We can specify basis states for this Hilbert space(
a†k1

)nk1 (
a†k2

)nk2 · · · |0〉 = |{nk1 , nk2 , ...}〉

by a collection of occupation numbers nk, eigenvalues of the number operator for each

normal mode (and the center-of-mass momentum p0).

Notice that in this description it is manifest that a phonon has no identity. We

only keep track of how many of them there are and what is their momentum. They

cannot be distinguished. Also notice that we can have as many we want in the same

mode – nk can be any non-negative integer. These are an example of bosons.

[End of Lecture 1]

Notice that there are some energies where there aren’t any phonon states. In

particular, the function (1.5) has a maximum. More generally, in a system with discrete

translation invariance, there are bands of allowed energies. In the continuum limit, to

which we devolve soon, this maximum goes off to the sky.

Heat capacity of (insulating) solids: phonons are real. The simplest demon-

stration that phonons are real is the dramatic decrease at low temperatures of the heat

capacity of insulating solids. At high temperatures, the equipartition theorem of clas-

sical thermodynamics correctly predicts that the energy of the solid from the lattice

vibrations should be T times the number of atoms, so the pacity, CV = ∂TE should be

independent of T .

At low temperatures T < ΘD, this is wrong. ΘD is the tem-

perature scale associated with the frequencies of the lattice

vibrations (say the maximum of the curve ωk above). The

resolution lies in the thermal energy of a quantum harmonic

oscillator for T < ω, the energy goes to a constant 1
2
~ω:

So the heat capacity (the slope of this curve) goes to zero as T → 0.

The Mössbauer effect: phonons are real. Here is another dramatic conse-

quence of the quantization of the lattice vibrations of solids, known as the Mössbauer

effect, first described in words. The nuclei of the atoms in a solid have various en-

ergy levels; when hit with a γ-ray photon, these nuclei can experience transitions from

the groundstate to some excited energy level. If an excited nucleus somewhere in

the lattice gets hit by a very energetic photon (a γ-ray) of some very specific energy
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Eγ = ∆E ≡ Eexcited − E0, the nucleus can absorb and re-emit that photon. The

resulting sharp resonant absorption lines at Eγ = ∆E are indeed observed.

This sounds simple, but here is a mystery about this: Consider a nucleus alone

in space in the excited state, after it gets hit by a photon. The photon carried a

momentum pγ = Eγ/c. Momentum is conserved, and it must be made up by some

recoil of the absorbing nucleus. When it emits a photon again, it needn’t do so in

the same direction. This means that the nucleus remains in motion with momentum

∆~p = ~p1 − ~p2. But if some of its energy ∆E = Eexcited − E0 goes to kinetic energy of

recoil, not all of that energy can go to the final photon, and the emitted photon energy

will be less than Eγ by Erecoil = ∆p2

2M
. This can be as big as Emax

recoil = (2~p)2

2M
= (2Eγ/c)2

2M
(in

the case of scattering by angle π). So instead of a sharp absorption line, it seems that

we should see a broad bump of width (Eγ/c)2

M
. But we do see a sharp line!

The solution of the puzzle is phonons: for a nucleus in a lattice, its recoil means

that the springs are stretched – it must excite a lattice vibration, it must create some

phonons. But there is a nonzero probability for it to create zero phonons. In this case,

the momentum conservation is made up by an acceleration of the whole solid, which is

very massive, and therefore does not recoil very much at all (it loses only energy
p2γ

2NM
).

This allows for very sharp resonance lines. In turn, this effect

has allowed for some very high-precision measurements. The

different widths in these cartoon absorption spectra don’t

do justice to the relative factor of N . An essentially similar

effect makes it possible to get precise peaks from scattering

of X-rays off of a solid (Bragg scattering) – there is a finite

amplitude for the scattering to occur without exciting any

phonons.

This is actually a remarkable thing: although solids seem ordinary to us because

we encounter them frequently, the rigidity of solids is a quantum mechanical emergent

phenomenon. You can elastically scatter photons off of a solid only because the atoms

making up the solid participate in this collective behavior wherein the whole solid acts

like a single quantum object!

Towards scalar field theory. It is worthwhile to put together the final relation

between the ‘position operator’ and the phonon annihilation and creation operators:

qn =

√
~
2µ

∑
k

1
√
ωk

(
eikxnak + e−ikxna†k

)
+

1√
N

q0 (1.8)
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and the corresponding relation for its canonical conjugate momentum

pn =
1

i

√
~µ
2

∑
k

√
ωk

(
eikxnak − e−ikxna†k

)
+

1√
N

p0.

The items in red are the ways in which p and q differ; they can all be understood from

the relation p = µq̇ as you will see on the homework. Notice that these expressions

are formally identical to the formulae in a QFT textbook expressing a scalar field in

terms of creation and annihilation operators (such as Peskin eqns. (2.25) and (2.26) ).

The stray factors of µ arise because we didn’t ‘canonically normalize’ our fields and

absorb the ms into the field, e.g. defining φ ≡
√
mq would get rid of them. The other

difference is because we still have an IR regulator in place.

Path integral reminder in a box. At this point I will use the path-integral

description. Let’s remind ourselves how this works for a particle in one dimension with

H = p2

2m
+ V (q). The basic statement is the following formula for the propagator

〈q| e−iHt |q0〉 =

∫ q(t)=q

q(0)=q0

[dq]ei
∫ t
0 dt ( 1

2
q̇2−V (q)) .

Here [dq] ≡ N
∏Mτ

l=1 dq(tl) – the path integral measure is defined by a limiting proce-

dure, and N is a normalization factor that always drops out of physical quantities so

I don’t need to tell you what it is.

Recall that the key step in the derivation of this statement is the evaluation of the

propagator for an infinitesimal time:

〈q2| e−iH∆t |q1〉 = 〈q2| e−i∆t
p2

2m e−i∆tV (q) |q2〉+O(∆t2) .

An integral expression for this can be obtained by inserting resolutions of the identity

1 = 12 =

(∫
dp |p〉 〈p|

)(∫
dq |q〉 〈q|

)
in between the two exponentials. For a more extensive reminder, please see §2.4 of this

document.

1.2 Scalar field theory

Scalar field theory in one dimension. Notice that if we use the path integral

description, some of these things (in particular the continuum, sound-wave limit) are

more obvious-seeming. The path integral for our collection of oscillators is

Z =

∫
[dq1 · · · dqN ]eiS[q]
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with S[q] =
∫
dt
(∑

n
1
2
mnq̇

2
n − V ({q})

)
≡
∫
dtL(q, q̇). The potential is V ({q}) =∑

n
1
2
κ (qn+1 − qn)2 . Now let’s try to take the continuum limit a → 0, N → ∞ (now

N is the number of points in space, not in time like in the last chapter). Basically

the only thing we need is to think of qn = q(x = na) as defining a smooth function:

[Note that the continuum field is often called φ(x)

instead of q(x) for some reason. At least the letters q(x) and φ(x) look similar.]

We now have

(qn − qn−1)2 ' a2 (∂xq)
2 |x=na

Now the path integral becomes:

Z =

∫
[Dq]eiS[q]

with Dq now representing an integral over all configurations q(t, x) (defined by this

limit) and

S[q] =

∫
dt

∫
dx

1

2

(
µ (∂tq)

2 − µv2
s (∂xq)

2 − rq2 − uq4 − ...
)
≡
∫
dt

∫
dxL

where I’ve introduced some parameters µ, vs, r, u determined from m,κ... in some ways

that we needn’t worry about. L is the Lagrangian density whose integral over space is

the Lagrangian L =
∫
dxL.

The equation of motion is the stationary phase condition,

0 =
δS

δq(x, t)
= −µq̈ − µv2

s∂
2
xq − rq − 2uq3 − ...

In this expression I have written a functional derivative; with our lattice regulator, it is

simply a(n extremely useful) shorthand notation for the collection of partial derivatives
∂
∂qn

. 7

7 Functional derivatives will be very useful to us. The definition is

δφ(x)

δφ(y)
= δ(x− y) (1.9)

plus the Liebniz properties (linearity, product rule). More prosaically, they are just partial derivatives,

if we define a collection of values of the independent variable {xn} to regard as grid points, and let

φn ≡ φ(xn)

so that (1.9) is just
∂φn
∂φm

= δnm.

If you are not yet comfortable with the machinery of functional derivatives, please work through pages

2-28 through 2-30 of this document now.
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From the phonon problem, we automatically found r = u = 0, and the equation

of motion is just the wave equation (1.6). This happened because of the symmetry

qn → qn + ε. This is the operation that translates the whole crystal, It guarantees

low-energy phonons near k = 0 because it means q(x) can only appear in S via its

derivatives. (This is a general property of Goldstone modes; more on this later.)

The following will be quite useful for our subsequent discussion of quantum light.

We can construct a hamiltonian from this action by defining a canonical field-momentum

π(x) = ∂L
∂tq

= µ∂tq and doing the Legendre transformation:

H =
∑
n

(pnq̇n − Ln) =

∫
dx (π(x)q̇(x)− L) =

∫
dx

(
π(x)2

2µ
+ µv2

s (∂xq(x))2 + rq2 + uq4 + ...

)
.

(1.10)

Note that I suppress the dependence of all the fields on t just so it doesn’t get ugly,

not because it isn’t there. Also, I emphasize that the position along the chain x here

is just a label on the fields, not a degree of freedom or a quantum operator.

The field q is called a scalar field because it doesn’t have any indices decorating it.

This is to be distinguished from the Maxwell field, which is a vector field, and which

is our next subject. (Note that vibrations of a crystal in three dimensions actually do

involve vector indices! We will omit this complication from our discussion.)

The lattice spacing a and the size of the box Na in the discussion above are playing

very specific roles in regularizing our 1-dimensional scalar field theory. The lattice

spacing a implies a maximum wavenumber or shortest wavelength and so is called an

“ultraviolet (UV) cutoff”, because the UV is the short-wavelength end of the visible

light spectrum. The size of the box Na implies a maximum wavelength mode which

fits in the box and so is called an “infrared (IR) cutoff”.

If we also take the infinite volume limit, then the sums over k become integrals. In

this limit we can make the replacement

1

Ld

∑
k

 
∫

d̄dk, Ldδkk′  (2π)dδ(d)(k − k′).

A check of the normalization factors comes from combining these two rules 1 =∑
k δk,k′ =

∫
d̄dk(2π)dδ(d)(k − k′).

Continuum (free) scalar field theory in d+ 1 dimensions. Notice that these

continuum expressions are easy to generalize to scalar field theory in any number of

dimensions. Let’s do them directly in infinite volume and set µ = 1 by rescaling fields.

The action is

S[φ] =

∫
ddxdt

(
1

2
φ̇2 − 1

2
v2
s
~∇φ · ~∇φ− V (φ)

)
. (1.11)
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This is what we would have found for the long-wavelength (ka � 1) description of a

d-dimensional lattice of masses on springs, like a mattress. The equation of motion is

0 =
δS[φ]

δφ(x)
= −∂2

t φ+ v2
s∇2φ− V ′(φ). (1.12)

For the harmonic case V (φ) = 1
2
m2φ2 we know what we’re doing, and (1.12) is called

the Klein-Gordon equation,

0 =
(
∂µ∂

µ +m2
)
φ. (1.13)

(Notice that I’ve set vs = c = 1 here, and this is where we have committed to a choice

of signature convention; take a look at the conventions page §0.2.). In relativistic

notation, the Lagrangian density is just L = 1
2

(∂µφ∂
µφ−m2φ2). This describes free

continuum real massive relativistic scalar quantum field theory. (Match the adjectives

to the associated features of the lagrangian; collect them all!)

The canonical momentum is π = ∂L
∂φ̇

= φ̇ and the Hamiltonian (which we can

instantly promote to a quantum operator by using boldface symbols) is then

H =

∫
ddx

(
π(x)2

2
+

1

2
v2
s

(
~∇φ · ~∇φ

)
+

1

2
m2φ2

)
.

Note that all these terms are positive. [End of Lecture 2]

A translation invariant problem is solved by Fourier transforms8: φ(x) =
∫

d̄dk e−i
~k·~xφk,

and π(x) =
∫

d̄dk e−i
~k·~xπk, this is

H =

∫
d̄dk

(
1

2
πkπ−k +

1

2

(
v2
sk

2 +m2
)
φkφ−k

)
where k2 = (−i~k) · (i~k) = ~k · ~k. Just as in (1.4), this is merely a sum of decoupled

oscillators, except for the coupling between wavenumbers k and −k. Comparing with

(1.4), we can read off the normal mode frequencies, aka the dispersion relation:

ω2
k = v2

sk
2 +m2.

Notice that this is also the condition for a fourier mode ei
~kċ~x−iωt to solve the Klein-

Gordon equation (1.13).

We can decouple the modes with wavenumber k and −k as above by introducing

the ladder operators

φk ≡
√

~
2ωk

(
ak + a†−k

)
, πk ≡

1

i

√
~ωk

2

(
ak − a†−k

)
, [ak, a

†
k′ ] = (2π)dδ(d)(k − k′).

8Beware that the mode operators ak defined here differ by powers of 2π/L from the finite-volume

objects in the previous discussion. These agree with Peskin’s conventions.
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Their commutator follows from [φ(x), π(y)] = iδ(d)(x − y). In terms of the ladder

operators,

H =

∫
d̄dk ~ωk

(
a†kak +

1

2

)
.

The field operators

φ(~x) =

∫
d̄dk

√
~

2ωk

(
ei
~k·~xak + e−i

~k·~xa†k

)
,

π(~x) =
1

i

∫
d̄dk

√
~ωk

2

(
ei
~k·~xak − e−i

~k·~xa†k

)
, (1.14)

satisfy the canonical commutation relation

[φ(~x),π(~x′)] = i~1δd(~x− ~x′).

I emphasize that this is really the same equation as our starting point for each ball on

springs:

[qn,pn′ ] = i~1δnn′ .

The mode expansions (1.14) contain a great deal of information. First notice that

φ is manifestly hermitian. Next, notice that from φ(~x) ≡ φ(~x, 0) by itself we can-

not disentangle ak and a†k, since only the combination ak + a†−k multiplies ei
~k·~x. The

momentum π contains the other linear combination. However, if we evolve the field

operator in time using the Heisenberg equation (as you did on the HW), we find

φ(~x, t) ≡ eiHtφ(~x)e−iHt =

∫
d̄dk

√
~

2ωk

(
ei
~k·~x−iω~ktak + e−i

~k·~x+iω~kta†k

)
. (1.15)

Indeed we can check that the relation π = φ̇ holds.

Notice that the dependence on spacetime is via a sum of terms of the form:

ei
~k·~x−iω~kt = eikµx

µ|k0=ω~k

and their complex conjugates. These are precisely all the solutions to the wave equation

(1.13). For each ~k, there are two solutions, one with positive frequency and one with

negative frequency. You might have worried that solutions with both signs of the

frequency mean that the world might explode or something (like it would if we tried to

replace the Schrödinger equation for the wavefunction with a Klein-Gordon equation).

This danger is evaded in a beautiful way: the coefficient of the positive frequency

solution with wavenumber ~k is the destruction operator for the mode; the associated

negative frequency term comes with the creation operator for the same mode, as a
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consequence of reality of the field. (Some words about antimatter would be appropriate

here, but it will be clearer later when we talk about an example of particles which are

not their own antiparticles.)

Finally, in a relativistic system, anything we can say about time should also be

true of space, up to some signs. So the fact that we were able to generate the time

dependence by conjugation with the unitary operator eiHt (as in (1.15)) says that we

should be able to generate the space dependence by conjugating by a unitary operator

of the form e−i
~P·~x. Here ~P is the last in a long list of object with a claim to the name

‘momentum’. It is the conserved charge associated with spatial translation symmetry,

the generator of spatial translations. Its form in terms of the fields will be revealed

below when we speak about Noether’s theorem. For now, let me emphasize that is

distinct from the objects pn, π(x) (which were ‘momenta’ in the sense of canonical

momenta of various excitations) and also from the wavenumbers ~k of various modes,

which (when multiplied by ~) are indeed spatial momenta of single particles. (This

statement gives us an expectation for what is the total momentum of a state of a

collection of particles which we will check below in §1.4.) In terms of the momentum

operator, then, we can write

φ(xµ) = eiPµx
µ

φ(0)e−iPµx
µ

with Pµ ≡ (H, ~P)µ.

1.3 Quantum light: Photons

The quantization of the Maxwell field is logically very similar to the preceding dis-

cussion. There are just a few complications from its several polarizations, and from

the fact that quantum mechanics means that the vector potential is real and necessary

(whereas classically it is just a convenience). This is a quick-and-dirty version of the

story. I mention it here to emphasize that the machinery we are developing applies to

a system you have already thought a lot about!

Maxwell’s equations are:

~∇ · ~B = 0, ~∇× ~E = −∂t ~B, (1.16)

~∇ · ~E = 4πρ, ∇× ~B = ∂t ~E +
4π

c
~j. (1.17)

The first two equations (1.16) are constraints on ~E and ~B which mean that their com-

ponents are not independent. This is annoying for trying to treat them quantumly. To

get around this we introduce potentials which determine the fields by taking derivatives
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and which automatically solve the constraints (1.16):

~E = −~∇Φ− ∂t ~A, ~B = ~∇× ~A.

Potentials related by a gauge transformation

~A→ ~Aλ = ~A− ~∇λ, Φ→ Φλ = Φ + ∂tλ

for any function λ(~r, t), give the same ~E, ~B. The Bohm-Aharonov effect is proof that

(some of the information in) the potential is real and useful, despite this redundancy.

We can partially remove this redundancy be choosing our potentials to satisfy Coulomb

gauge
~∇ · ~A = 0 .

In the absence of sources ρ = 0 = ~j, we can also set Φ = 0. In this gauge, Ampere’s

law becomes

c2~∇×
(
~∇× ~A

)
= c2~∇ ·

(
~∇ · ~A

)
− c2∇2 ~A = −∂2

t
~A i.e. ∂2

t
~A− c2∇2 ~A = 0 .

This wave equation is different from our scalar wave equation (1.6) in three ways:

• we’re in three spatial dimensions,

• the speed of sound vs has been replaced by the speed of light c,

• the field ~A is a vector field obeying the constraint ~∇ · ~A = 0. In fourier space
~A(x) =

∑
k e

i~k·~x ~A(k) this condition is

0 = ~k · ~A(k)

– the vector field is transverse.

Recall that the energy density of a configuration of Maxwell fields is u = ε0
2

(
~E2 + ~B2

)
.

So the quantum Hamlitonian is

H =
ε0
2

∫
d3r
(
~E2 + c2 ~B2

)
. (1.18)

Here ~E = −∂t ~A plays the role of field momentum π(x) in (1.10), and ~B = ~∇× ~A plays

the role of the spatial derivative ∂xq. We immediately see that we can quantize this

system just like for the scalar case, with the canonical commutator

[φ(x), π(x′)] = i~δ(x− x′)  [Ai(~r),Ej(~r
′)] = −i~δ3(~r − ~r′)δij
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where i, j = 1..3 are spatial indices. 9 So we can immediately write down an expres-

sion for the quantum Maxwell field in terms of independent creation and annihilation

operators:

~A(~r) =
∑
~k

√
~

2ε0ωkL3

∑
s=1,2

(
a~k,s~es(k̂)ei

~k·~r + a†~k,s~e
?
s(k̂)e−i

~k·~r
)

The field momentum is ~E = −∂t ~A :

~E(~r) = i
∑
~k

√
~ωk

2ε0L3

∑
s=1,2

(
a~k,s~es(k̂)ei

~k·~r − a†~k,s~e
?
s(k̂)e−i

~k·~r
)

10 Also, the magnetic field operator is

~B = ~∇× ~A =
∑
~k

∑
s

√
~

2ε0ωkL3
i~k ×

(
a~k,s~es(k̂)ei

~k·~r − a†~k,s~e
?
s(k̂)e−i

~k·~r
)

;

the magnetic field is analogous to ~∇φ in the scalar field theory. Plugging these expres-

sions into the Hamiltonian (1.18), we can write it in terms of these oscillator modes

(which create and annihilate photons). As for the scalar field, the definitions of these

modes were designed to make this simple: It is:

H =
∑
~k,s

~ωk
(

a†~k,sa~k,s +
1

2

)
.

Notice that the vacuum energy is

E0 =
1

2

∑
~k,s

~ωk =
L3

(2π)3

∫
d3k~ck.

9As a check, note that using this Hamiltonian and the canonical commutator, we can reproduce

Maxwell’s equations using Ehrenfest’s theorem:〈
∂2t
~A
〉

= ∂t

〈
~E
〉

= − i

~

〈
[H, ~E]

〉
=
〈
c2~∇2 ~A

〉
.

10I am short-changing you a little bit here on an explanation of the polarization vectors, ~es. They

conspire to make it so that there are only two independent states for each ~k and they are transverse
~k · ~es(k̂) = 0, so s = 1, 2. The bit that I’m leaving out is the completeness relation satisfied by the

polarization vectors of a given k: ∑
s

esi(k̂)e?sj(k̂) = δij − k̂ik̂j . (1.19)

This says that they span the plane perpendicular to k̂.
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Notice that in this case we began our story in the continuum, rather than with

microscopic particles connected by springs. (However, if you read Maxwell’s papers

you’ll see that he had in mind a particular UV completion involving gears and cogs. I

actually don’t understand it; if you do please explain it to me.)

The fact that
∑

k is no longer a finite sum might be something to worry about. We

will see below in §1.5 that this vacuum energy has physical consequences.
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Consolidation of understanding

So far in this chapter, we have studied systems of increasing complexity: the simple

harmonic oscillator, a non-interacting scalar field, and the EM field in vacuum (i.e. in

the absence of charge). All these free field theories have the same structure, in the

following sense.

In the following, Here ReA ≡ 1
2

(
A + A†

)
as usual. The normalization constant is

N = 1
2

√
~

2mω
.

HSHO =
1

2m
p2 +

1

2
mω2q2 = ~ω

(
a†a +

1

2

)
[q,p] = i~ =⇒ [a, a†] = 1.

q = ReNa, p = mImωNa.

Hscalar =

∫
dx

(
1

2µ
π2 +

1

2
µc2 (∂xφ)2

)
=
∑
k

~ωk
(

a†kak +
1

2

)
[φ(x),π(x′)] = i~δ(x− x′) =⇒ [ak, a

†
k′ ] = i~δkk′ .

φ(x) = Re

(∑
k

Nkeikxak

)
, π(x) = µIm

(∑
k

ωkNkeikxak

)
.

HEM =

∫
d3x

(
ε0
2
~E2 +

ε0c
2

2
~B2

)
=
∑
k,s=1,2

~ωk
(

a†ksaks +
1

2

)
[Ai(x),Ej(x

′)] = i~δ3(x− x′)δij =⇒ [aks, a
†
k′s′ ] = ~δkk′δss′ .

~A(x) = Re

(∑
k

Nkei
~k·~xaks~es(k̂)

)
, ~E(x) = µIm

(∑
k

ωkNkei
~k·~xaks~es(k̂)

)
.

Note that ~E is the canonical momentum of ~A since (in Coulomb gauge) ~E = −∂t ~A.
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1.4 Lagrangian field theory

[Here we fill in the bits of Peskin §2.2 that we missed above.] Let’s consider a classical

field theory in the Lagrangian description. This means that the degrees of freedom

are a set of fields φr(x), where r is a discrete index (for maybe spin or polarization

or flavor), and we specify the dynamics by the classical action. If the world is kind

to us (in this class we assume this), the action is an integral over space and time of a

Lagrangian density

S[φ] ≡
∫
dd+1xL(φ, ∂µφ).

This important assumption is an implementation of locality.

This central object encodes the field equations, the canonical structure on the phase

space, the Hamiltonian, the symmetries of the theory.

I’ve sneakily implied that we are going to assume Lorentz invariance, so that L
depends on the 4-vector ∂µφ, and not its components separately.

I am also going to assume that the action S is real.

We’ve seen basically two examples so far

LKG =
1

2
∂µφ∂

µφ− 1

2
m2φ2

and (you get to do the Legendre transformation from the Hamiltonian of §1.3 on the

homework)

LEM = − 1

4e2
FµνF

µν =
1

4e2

(
E2 −B2

)
with Aµ regarded as the independent degrees of freedom.

A word about units: in units with ~ = c = 1, everything has units of

mass to some power, called its mass dimension. Energy and momen-

tum pµ = ~kµ have mass dimension +1. The space and time coordi-

nates xµ have mass dimension −1. The action goes in the exponential

of the path integral measure
∫

[Dφ]e
iS
~ and so must be dimensionless.

So the Lagrangian density has mass dimension d+1. This means that

the KG field has mass dimension d−1
2

(and the mass m has mass di-

mension 1 (yay!)). In d+1 = 3+1 dimensions, E ∼ Ȧ, B ∼ ~∇A have

mass dimension 2 and A has mass dimension one (and e is dimension-

less). This is nice because then the covariant derivative ∂µ + Aµ has

mass dimension one. Notice that E2 + B2 has dimension 4 which is

good for an energy per unit volume.

object mass dim.

pµ 1

xµ -1

S 0

L d+ 1

φ d−1
2

Aµ 1

[End of Lecture 3]
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The equation of motion is

0 =
δS

δφr(x)
.

Note the functional derivative. You can check that in the case when L depends only

on φ and ∂µφ, this is the same as the Lagrange EOM

0 =
∂L
∂φr
− ∂µ ∂L

∂(∂µφr)

(for each r) which I can’t remember.

By redefining the field φ ≡ 1
D

(χ−B/C), we can make the KG theory uglier

L = A+Bχ+
1

2
Cχ2 +

1

2
D∂µχ∂µχ+ ....

From the path integral point of view, the field is just an integration variable. Some-

times, its normalization is meaningful, like in the phonon example where it began its

life as the displacement of the atoms from their equilibrium. So you see that we are

not losing generality except in our neglect of interactions, and in our neglect of terms

with more derivatives. The former neglect we will repair little by little in this course,

by doing perturbation theory. The latter is justified well by the renormalization group

philosophy, which is a subject for Physics 215C, i.e. the Spring Quarter.

Canonical field momentum and Hamiltonian. The Hamiltonian viewpoint in

field theory has the great virtue of bringing out the physical degrees of freedom. It

has the great shortcoming that it picks out the time coordinate as special and obscures

Lorentz symmetry.

The canonical field momentum is defined to be

π(x) =
∂L

∂(∂tφ(x))
.

Notice that this expression assumes a local Lagrangian density. π is actually a ‘field

momentum density’ in the sense that the literal canonical momentum is ∂
∂φ̇(x)

L =

ddxπ(x) (as opposed to L). I will often forget to say ‘density’ here.

The hamiltonian is then

H =
∑
n

pnqn − L =

∫
ddx

(
π(x)φ̇(x)− L

)
≡
∫
ddx h.

Noether’s theorem and the Noether method. Yay, symmetries. Why do

physicists love symmetries so much? One reason is that they offer possible resting

places along our never-ending chains of ‘why?’ questions. For example, one answer
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(certainly the one given in Weinberg’s text, but just as certainly not the only one) to

the question “Why QFT?” is: quantum mechanics plus Poincaré symmetry.

They are also helpful for solving physical systems: Continuous symmetries are as-

sociated with conserved currents. Suppose the action is invariant under a continuous

transformation of the fields φ, φ(x) 7→ φ′(x). (The invariance of the action is what

makes the transformation a symmetry.) ‘continuous’ here means we can do the trans-

formation just a little bit, so that φ(x) 7→ φ(x) + ε∆φ(x) where ε is an infinitesimal

parameter. If the transformation with constant ε (independent of space and time) is a

symmetry, then the variation of the action with ε = ε(x, t) must be proportional to ∂µε

(at least assuming some smoothness properties of the action), and so that it vanishes

∀φ when ε is constant:

S[φ+ ε(x)]− S[φ] =

∫
ddxdt∂µε(x)jµ

IBP
= −

∫
ddxdtε(x)∂µj

µ .

But if the equations of motion are obeyed, then the action is invariant under any

variation, including this one, for arbitrary ε(x). But this means that ∂µj
µ = 0, the

current is conserved. These words are an accurate description of the equation because

they mean that the charge

QR ≡
∫
R

ddx j0

in some region of space R can only change by leaving the region (assume the definition

of R is independent of time):

∂tQR =

∫
R

ddx ∂tj
0 = −

∫
R

ddx ~∇ ·~j =

∫
∂R

dd−1xn̂ ·~j

where in the last step we used Stokes’ theorem.

This trick with pretending the parameter depends on space is called the Noether

method. More prosaically, the condition that the action is invariant means that the

Lagrangian density changes by a total derivative (we assume boundary terms in the

action can be ignored):

L(φ′, ∂µφ
′)

symmetry
= L(φ, ∂µφ) + ε∂µJ µ

but on the other hand, by Taylor expansion,

L(φ′, ∂µφ
′)

calculus
= L(φ, ∂µφ) + ε

(
∂L
∂φ

∆φ+
∂L

∂ (∂µφ)
∂µ∆φ

)
IBP
= L(φ, ∂µφ) + ε

∂L∂φ − ∂µ ∂L
∂ (∂µφ)︸ ︷︷ ︸

eom

∆φ+ ε∂µ

(
∂L

∂ (∂µφ)
∆φ

)
.
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By combining the previous two equations for L(φ′), we see that on configurations which

satisfy the EOM, 0 = ∂µj
µ with

jµ =
∂L

∂ (∂µφr)
∆φr − J µ. (1.20)

Notice that I stuck the index back in at the last step.

There is a converse to the Noether theorem, which is easier to discuss directly in

quantum mechanics. Given a conserved charge Q, that is, a hermitian operator with

[H,Q] = 0, we can make a symmetry transformation of the fields φ by

δφ ≡ iε[Q, φ]. (1.21)

We’ll say that Q generates the symmetry, for the following reason. (1.21) is the in-

finitesimal version of the finite transformation

φ→ φ′ ≡ eiεQφe−iεQ.

The object U ≡ eiεQ is a unitary operator (since Q is hermitian) which represents the

action of the symmetry on the Hilbert space of the QFT. It is a symmetry in the sense

that its action commutes with the time evolution operator eiHt.

Some examples will be useful:

• For example, suppose S[φ] only depends on φ through its derivatives, for example,

S[φ] =
∫

1
2
∂µφ∂

µφ. Then there is a shift symmetry φ → φ′ ≡ φ + ε. Letting ε

depend on spacetime, the variation of the action is S[φ+ε(x)] =
∫
ε∂µ∂

µφ, so the

current is jµ = ∂µφ. Let’s check the converse: Indeed, the charge Q =
∫

space
j0

generates the symmetry in the sense that for small ε, the variation in the field is

δφ ≡ φ′ − φ = ε = iε[Q, φ]

(if we were doing classical mechanics, we should replace i[Q, φ] with the Poisson

bracket). Using our expression for the current this is

δφ = iε
[ ∫

ddy φ̇(y)︸︷︷︸
=π(y)

, φ(x)
]

= ε

which is indeed true. In this case the finite transformation is again φ→ φ+ ε.

• On the homework you’re studying a complex scalar Φ, with S[Φ,Φ?] is invariant

under Φ → eiεΦ = Φ + iεΦ + O(ε2). This U(1) phase transformation can be
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rewritten in terms of the real and imaginary parts as an SO(2) rotation. You’ll

find that the charge can be written as

Q =

∫
ddxj0 =

∫
d̄dp

(
a†pap − b†pbp

)
where the two sets of creation and annihilation operators are associated with

excitations of Φ and Φ† respectively. (That is, quantize φ1,2 as we did for a

single real scalar field, in terms of mode operators a1,2 respectively. Then let

a ≡ a1 + ia2,b ≡ a1− ia2, up to numerical prefactors which I tried to get right in

the posted solutions.) So the particles created by a and b have opposite charge

(this is essential given the mode expansion Φk ∼ ak+b†−k) and can be interpreted

as each others’ antiparticles: there can be symmetry-respecting processes where

an a particle and b particle take each other out.

• Consider spatial translations, xµ → xµ − aµ. We can think of this as a transfor-

mation of the fields by

φ(x) 7→ φ(x+ a) = φ(x) + aν ∂νφ︸︷︷︸
≡∆νφ

+O(a2).

Our transformation parameter is now itself a four-vector, so we’ll get a four-

vector of currents T µν . This will be a symmetry as long as the lagrangian doesn’t

depend explicitly on space and time ( so ∂νL = 0) but rather depends on space

and time only via the fields (so 0 6= d
dxν
L chain rule

= ∂νφ
∂L
∂φ

+ ∂µ∂νφ
∂L

∂(∂µφ)
). Let’s use

the prosaic method for this one: the shift in the Lagrangian density also can be

found by Taylor expansion

L 7→ L+ aµ
d

dxµ
L = L+ aν∂µ (δµνL) .

So the formula (1.20) gives

T µν =
∂L

∂ (∂µφ)
∂νφ︸︷︷︸
∆νφ

−Lδµν .

For the time translation, the conserved charge T 0
0 gives back the hamiltonian

density h = πφ̇−L obtained by Legendre transformation. The conserved quantity

from spatial translations is the momentum carried by the field, which for the KG

field is

Pi =

∫
ddx T 0

i = −
∫
ddx π∂iφ.

For the Maxwell field, this gives the Poynting vector.
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There is some ambiguity in the definition of the stress tensor which you’ll study

on the homework.

Let’s check that expression above for the conserved momentum agrees with our

expectations. In particular, in free field theory the total momentum of the state∣∣∣~k1, · · ·~kn
〉

should be just the sum of the momenta of the particles, ~P =
∑n

`=1 ~~k`
(with interactions the story can be more complicated). Indeed

Pi = −
∫
ddx π∂iφ =

∫
d̄dkkia

†
~k
a~k

agrees with this. (Notice that I used rotation invariance of the vacuum to not

worry about a possible constant term.)

• We’ll say more about the rest of the Poincaré group, i.e. rotations and boosts,

later on.

1.5 Casimir effect: vacuum energy is real

[A. Zee, Quantum Field Theory in a Nutshell, §I.9] This subsection has two purposes.

One is to show that the 1
2
~ω energy of the vacuum of the quantum harmonic oscillator

is real. Sometimes we can get rid of it by choosing the zero of energy (which doesn’t

matter unless we are studying dynamical gravity). But it is meaningful if we can vary

ω (or the collection of ωs if we have many oscillators as for the radiation field) and

compare the difference.

The other purpose is to give an object lesson in asking the right questions. In

physics, the right question is often a question which can be answered by an experiment,

at least in principle. The answers to such questions are less sensitive to our silly

theoretical prejudices, e.g. about what happens to physics at very short distances.

In the context of the bunch of oscillators making up the radiation field, we can

change the spectrum of frequencies of these oscillators {ωk} by putting it in a box and

varying the size of the box. In particular, two parallel conducting plates separated by

some distance d experience an attractive force from the change in the vacuum energy

of the EM field resulting from their presence. The plates put boundary conditions on

the field, and therefore on which normal modes are present.

To avoid some complications of E&M which are not essential for our point here,

we’re going to make two simplifications:

• we’re going to solve the problem in 1+1 dimensions

• and we’re going to solve it for a scalar field.
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To avoid the problem of changing the boundary conditions outside the plates we

use the following device with three plates:

| ← d→ | ←− L− d −→ |

(We will consider L � d, so we don’t really care about the far right plate.) The

‘perfectly conducting’ plates impose the boundary condition that our scalar field q(x)

vanishes there. The normal modes of the scalar field q(x) in the left cavity are then

qj = sin (jπx/d) , j = 1, 2, ...

with frequencies ωj = π|j|
d
c. There is a similar expression for the modes in the right

cavity which we won’t need. We’re going to add up all the 1
2
~ωs for all the modes in

both cavities to get the vacuum energy E0(d); the force on the middle plate is then

−∂dE0.

The vacuum energy in the whole region of interest between the outer plates is the

sum of the vacuum energies of the two cavities

E0(d) = f(d) + f(L− d)

where

f(d) =
1

2
~
∞∑
j=1

ωj = ~c
π

2d

∞∑
j=1

j
?!?!!
= ∞.

We have done something wrong. What? Cliffhanger! [End of Lecture 4]

Our crime is hubris: we assumed that we knew what the modes of arbitrarily large

mode number k (arbitrarily short wavelength, arbitrarily high frequency) are doing,

and in particular we assumed that they cared about our silly plates. In fact, no metal

in existence can put boundary conditions on the modes of large enough frequency –

those modes don’t care about d. The reason a conductor puts boundary conditions

on the EM field is that the electrons move around to compensate for an applied field,

but there is a limit on how fast the electrons can move (e.g. the speed of light). The

resulting cutoff frequency is called the plasma frequency but we don’t actually need to

know about all these details. To parametrize our ignorance of what the high-frequency

modes do, we must cut off (or regularize) the contribution of the high-frequency modes.

Let’s call modes with ωj � π/a high frequency where a is some short time11. Replace

f(d) f(a, d) = ~
π

2d

∞∑
j=1

e−aωj/πj

11You can think of a as the time it takes the waves to move by one lattice spacing. If we work

in units where the velocity is c = 1, this is just the lattice spacing. I will do so for the rest of this

discussion.
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= −π~
2
∂a

(
∞∑
j=1

e−aj/d

)
︸ ︷︷ ︸

= 1

1−e−a/d
−1

= +
π~
2d

ea/d

(ea/d − 1)
2

a�d' ~

 πd

2a2︸︷︷︸
→∞ as a→0

− π

24d
+

πa2

480d3
+ ...

 (1.22)

Answers which don’t depend on a have a chance of being meaningful. The thing we

can measure is the force:

F = −∂dE0 = − (f ′(d)− f ′(L− d))

= −~
(( π

2a2
+

π

24d2
+O(a2)

)
−
(
π

2a2
+

π

24 (L− d)2 +O(a2)

))
a→0
= −π~

24

(
1

d2
− 1

(L− d)2

)
L�d
= − π~c

24d2
(1 +O(d/L)) . (1.23)

This is an attractive force between the plates. (I put the c back in the last line.)

The analogous force between real conducting plates, caused by the change of bound-

ary conditions on the electromagnetic field, has been measured.

The string theorists will tell you that
∑∞

j=1 j = − 1
12

, and our calculation above

agrees with them in some sense. But what this foolishness means is that if we compute

something which is not dependent on the cutoff we have to get the same answer no

matter what cutoff we use. Notice that it is crucial to ask the right questions.

An important question is to what extent could we have picked a different cutoff

function (instead of e−πω/a) and gotten the same answer for the physics. This interest-

ing question is answered affirmatively in Zee’s wonderful book, 2d edition, section I.9

(available electronically here!).

A comment about possible physical applications of the calculation we actually did:

you could ask me whether there is such a thing as a Casimir force due to the vacuum

fluctuations of phonons. Certainly it’s true that the boundary of a chunk of solid

puts boundary conditions on the phonon modes, which change when we change the

size of the solid. The problem with the idea that this might produce a measurable
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force (which would lead the solid to want to shrink) is that it is hard to distinguish

the ‘phonon vacuum energy’ from the rest of the energy of formation of the solid,

that is, the energy difference between the crystalline configuration of the atoms and

the configuration when they are all infinitely separated. Certainly the latter is not

well-described in the harmonic approximation (λ = 0 in (1.1)).

A few comments about the 3+1 dimensional case of E&M. Assume the size

of the plates is much larger than their separation L. Dimensional analysis shows that

the force per unit area from vacuum fluctuations must be of the form

P = A
~c
L4

where A is a numerical number. A is not zero!

Use periodic boundary conditions in the xy planes (along the plates). The allowed

wave vectors are then

~k =

(
2πnx
Lx

,
2πny
Ly

)
with nx, ny integers.

We have to do a bit of E&M here. Assume the plates are perfect conductors

(this where the hubris about the high-frequency modes enters). This means that the

transverse component of the electric field must vanish at the surface. Instead of plane

waves in z, we get standing waves: φ(z) ∝ sin (nπz/L) .

The frequencies of the associated standing waves are then

ωn(~k) = c

√
π2n2

L2
+ ~k2, n = 0, 1, 2

Also, there is only one polarization state for n = 0.

So the zero-point energy is

E0(L) =
~
2

2
′∑
n,~k

ωn(~k)


where it’s useful to define

′∑
n,~k

≡ 1

2

∑
n=0,~k

+
∑
n≥1,~k

Now you can imagine introducing a regulator like the one we used above, and replacing

′∑
n,~k

· 
′∑
n,~k

e−aωn(~k)/π·
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and doing the sums and integrals and extracting the small-a behavior.

1.6 Lessons

Starting from a collection of particles, we chained them together, and made a field;

treating this system quantumly, we found a new set of particles. The new particles

(the normal modes) are collective excitations: their properties can be very different

from those of the constituent particles. (For example, the constituent particles are

distinguishable by their locations, but phonons are indistinguishable from each other.)

Some lessons from all this hard work:

Identical particles. Every photon is the same as every other photon, except for

their position (or momentum) and polarization state. For photons this is an immediate

consequence of how we discovered them by quantizing the Maxwell field: the state with

n photons of the same momentum and polarization is

∣∣∣n photons with ~k, α
〉

=

(
a†~k,α

)n
√
n!
|0〉 .

The same is true of all the other kinds of particles we know about, including electrons

(for which we haven’t seen a similar classical field description).

This means that we can write the state of N such indistinguishable particles merely

by specifying a collection of positions and of spin states – we don’t need to say which

is which (and in fact, we cannot).

A (momentum-space) wavefunction for N such particles is of the form

Ψ(k1, α1; ...; kN , αN) ≡ 〈k1α1; · · · ; kN , αN |Ψ〉 = 〈0| ak1α1ak2α2 · · · akNαN |Ψ〉 .

But the same state is described if we switch the labels of any two of the particles:

Ψ(k2, α2; k1, α1; ....) = aΨ(k1, α1; k2, α2; ....)

where a is some phase (recall: multiplying the whole wavefunction by a phase does not

change the state). Switching them back gives back the first state:

Ψ(k1, α1; k2, α2; ....) = a2Ψ(k1, α1; k2, α2; ....)

so a2 = 1. There are two solutions: a = +1 and a = −1 and the two classes of particles

associated with these two choices are called respectively bosons and fermions.

Note that the Hilbert space of N indistinguishable particles (bosons or fermions) is

therefore not quite a tensor product of the Hilbert spaces of the individual particles.
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An immediate consequence of the minus sign under exchange of fermion labels is

the Pauli exclusion principle:

ΨFermions(k1, α1; k1, α1; ...) = 0.

No two fermions can occupy the same single-particle state. The ground state of a

collection of (non-interacting) fermions is therefore quite interesting, since we must find

a different single-particle state in which to put each of our fermions. This has many

dramatic consequences, including the periodic table of elements, and the distinction

between metals and insulators.

A puzzle to consider: the bosonic statistics of phonons and photons was an imme-

diate consequence of the ladder operator algebra [a, a†] = 1. How could we possibly

get a different answer?

Lorentz invariance can emerge. The dispersion relation for the sound mode

and for the light mode was ω2 = v2~k2. This is the fourier transform of ∂µ∂
µφ(x) =

0, a wave-equation which has Lorentz symmetry (if v is the speed appearing in the

Minkowski metric). In the case of sound, we had to ignore the O(a4k4) terms in

the long-wavelength expansion of the dispersion relation, cos(ka). The lattice breaks

Lorentz symmetry, but its effects go away for ka � 1. This point might make you

think that the Lorentz symmetry which is so precious to us in particle physics could

emerge in a similar way, but with a much smaller a than the lattice spacing in solids.

There are strong constraints on how small this can be (e.g. this well-appreciated paper)

so it is very useful to treat it as a fundamental principle.

2 Lorentz invariance and causality

[Peskin §2.2, 2.3, 2.4] Now we take Lorentz invariance to be an exact symmetry and

see what its consequences are for QFT.

Relativistic normalization of 1-particle states. Fock space is spanned by the

states |~p1, · · · ~pn〉 ∝ a†p1 · · · a
†
pn |0〉 where ap |0〉 = 0. Now it is time to turn that ∝

into an =. Fock space is a direct sum of sectors labelled by the number of particles:∑
kNk = 0, 1, 2.... (Without interactions, the hamiltonian is block diagonal in this

decomposition.) In the no-particle sector, it is clear what we should do: 〈0|0〉 = 1.

A one-particle state is |p〉 ≡ cpa
†
p |0〉. How best to choose cp?

(This discussion is shaded because it contains equations which will not be true in

the normalization we’ll use below. In this regard, beware the section of Peskin called
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“how not to quantize the Dirac equation”.) Suppose we choose cp
?
= 1. Then〈

~k
∣∣~p〉 ?

= 〈0| aka
†
p |0〉

ak|0〉=0
= 〈0| [ak, a

†
p] |0〉 = (2π)dδ(d)(~k − ~p) ≡ /δ(~k − ~p).

Suppose the previous equation is true in my rest frame F . Since 1 =
∫

d̄dp/δ(p− k), we

see that d̄dp/δ(p− k) is Lorentz invariant. More precisely,

δ(f(x)) =
∑

zeros x0 of f

δ(x− x0)

|f ′(x0)|
.

If another F ′ is obtained by a boost in the x direction, p′µ = Λµ
νpν ,

E ′

p′x
p′y
p′z




γ −βγ 0 0

−βγ γ 0 0

0 0 1 0

0 0 0 1



E

px
py
pz

 =⇒

dp′x
dpx

= γ

(
1− β dE

dpx

)
= γ

(
1− βpx

E

)
=

γ

E
(E − βpx) =

E ′

E

where we used E2 = ~p2 +m2 = p2
x + p2

⊥ +m2 and 2E dE
dpx

= 2px and dE
dpx

= px
E

.

So

δ(d)(~p− ~k) =
d̄dp′

d̄dp
δ(d)(~p′ − ~k′) =

dp′x
dpx

δ(d)(~p′ − ~k′) =
E ′

E
δ(d)(~p′ − ~k′).

Which means that in F ′ we would have〈
~k′
∣∣~p′〉 ?

=
E ′

E
/δ

(d)
(~p′ − ~k′).

There is a special frame, it’s no good.

There is an easy fix:

|~p〉 ≡
√

2ω~pa
†
~p |0〉 .

In that case the calculation in the shaded text is replaced by〈
~k|~p
〉

=
√

4ωkωp/δ
(d)

(k − p) = 2ωp/δ
(d)

(k − p)

while 〈
~k′|~p′

〉
= 2ωp

ωp′

ωp
/δ

(d)
(k′ − p′).

So the expression is the same in any frame, yay.
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Now you can ask why the factor of
√

2. We’d like to use these states to resolve

the identity in the 1-particle sector, 11 ≡
∑

i

∑
i |i〉 〈i|. I claim that the following

expression does this and makes Lorentz symmetry manifest:

11
?
=

∫
d̄d+1k θ(k0)︸ ︷︷ ︸

E>0

2πδ(k2 −m2) |k〉 〈k|

=

∫
d̄dk

∫
dk0θ(k

0)

δ
(
k0 −

√
~k2 −m2

)
2k0

 |k〉 〈k| = ∫ d̄dk

2ω~k

∣∣∣ω~k, ~k〉〈ω~k, ~k∣∣∣ .
We used the general fact δ(f(x)) =

∑
x0|f(x0)=0

1
|f ′(x0)|δ(x− x0).

So in retrospect, a quick way to check the normalization is to notice that the

following combination is Lorentz invariant:

d̄dk

2ωk
=

∫
dk0θ(k0) d̄dkδ(k2 −m2) =

d̄dk′

2ωk′
.

Actually, this statement has a hidden assumption, that m2 > 0. In that case, the 4-

vector kµ satisfying k2 = m2 > 0 is timelike, and no Lorentz transformation connected

to the identity can change the sign of k0, it can only move it around within the lightcone.

So the θ(k0) is Lorentz invariant.

Notice that our convenient choice of normalization doesn’t show that our Hamilto-

nian description of scalar field theory is actually Lorentz invariant. For example, we

have

[φ(~x), π(~y)]ETCR = iδ(d)(~x− ~y)

at equal times, in one frame. What about other frames?

A second reason to study commutators is ...

2.1 Causality and antiparticles

Causality: This is the very reasonable condition on our description of physics that

events should not precede their causes.

It will be worthwhile to think about how to implement this condition in a QFT.

(The following discussion is based on appendix D of this paper.) Suppose B wants

to send a message to A. How does he do this? He applies an operator12, call it B,

localized near B, to the shared state of their quantum many body system |ψ〉ABE.

12‘Applying an operator’ is more complicated than it seems. Actually it means ‘changing the

Hamiltonian so that the time evolution operator is B’.
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(Here E is for ‘environment’, the rest of the world besides A and B.) Then A measures

some observable A; let’s assume 1 = trA =
∑

(eigenvalues of A). To send a different

message, he should apply a different operator, say B′.

Under the circumstances just stated, the expectation for A’s measurement of A is

〈A〉B = 〈ψ|B† eiHtAe−iHt︸ ︷︷ ︸
=A(t)

B |ψ〉 = 〈A(t)〉+
〈
B†[B,A(t)]

〉
.

Therefore, if [B,A(t)] = 0, the expectation doesn’t depend on what B did. In fact,

replacing A with Aη for any η and using ( [B,A(t)] = 0 =⇒ [B,A(t)η] = 0 ) shows

that all the moments of the distribution for A’s measurement will also be independent

of what B did, so no message gets through13.

Causality in relativistic QFT. In a Lorentz invariant system, ‘precede’ is some-

times a frame-dependent notion. If A is in the future lightcone of B, i.e. 0 < (xA −
xB)2 = (tA − tB)2 − (~xA − ~xB)2 and tA > tB, then everyone agrees that A is after

B. This is the easy case. But if A and B are spacelike separated, 0 > (xA − xB)2 =

(tA− tB)2− (~xA− ~xB)2, then there is a frame where they occur at the same time, and

frames where they occur in either order. This is the dangerous case.

[End of Lecture 5]

So: causality will follow if [A(xA),B(xB)] = 0 whenever xA and xB are spacelike

separated, 0 > (xA − xB)2. Recall that spacelike separated means that there is a

Lorentz frame where A and B are at the same time.

A general operator in a scalar QFT can be made from φs and ∂µφs, so the general

13The loophole-seeking reader (ideally, this is everyone) will worry that a distribution is not in

general determined by its moments. (For example, there are perfectly normalizable distributions with

finite averages but where the higher moments are all infinite, such as p(x) =
√
2a3/π
x4+a4 on the real line:〈

x2
〉

= a2, but
〈
x2n
〉

= ∞ for n > 1.) What we would really like to show is that the conditional

probability p(a|B) is independent of B, in which case for sure A couldn’t learn anything about what

B did. That is

p(a|B) = 〈ψ|B† eiHt |a〉 〈a| e−iHt︸ ︷︷ ︸
=Pa(t)

B |ψ〉 = 〈Pa(t)〉+
〈
B†[B,Pa(t)]

〉
.

Does [A,B] = 0 imply that the projector onto a particular eigenvalue of a commutes with B? In a

finite dimensional Hilbert space, it does for sure, since 0 = [Aη,B] =
∑
a a

η[Pa,B] is true for all η,

which gives infinitely many equations for [Pa,B]. In the case of infinite dimensional H I think there is

some room for functional analysis horror. On the other hand, any measurement has finite resolution.

Thanks to Sami Ortoleva and Chuncheong Lam for help with this point.
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statement will follow from considering commutators of

φ(x) =

∫
d̄dp√

2ω~p

(
a~pe
−ipµxµ + a†~pe

+ipµxµ
)
|p0=ω~p ≡ φ(+) + φ(−) .

Here we have decomposed the field into positive- and negative-frequency parts. Notice

that since φ(+) (φ(−))only involves annihilation (creation) operators, [φ(±)(x), φ(±)(y)] =

0 for any x, y. Using the ladder algebra,

[φ(x), φ(y)] =

∫
d̄dp

2ω~p

(
e−ipµ(x−y)µ − e+ipµ(x−y)µ

)
=

∫
d̄d+1p 2πδ(p2 −m2)θ(p0)︸ ︷︷ ︸

Lorentz inv’t

(
e−ipµ(x−y)µ − e+ipµ(x−y)µ

)
(2.1)

Here comes the slippery stuff: Suppose x − y is spacelike. Let’s choose a frame

where they are at the same time, and let Λ be the Lorentz matrix that gets us there:

Λµ
ν (x− y)ν = (0, ~∆x)µ ≡ x̃µ. Then we can change integration variable to p̃µ = Λµ

νp
ν .

[φ(x), φ(y)]
(x− y)2 < 0

=

∫
d̄d+1p̃ 2πδ(p̃2 −m2)θ(p̃0)

(
e−i

~̃p·~∆x − e+i~̃p·~∆x
)

︸ ︷︷ ︸
odd under ~̃p→ −~̃p

= 0. (2.2)

We conclude that [φ(x), φ(y)] = 0 if (x− y)2 < 0, i.e. for spacelike separation.

The same argument works for [φ, π] and [π, π]. For [φ, π], the strict inequality is

important.

So vanishing ETCR (for nonzero separation) plus Lorentz symmetry implies causal-

ity.

Notice that the argument fails if (x − y)2 > 0, since then we can’t get rid of the

time component of the exponents by a Lorentz transformation, and they don’t cancel.

Now let’s think more about the bit which is nonzero:

[φ(x), φ(y)] = [φ(+)(x), φ(−)(y)]︸ ︷︷ ︸
≡∆̂+(x−y)

+ [φ(−)(x), φ(+)(y)]︸ ︷︷ ︸
≡∆̂−(x−y)

.

Because [a, a†] ∝ 1, ∆̂± is a c-number, independent of what state it acts on. So, for

any normalized state |ψ〉,

∆+(x− y) = 〈ψ| ∆̂+(x− y) |ψ〉 = 〈0| ∆̂+(x− y) |0〉
= 〈0| [φ(+)(x), φ(−)(y)] |0〉
= 〈0|φ(+)(x)φ(−)(y) |0〉 − 〈0|φ(−)(y) φ(+)(x) |0〉︸ ︷︷ ︸

=0:φ+ 3 a,a |0〉 = 0
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= 〈0|φ(x)φ(y) |0〉 ≡ D(x− y)

where in the last step we again used φ+ |0〉 = 0. 14 This is the vacuum-to-vacuum

amplitude, or propagator, in the sense that

φ(y) |0〉 = |‘particle created at y’〉

〈0|φ(x) = 〈‘particle destroyed at x’|

That is,

∆+(x− y) =
∑
p

(x · − − − ← −−− · y) =

∫
d̄dp

2ω~p
e−ip·(x−y).

This integral can be done in terms of functions with names15, but the most useful

information is about its asymptotics in the very timelike ( t ≡ |x0 − y0| � |~x − ~y| )

and very spacelike ( |x0− y0| � |~x− ~y| ≡ r ) limits. You can read about how to arrive

at these expressions in Peskin (page 27):

∆+(x− y) '

{
e−imt, |x0 − y0| � |~x− ~y|, (x− y)2 ≡ t2

e−mr, |x0 − y0| � |~x− ~y|, (x− y)2 ≡ −r2

Notice that this quantity 〈φ(x)φ(y)〉 is not zero outside the lightcone. What gives?

Causality only requires the vanishing of commutators outside the lightcone, which

we already showed in (2.2). I got mixed up in the book-keeping at this point in lecture.

The purpose of the following discussion is to interpret the cancellation in (2.2) as

destructive interference between particles and antiparticles. What happened here in

terms of physics pictures? It’s clearer for the complex scalar field, where

Φ(+) =

∫
d̄dp√

2ωp
e−ipxap, Φ(−) =

∫
d̄dp√

2ωp
e+ipxb†p

(with the expressions for the + and − frequency components for Φ? following by taking

hermitian conjugates). So consider the analogous

D(x− y) ≡ 〈0|Φ(x)Φ?(y) |0〉 = 〈0| [Φ+(x),Φ?−(y)] |0〉 = ∆+
a (x− y)︸ ︷︷ ︸

from [a,a†]

D?(y − x) ≡ 〈0|Φ?(y)Φ(x) |0〉 = 〈0| [Φ?+(y),Φ−(x)] |0〉 = −∆−b (y − x)︸ ︷︷ ︸
from [b,b†]

14Note from the definition that ∆±(x− y) = [φ(±)(x), φ(∓)(y)] = −∆∓(y − x).
15Specifically, in four spacetime dimensions and spacelike separation, (x− y)2 ≡ −r2, ∆+(x− y) =
m

2π2rK1(r).
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So if we consider the commutator,

〈0| [Φ(x),Φ?(y)] |0〉 = D(x− y)−D?(y − x)

=
∑
p

(x · − − − ← p−−− ·y)︸ ︷︷ ︸
particle

− (x · − − −p→ −−− · y)︸ ︷︷ ︸
antiparticle!


then in the spacelike case, the antiparticle bit from the first term of the commutator

cancels the particle bit of the second, as above in (2.2). Antimatter makes QFT causal.

2.2 Propagators, Green’s functions, contour integrals

I claim that the propagator for a real free scalar field can be represented as :

∆(x) =

∫
C

d̄d+1p︸ ︷︷ ︸
≡
∫
C d̄p0

∫
d̄dp

e−ipµx
µ i

p2 −m2
.

To see that this is related to the object we discussed above, first note that the denom-

inator is

p2 −m2 = (p0 − ω~p) (p0 + ω~p) , ω~p ≡
√
~p · ~p+m2,

so there are two poles, which seem to be on the real axis; this means that our integral

is ambiguous and we need more information, indeed some physical input.

We can specify the contour C by taking linear combinations of C±
which are small circles going clockwise around the poles at ±ω~p.

These basic integrals are16:∫
C+

d̄d+1p e−ipµx
µ i

p2 −m2
=

∫
d̄dp

1

2ω~p
e−ipx|p0=ω~p = ∆+(x). (2.3)

∫
C−

d̄d+1p e−ipµx
µ i

p2 −m2
=

∫
d̄dp

1

−2ω~p
e−ipx|p0=−ω~p = −∆+(−x)

let ~q ≡ −~p
= ∆−(x).

If we add these up, we get the full propagator:

∆(x) = ∆+(x) + ∆−(x) =

∫
C=C++C−

d̄d+1p
i

p2 −m2
e−ipx.

16We are going to use the Cauchy residue theorem
∮
C
dz = f(z) = 2πi

∑
zj

Resz=zjf where zj are

the poles of f . To remember the sign, consider a small circle C0 counterclockwise around the origin

and f(z) = 1/z, so
∮
C0

dz
z = i

∫ 2π

0
dθ = 2πi.
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This is one particular choice of contour, and others are also interesting. Consider

the retarded propagator,

DR(x− y) ≡ θ(x0 − y0) 〈0|[φ(x), φ(y)]|0〉 .

We can reproduce this by routing our contour to go above the poles in the complex

p0 plane: if x0 − y0 > 0, then the factor e−ip
0(x0−y0) decays when Imp0 < 0, so we

can close the contour for free in the LHP, and we pick up both poles; if x0 − y0 > 0,

we must close in the UHP and we pick up no poles and get zero. Notice that we

could get the same result by replacing p0 → p0 + iε in the denominator, where ε is

an infinitesimal (this means that ε2 = 0 and εc = ε for any positive quantity c).

Another interesting way to navigate the poles is by replacing p2−m2 with p2−m2+iε.

This shifts the poles to

p0 = ±ωp
√

1− iε/ωp = ±ωp (1− iε) .

This is called

the Feynman contour, CF , and it seems rather ad hoc; if we had built our understanding

of field theory using the path integral, as Zee does, this would have popped out as an

inevitable consequence of making the path integral well-defined (see page 20 of the 2d

edition). To salvage some self-respect here, consider the euclidean propagator, where

we get rid of the relative sign in the metric :

IE(~x) ≡
∫

d̄Dp
−i∑D

i=1 p
2
i +m2

e−i
∑D
i=1 pixi .

Its poles are at pD = ±i
√
~p · ~p+m2, far from the integration contour, so there is no

problem defining it. Now consider smoothly rotating the contour by varying θ from
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0 to π/2 − ε in p0 ≡ eiθpD. The Feynman contour is the analytic continuation of the

euclidean contour, and the ε is the memory of this.

In position space, the Feynman propagator is

∆F (x) ≡
∫
CF

d̄d+1p e−ipµx
µ i

p2 −m2
= θ(x0)∆+(x)+θ(−x0)∆+(−x) = θ(x0)∆+(x)−θ(−x0)∆−(x).

If x0 > 0 (< 0), we must close the contour in the LHP (UHP) and get ∆+ (∆−).

Recalling that ∆+(x− y) = 〈0|φ(x)φ(y)|0〉,

∆F (x− y) = 〈0|
(
θ(x0 − y0)φ(x)φ(y) + θ(y0 − x0)φ(y)φ(x)

)
|0〉 ≡ 〈0| T (φ(x)φ(y)) |0〉 .

The T is the time-ordering symbol: the operators at the earliest times go on the right,

so we can regard time as increasing to the left.

The propagator is a Green’s function. So we’ve learned that

i

p2 −m2
≡ ∆̃(p)

is the Fourier transform of ∆(x), the momentum-space propagator (either retarded or

Feynman). From this we can see that ∆(x) is a Green’s function for the differential

operator ∂µ∂
m +m2 in the sense that(

∂µ∂
µ +m2

)
∆(x) = −iδ(x)

(by plugging in the Fourier expansion of ∆ and of the delta function, δ(d+1)(x) =∫
d̄d+1p e−ipx, and differentiating under the integral). Notice that this did not depend

on the choice of contour, so this equation in fact has several solutions, differing by

the routes around the poles (hence by ∆±, which are solutions to the homogeneous

equation, without the delta function). On the homework, you will show this directly

from the position space definition.

[End of Lecture 6]

Physics preview. Here is a preview of the physics of the Feynman propagator.

Imagine we introduce some interactions, such as a cubic term in the Lagrangian, e.g.

L 3 φp(x)φn(x)φπ(x) + h.c. (2.4)

where the fields appearing here destroy or create particles with the names in the sub-

scripts. Here are two stories we might tell about a collection of such particles.
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In both pictures, time goes to the left. In the first picture, a ∆− emits a π−,

becoming a ∆0 at spacetime point P . This π− propagates to Q where it is absorbed

by a p, which turns into an n. In the second picture, a p emits a π+ at Q, and becomes

n; that π+ is absorbed by a ∆− which becomes a ∆0.

But these two stories are related by a Lorentz boost which exchanges the relative

times of the interaction events – they must be the same story. The Feynman propagator

includes both automatically.

Antiparticles going backwards in time. This story is clearer if we discuss the

complex scalar, where particles (created by a†) and antiparticles (created by b†) are

distinct:

Φ(x) =

∫
d̄dp√

2ωp
ape
−ipx

︸ ︷︷ ︸
≡Φ+(x)

+

∫
d̄dp√

2ωp
b†pe

+ipx

︸ ︷︷ ︸
≡Φ−(x)

.

The commutator is

[Φ(x),Φ?(y)] = [Φ+(x),Φ?−(y)]︸ ︷︷ ︸
from [a,a†], particles

+ [Φ−(x),Φ?+(y)]︸ ︷︷ ︸
from [b,b†], antiparticles

= ∆+
a (x− y) + ∆−b (x− y)︸ ︷︷ ︸

=−∆+
b (y−x)

=

∫
C+

d̄d+1e−ip(x−y) i

p2 −m2
+

∫
C−

d̄d+1e−ip(x−y) i

p2 −m2
. (2.5)

The propagator that we’ll really need to compute S-matrix elements is

∆F (x− y) ≡ 〈0| T (Φ(x)Φ?(y)) |0〉
= θ(x0 − y0) 〈0|Φ(x)Φ?(y) |0〉︸ ︷︷ ︸

=〈0|Φ+(x)Φ?−(y)|0〉=〈0|[Φ+(x),Φ?−(y)]|0〉=∆+
a (x−y), particles
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+ θ(y0 − x0) 〈0|Φ?(y)Φ(x) |0〉︸ ︷︷ ︸
=−〈0|[Φ?+(y),Φ−(x)]|0〉=−∆+

b (x−y), antiparticles
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2.3 Interlude: where is 1-particle quantum mechanics?

[Tong, §2.8] Consider a relativistic complex free massive scalar field Φ, with mass m.

The minimum energy of a single-particle state is ωp=0 = m (above the vacuum); in its

rest frame, the wavefunction is e−imt. Consider the change of variables:

Φ(~x, t) =: e−imtΨ(~x, t)
1√
2m

. (2.6)

The Klein-Gordon equation is

0 = ∂2
t Φ−∇2Φ +m2Φ =

√
2me−imt

(
Ψ̈− 2imΨ̇−∇2Ψ

)
,

where the terms with m2 cancel; so far we’ve just changed variables. The non-

relativistic limit is |~p| � m2 which on-shell, ωp =
√
~p2 +m2 ' m+ p2

2m
+ · · · , implies

that |Ψ̈| � m|Ψ̇| so we can ignore that term in the KG equation, leaving

i∂tΨ = − 1

2m
∇2Ψ. (2.7)

This looks like the Schrödinger equation for a particle in no potential, in position

space, but that is a coincidence: Ψ is not a wavefunction. This equation (2.7) is the

eom associated with the lagrange density

L = iΨ?Ψ̇− 1

2m
~∇Ψ? · ~∇Ψ

from which πΨ = iΨ?, πΨ? = 0 (which you can also get by plugging (2.6) into ∂µΦ?∂µΦ).

The ETCRs are then

[Ψ(~x),Ψ?(~y)] = δd(~x− ~y), [Ψ,Ψ] = 0 = [Ψ?,Ψ?]

and the Hamiltonian is

H =

∫
ddx

1

2m
~∇Ψ? · ~∇Ψ.

The solution in terms of creation operators is then

Ψ(x) =

∫
d̄dpei~p·~xap, Ψ?(x) =

∫
d̄dpe−i~p·~xa†p

with [ap, a
†
q] = (2π)dδd(p− q) as before. The hamiltonian is then

H =

∫
d̄dp

~p2

2m
a†pap (2.8)
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(with no normal-ordering constant – the vacuum of this non-relativistic theory is

extremely boring and has no dance of birth and death of the fluctuating particle-

antiparticle pairs).

The crucial point here is that the antiparticles are gone, despite the fact that the

field is complex. In the limit we’ve taken, we don’t have enough energy to make any.

The states are

a†~p1 · · · a
†
~pn
|0〉 ≡ |{p}〉 , ap |0〉 = 0

and these are energy eigenstates with energy H |{p}〉 =
∑

i
~p2i
2m
|{p}〉, a nice non-

relativistic (NR) dispersion for each particle. Notice that the NR limit required a

complex field (otherwise we can’t multiply by a phase). The particle-number symme-

try is still present Ψ→ e−iαΨ, but now the current is

jµ =

(
Ψ?Ψ,

i

2m
Ψ?~∇Ψ + h.c.

)µ
=
(
ρ,~j
)µ
.

Now we can find the QM of a single particle which cannot go away (since we

got rid of the antiparticles), with some position and momentum operators. In fact

the momentum operator is just the charge associated with translation invariance, and

takes the form (just like on the homework)

~P =

∫
d̄dp~pa†pap

and ~P |{p}〉 =
∑

a ~pa |{p}〉. What’s the position operator? A state with a particle at

position ~x is

|~x〉 = Ψ?(x) |0〉 =

∫
d̄dpe−i~p·~xa†p |0〉 .

If we let
~X ≡

∫
ddxΨ?(x)~xΨ(x)

then indeed ~X |~x〉 = ~x |~x〉. To see that the Heisenberg algebra [X,P] = i works out,

consider the general 1-particle state

|ψ〉 =

∫
ddxψ(x) |x〉 .

The function ψ(x) here is the usual position-basis Schrödinger wavefunction. You can

check on the homework that

Xi |ψ〉 =

∫
ddxxiψ(x) |x〉 , Pi |ψ〉 =

∫
ddx

(
−i

∂

∂xi
ψ(x)

)
|x〉
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which implies the Heisenberg commuator. Finally, the hamiltonian (2.8) gives the time

evolution equation

i∂tψ = −∇
2

2m
ψ

which really is the Schrödinger equation.

Many particles which one studies in NR QM are actually fermions (e, p, n...) and

therefore not described by a scalar field. But in the 1-particle sector, who can tell? No

one. Later we’ll see the NR limit of the Dirac equation, which is basically the same,

but with some extra juicy information about spin.

Next we will speak about ‘interactions’. This term is used in two ways. In NR QM,

it is sometimes used to describe an external potential V (x) appearing as an extra term

in the Schrödinger equation

i∂tψ = −∇
2

2m
ψ + V (x)ψ(x).

Such a term explicitly violates translation symmetry. It can be accomplished by adding

to the action the quadratic term

∆SV = −
∫
ddxΨ?(x)Ψ(x)V (x) = −

∫
ddxρ(x)V (x).

This says that nonzero density of particles at x costs energy V (x). A second sense of

‘interaction’ which is how it will be used forever below is interaction between particles.

With only one particle this cannot happen. NR QM theory does accommodate more

than one particle, and we can consider an interaction between them like

∆S = −
∫
ddx

∫
ddyΨ?(x)Ψ(x)V (x− y)Ψ?(y)Ψ(y).

If V (x− y) = δd(x− y), this interaction is local.

47



3 Interactions, not too strong

3.1 Where does the time dependence go?

[Peskin chapter 4.2] Now we must get straight where to put the time dependence. Dif-

ferent ways of doing the book-keeping are called different ‘pictures’. At some reference

time, say t = 0, they all agree: label states by |ψ, 0〉 and operators by O(0). At a later

time, in picture P , these evolve to |ψ, t〉P ,OP (t). Physics, such as any amplitude like

P 〈ψ, t| OP (t) |ψ, t〉P (3.1)

is independent of P . Let’s assume the hamiltonian H has no explicit time dependence.

In Heisenberg picture (P = H), |ψ, t〉H ≡ |ψ, 0〉 for all time, and the burden of the

time dependence is all on the operators

OH(t) = U †H(t)O(0)UH(t).

The Heisenberg equations of motion are

iȮH = [OH , HH ] (3.2)

so in particular ḢH = 0 so HH(t) = HH(0) = H. Then (3.2) is solved by UH(t) = e−itH .

For example, another example of an operator is the free field:

ΦH(~x, t) =

∫
d̄dp√

2ωp

(
ape
−ipx + b†pe

ipx
)
.

In fact, this equation is basically the whole story of free field theory. The field makes

particles which don’t care about each other.

In Schrödinger picture (P = S), d
dt
OS = ∂tOS time dependence of operators comes

only from explicit, external dependence in the definition of the operator (which will

not happen here), so OS(t) = O(0), and (3.1) then requires

|ψ, t〉S = UH(t) |ψ, 0〉 .

And the unitary evolution operator is

UH(t) = e−iH(0)t = e−iHSt = US = U

so does not require a picture label.

Interactions. So, in an interacting field theory, all we need to do is to find U to

figure out what it does. For better or worse, this isn’t a realistic goal in general. In
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this class we are going to focus on the special case where the interactions are weak, so

that the hamiltonian takes the form

H = H0 + V

where H0 is quadratic in fields (linear terms are allowed but annoying) and we assume

that the interaction term V is proportional to a small parameter. This by no means

exhausts all interesting questions in field theory; on the other hand, a surprisingly

enormous amount of physics can be done using this assumption.

Interaction picture. (P = I) In this case, it is very convenient to use a hybrid

picture where the time-dependence of the operators is as in the Heisenberg picture for

the hamiltonian with V → 0. This free field evolution is solvable:

OI(t) ≡ U †0O(0)U0, U0(t) ≡ e−iH0t. (3.3)

Note that in this picture, H0(t) = H0(0) = H0. Equivalently, iȮI = [OI , H0], where in

this expression, crucially, H0 = H0(ΦI) is made from interaction picture fields, whose

evolution we know from above; for example, for a complex scalar,

ΦI(~x, t) =

∫
d̄dp√

2ωp

(
ape
−ipx + b†pe

ipx
)
.

[End of Lecture 7]

The catch is that the interaction-picture states are still time-dependent:

H 〈ϕ, t| OH(t) |ψ, t〉H︸ ︷︷ ︸
=〈ψ,0|U†H(t)O(0)UH(t)|ψ,0〉

(3.1)!
= I 〈ϕ, t| OI(t)︸ ︷︷ ︸

=U†0 (t)O(0)U0(t)

|ψ, t〉I

∀ϕ, ψ which says that

|ψ, t〉I = U †0(t)UH(t) |ψ, 0〉 ≡ UI(t) |ψ, 0〉 .

In the interaction picture, the interaction hamiltonian itself evolves according to

i
d

dt
VI = [VI , H0] =⇒ VI(t) = U †0V (0)U0.

So for example, if V (0) =
∫
ddxgφ3(x, 0), then using 1 = U0U

†
0 repeatedly,

U †0V (0)U0 = g

∫
ddxU †0φ

3(x, 0)U0 = g

∫
ddxU †0φ(x, 0)U0U

†
0φ(x, 0)U0U

†
0φ(x, 0)U0 = g

∫
ddx (φI(x, t))

3 .

This trick wasn’t special to φ3 and works for any local interaction:

(V (t))I = V |t=0 (φI(t))
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– just stick the interaction-picture-evolved fields into the form of the interaction at

t = 0, easy.

How do the states evolve? Notice that [U †0 , UH ] 6= 0, if the interactions are inter-

esting. So

∂t |ψ, t〉I = ∂t (UI(t) |ψ, 0〉) = ∂t

U †0(t) UH(t)︸ ︷︷ ︸
=e−iH(0)t=e−i(H0+V )t

|ψ, 0〉


= U †0

iH0 − iH︸ ︷︷ ︸
=−iV (0)

UH |ψ, 0〉︸ ︷︷ ︸
=U†H(t)U0(t)|ψ,t〉I

= −iU †0V (0)UHU
†
H︸ ︷︷ ︸

=1

U0 |ψ, t〉I = −iU †0V (0)U0︸ ︷︷ ︸
=V (t)

|ψ, t〉I . (3.4)

That is

i∂t |ψ, t〉I = V (t) |ψ, t〉I .

Alternatively, the interaction-picture evolution operator satisfies

i∂tUI(t) = V (t)UI(t).

Notice how this differs from the Heisenberg evolution equation (3.2): although the full

H is time-independent, VI(t) actually does depend on t, so [V (t), V (t′)] 6= 0, and so the

solution is not just a simple exponential. We’ll find a nice packaging for the solution

next in the form of Dyson’s expansion.

Peskin’s notation for this object is UI(t) = U(t, t0)|t0=0. We can figure out how to

change the reference time from zero as follows:

|ψ, t〉I = UI(t) |ψ, 0〉 , |ψ, t′〉I = UI(t
′) |ψ, 0〉 =⇒ |ψ, 0〉 = U †I (t) |ψ, t′〉

|ψ, t〉I = UI(t)U
†
I (t′)︸ ︷︷ ︸

=U(t,t′)

|ψ, t′〉I

From which we infer that

U(t, t′) = U †0(t)UH(t)U †H(t′)U0(t′) = eiH0te−iH(t−t′)e−iH0t′ .

From now on we drop the P = I subscripts: everything is I.

Definition of S-matrix. What are we going to do with the evolution operator?

Here is a basic (only slightly naive) three-step framework for doing particle physics

(not yet for making predictions).
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• At time ti, specify (e.g. measure) all the particle types, spins, momenta in the

form of an initial state |i〉 in the QFT Hilbert space.

• Wait. At time t, the state is

U(t, ti) |i〉 = |ψ, t〉 .

• At time tf , measure all the particle data and get some state |f〉.

Quantum mechanics says that the probability for this outcome is

| 〈f |U(tf , ti) |i〉 |2 .

(One way in which this is significantly naive is that the space of outcomes is continuous,

so we must instead make probability distributions. More soon.) Because particle

interactions are a fast-moving business, a useful idealization is to take ti → −∞ and

tf →∞, and let

Sfi ≡ 〈f | Ŝ |i〉 , Ŝ ≡ U(∞,−∞)

the S-matrix (‘S’ is for ‘scattering’).

This has only three ingredients: initial state, final state, and time evolution opera-

tor. Let’s focus on the last one:

Dyson expansion. We need to solve the equation

∂t |ψ, t〉 = −iV (t) |ψ, t〉 , with initial condition |ψ, ti〉 = |i〉 .

Here’s a “solution”:

|ψ, t〉 = |i〉+ (−i)

∫ t

ti

dt1V (t1) |ψ, t1〉 .

The only small problem is that we don’t know |ψ, t1〉. But we can use this expression

for that too:

|ψ, t〉 = |i〉+ (−i)

∫ t

ti

dt1V (t1)

(
|i〉+ (−i)

∫ t1

ti

dt2V (t2)

)
= |i〉+ (−i)

∫ t

ti

dt1V (t1) |i〉+ (−i)2

∫ t

ti

dt1

∫ t1

ti

dt2V (t1)V (t2) |ψ, t2〉

Why stop there? Two comments: (1) This is a good idea when V ∝ λ� 1. (2) Notice

the time-ordering: the range of integration restricts t1 ≥ t2, and the earlier operator

V (t2) is to the right. The ad absurdam limit is

|ψ, t〉 =
∞∑
n=0

(−i)n
∫ t

ti

dt1

∫ t1

ti

dt2 · · ·
∫ tn−1

ti

dtnV (t1)V (t2) · · ·V (tn) |i〉 = U(t, ti) |i〉

(3.5)

which since this is true for any |i〉 tells us a formula for U .
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To review, the equation we are trying to solve is:

i∂t |ψ, t〉︸ ︷︷ ︸
=V (t)|ψ,t〉

= i∂tU |ψ, ti〉 = i∂tUU
† |ψ, t〉 .

This is true for all |ψ, t〉, so it means i∂tUU
† = V . Multiplying the BHS on the right

by U gives

=⇒ ∂tU = −iV U.

We might expect that an equation like this has a solution which is something like

U
?∼ e−iV t.

Now we must deal with what Lawrence Hall calls “the wretched n!”. Starting from

our series solution (3.5),

U(t, ti) =
∞∑
n=0

(−i)n
∫ t

ti

dt1

∫ t1

ti

dt2 · · ·
∫ tn−1

ti

dtnV (t1)V (t2) · · ·V (tn)

=
∞∑
n=0

(−i)n
∫ t

ti

dt1

∫ t1

ti

dt2 · · ·
∫ tn−1

ti

dtnT (V (t1)V (t2) · · ·V (tn))

=
∞∑
n=0

(−i)n
1

n!

∫ t

ti

dt1

∫ t

ti

dt2 · · ·
∫ t

ti

dtnT (V (t1)V (t2) · · ·V (tn)) (3.6)

In the first step I used the fact that the operators are already time ordered (this followed

from the differential equation we are solving, since the V always acts from the left). In

the second step we used the fact that the time-ordered integrand doesn’t change if we

permute the labels on the times. So we can just average over the n! possible orderings

of n times. If we pull out the time-ordering symbol, this is an exponential series:

U(t, ti) = T
(
e
−i

∫ t
ti
dt′V (t′)

)
.

The time-ordered exponential is defined by its Taylor expansion.

3.2 S-matrix

Taking the times to ±∞ in the previous equation gives an expression for the S-matrix:

Ŝ = U(−∞,∞) = T
(
e−i

∫∞
−∞ dtV (t)

)
. (3.7)

The practical value of these expressions is that they give a (compact) recipe for evalu-

ating the time evolution operator as a series in powers of the small parameter in front

of V (0): we know V (t) in terms of things like a, a†, can pull them down term-by-term.
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I should have called the previous expression the ‘S-operator’, since the thing we

are after is really the S-matrix elements, 〈f | Ŝ |i〉, for which we still need 〈i| and |f〉.
Here we encounter some small trouble. Can we just use the states like

√
2ωpa

†
p |0〉

(the eigenstates of the free hamiltonian) which we’ve grown to love? In fact, even the

vacuum |0〉 is not an eigenstate of the actual H0 + V (since [H0, V ] 6= 0), so it will not

stay where we put it. The vacuum of the interacting theory |Ω〉 is itself an object of

mystery (a boiling sea of virtual particles and antiparticles), and the stationary excited

states are too (a particle carries with it its disturbance of the vacuum). We’ll learn

to deal with this in perturbation theory, but here’s an expedient: pick a function f(t)

which is zero at one end, one in the middle, and then zero again at the far end. Now

replace the interaction hamiltonian V with f(t)V (t). Then, if we take ti < the time

before which the interaction turns on, and tf > the time after which we turn it off,

then we can use the free hamiltonian eigenstates. This is in fact wrong in detail, but

it will get us started.

Example. Let’s return to the ‘scalar Yukawa theory’ that we briefly encountered

earlier in (2.4). Simplifying the notation a bit, the whole Lagrangian density is

L =
1

2
∂µΦ?∂µΦ− 1

2
m2Φ?Φ +

1

2
∂µφ∂

µφ− 1

2
M2φ2 + LI (3.8)

with LI = −gΦ?Φφ.

The mode expansions are

φ =

∫
ddp√
2ωp

(
ape
−ipx + a†pe

ipx
)
|p0=ωp

Φ =

∫
ddp√
2Ep

(
bpe

−ipx + c†pe
ipx
)
|p0=Ep

where I’ve written ωp ≡
√
M2 + p2, Eq ≡

√
m2 + q2. Notice that the Φ → e−iαΦ

symmetry is conserved; the charge is

q = Nc −Nb.

But the φ particles are not conserved.17

Artisanal meson decay. [Tong §3.2.1] Consider

|i〉 =
√

2ωpa
†
p |0〉 , |f〉 =

√
2Eq12Eq2b

†
q1
c†q2 |0〉 .

17You might notice a possible problem with this theory: what happens to the quadratic term for Φ

when φ is very negative? Let’s not take it too seriously.
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The S-matrix element between these states is

〈f | Ŝ |i〉 = 〈f |
(

1 + (−i)

∫
dd+1xgφxΦ

?
xΦx +O(g2)

)
|i〉

where all operators are in interaction picture. The first term dies because 〈f |i〉 = 0.

The φ ∼ a + a† takes a one-particle state into a superposition of states with zero and

two φ-particles. We need to end up with zero φ-particles. The leading-order nonzero

term is

= −ig

∫
dd+1x 〈f |Φ?

xΦx

∫
d̄dk√
2ωk

e−ikx aka
†
p |0〉︸ ︷︷ ︸

=/δ
d
(k−p)|0〉

√
2ωk

= −ig

∫
dd+1xe−ipx 〈0|bq1cq2

√
4Eq1Eq2

∫
d̄dk1√
2Ek1

eik1xb†k1

∫
d̄dk2√
2Ek2

eik2xc†k1 |0〉

= −ig

∫
dd+1xei(q1+q2−p)x = −ig(2π)d+1δd+1(q1 + q2 − p)

This is a small victory. This delta function imposes conservation of energy and mo-

mentum on the transition amplitude. In the φ rest frame, pµ = (M, 0) which says the

amplitude is only nonzero when ~q1 = −~q2 and when M = 2
√
|q1|2 +m2. Notice that

this can only happen if M ≥ 2m.

How do we get from this amplitude to a probability? We have to square it:

Pfi ∼ |Sfi|2 = g2
(
δd+1(pf − pi)

)2
.

The square of a delta function is infinity. What did we do wrong?

[End of Lecture 8]

Not so much, we just asked a dumb question. Here is where it helps to be a physicist.

Consider: (
δd+1(p)

)2
= δd+1(p)δd+1(0) = δd+1(p)

∫
dd+1xei0x = δd+1(p)V T

where V T is the volume of spacetime – the size of the box times how long we’re willing

to wait. There is a nonzero probability per unit time per unit volume that a φ particle

in a plane wave state will decay. We’ll get its lifetime out momentarily.

For more complicated examples, it will help to streamline this process, which is the

job of §3.3.

3.3 Time-ordered equals normal-ordered plus contractions

We have an expression for Ŝ in (3.7) involving only time-ordered products of operators.

If we stick this between states with just a few particles, the annihilation operators in
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there very much want to move to the right so they can get at the vacuum and annihilate

it, as is their wont. Wick’s theorem tells us how to do this, along the following lines:

Wick: T (φ...φ)︸ ︷︷ ︸
have

= : φ...φ :︸ ︷︷ ︸
want

+ ?

In the previous schematic non-equation, I introduced a notation for a normal-ordered

product : φ · · ·φ : which means each term has all the annihilation operators to the right

of all the creation operators, for example

: φ(x)φ(y) :≡ φ−(x)φ+(y) + φ−(y)φ+(x) + φ+(x)φ+(y) + φ−(x)φ−(y). (3.9)

This operation is by definition linear.

Normal-ordering difficulty. Actually, there is a trap here which was brought

to my attention by Chuncheong Lam: If we want the normal-ordering operation to be

linear, then we must have

:

 a†a︸︷︷︸
=aa†−1

 :=: aa† : − : 1 : .

But
〈
0| : a†a : |0

〉
=
〈
0| : aa† : |0

〉
= 0 so we must have 〈0| : 1 : |0〉 = 0, which means

we must have the shocking-looking equation:

: 1 := 0

that is: the normal-ordered product of a c-number must be zero. This definition

(which, beware, differs from Peskin’s) has the advantage that my statement below that

the vacuum expectation value (VEV) of any normal ordered product is zero (with no

exceptions for c-numbers). The price is that we cannot put the normal-ordering symbol

around the c-number bits, as Peskin does.

More generally, let A,B,C be the positive- and negative-frequency bits of some

fields. Then

: ABC · · · :≡

A′B′C ′ · ·︸ ︷︷ ︸
only a†s

· · · ·︸︷︷︸
only as


Peskin writes N(· · · ) ≡: · · · :. Notice that 〈0| : anything : |0〉 = 0.
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A comment about fermions. Later we will use anticommuting operators, which

have

{ck, c
†
p} = /δ(k − p), {c†k, c

†
p} = 0.

In particular, the equation
(
c†p
)2

= 0 is an algebraic realization of the Pauli principle.

The cost is that even the φ− bits generate signs when they move through each other.

In that case, we define the normal ordered product as

: ABC · · · :≡

A′B′C ′ · ·︸ ︷︷ ︸
only a†s

· · · ·︸︷︷︸
only as

 (−1)P

where P is the number of fermion interchanges required to get from ABC · · · to

A′B′C ′ · · · . Keeping track of these signs, and replacing commutators with anticommu-

tators, everything below goes through for fermion fields.

Let’s go back to (3.9). Because [φ±, φ±] = 0, the order in the last two terms doesn’t

matter. This can differ from the time-ordered product only in the first or second term.

If y0 > x0, it differs by [φ−(x), φ+(y)] = −∆+(x − y), and if x0 > y0, it differs by

[φ−(y), φ+(x)] = +∆+(x− y). Altogether:

: φ(x)φ(y) := T (φ(x)φ(y))−∆F (x− y) ≡ T (φ(x)φ(y))−φ(x)φ(y). (3.10)

More generally, writing φa ≡ φa(xa), Wick’s theorem says

: φ1 · · ·φn := T (φ1 · · ·φn) + (all contractions)

where a contraction is defined as the price for moving a pair of operators through each

other to repair the time ordering, as in (3.10), and denoted by the symbol in (3.10).

For example, for four fields, the theorem says

T (φ1 · · ·φ4) =:

(
φ1 · · ·φ4 + (φ1φ2φ3φ4 + 5 more)

)
: +(φ1φ2φ3φ4 + 2 more)

Notes: The fully-contracted bits are numbers, so they are outside the normal-ordering

symbol. For a product of n fields, there are

(
n

2

)
+

(
n

4

)(
4

2

)
+

(
n

6

)(
6

4

)(
4

2

)
· · · +(

n

bn/2c

)
(= many) contractions. But if we take the vacuum expectation value (VEV)

of the BHS, most terms go away.
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Here’s the idea of the proof (Peskin page 90), which is by induction on the number of

fields m in the product. We showed m = 2 above. Assume WLOG that x0
1 ≥ · · · ≥ x0

m,

or else relabel so that this is the case. Wick for φ2 · · ·φm says

T (φ1 · · ·φm) = φ1︸︷︷︸
=φ+1 +φ−1

: φ2 · · ·φm : + (all contractions w/o φ1 )

The φ−1 term is already in the right place and can slip for free inside the normal-ordering

sign. The φ+
1 needs to move past all the uncontracted φ−j≥2s; this process will add a

term for every possible contraction involving φ1. �

3.4 Time-ordered correlation functions

Time-ordered correlation (or Green’s) functions of local operators will be useful:

G(n)(x1 · · ·xn) ≡ 〈Ω| T
(
φH1 (x1) · · ·φHn (xn)

)
|Ω〉 .

Here, the operators are in Heisenberg picture for the full hamiltonian, and Ω is its

actual lowest-energy eigenstate, H |Ω〉 = E0 |Ω〉. The fourier transform is also useful:

G̃(n)(p1 · · · pn) ≡
∫
dd+1x1 · · ·

∫
dd+1xn e

−i
∑n
i pixiG(n)(x1 · · ·xn) .

In the free theory of a real scalar, we know something about these:

G
(2)
free(x1, x2) = ∆F (x1 − x2) =

G̃(2)(p1, p2) = /δ
d+1

(p1 + p2)
i

p2 −m2 + iε
= /δ

d+1
(p1 + p2) · (3.11)

The higher correlations are Gaussian, in the sense that they are sums of products of

the two point functions:

G
(4)
free(x1 · · ·x4) = ∆F (12)∆F (34) + ∆F (13)∆F (24) + ∆F (14)∆F (23)

= + + . (3.12)

Expectations. Our next goal is to construct a perturbative expansion in the case

of V =
∫
ddz λ

4!
φ4(z). We expect a correction of order λ of the form: In

momentum space, we have blobs (unspecified sums of diagrams) with external lines
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labelled by pµi : Notice that there is no need to restrict their values to the

mass shell p2
i = m2, that is, G̃(p) is nonzero even when pi are off-shell: these Green’s

functions contain “off-shell” information, more information than is available in just the

scattering matrix. However, something special will happen when the external legs are

on-shell. As you can see from the free two-point function, (3.11), they blow up on the

mass-shell. The existence of a singularity of G̃ on the mass-shell is a general fact, and

their residues give the S-matrix elements:

G̃(p1 · · · pn)
p2i→m2

i→
∏
i

i

p2
i −m2

i + iε
S(p1 · · · pn).

(This is the LSZ theorem, about which more later.)

Perturbative expansion of time-ordered correlators. We’ll do this in three

steps: (1) Relate |Ω〉 to |0〉. (2) Relate φH to φI . (3) Wick expand and organize the

diagrams.

Step (1): [Peskin page 86-87] Some preparations:

• Fix the additive normalization of the hamiltonian by H0 |0〉 = 0.

• Label the spectrum of H by |n〉, so 1 =
∑

n |n〉 〈n|. This is a very scary sum over

the whole QFT Hilbert space, really an integral.

• Assume that 〈Ω|0〉 6= 0. A necessary condition for this is that the actual Hamil-

tonian is in the same phase as the H0. Also, let’s keep the volume finite for

awhile.

Now consider

〈0| e−iHT =
∑
n

〈0|n〉 〈n| e−iHT =
∑
n6=Ω

〈0|n〉 〈n| e−iEnT + 〈0|Ω〉 〈Ω| e−iE0T .

Since E0 < En for all other n, by given T a large negative imaginary part, T →∞(1−iε)

we can make the contribution of Ω arbitrarily larger than the others. Multiplying by

eiE0T/ 〈0|Ω〉 gives

〈Ω| = lim
T→∞(1−iε)

(
〈0| e−iHT eiE0T

〈0|Ω〉

)
〈0|H0=0

= lim
T→∞(1−iε)

(
〈0| eiH0T e−iHT eiE0T

〈0|Ω〉

)
Since T is infinite anyway, we can shift it to T → T − t0 without change:

〈Ω| = lim
T→∞(1−iε)

(
〈0| eiH0(T−t0)e−iH(T−t0)eiE0(T−t0)

〈0|Ω〉

)
= lim

T→∞(1−iε)

(
〈0|UI(t, t0)eiE0(T−t0)

〈0|Ω〉

)
.

(3.13)
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Do the same for |Ω〉.

Now step (2): Consider

G(2)(x, y) = 〈Ω| T (φH(x)φH(y)) |Ω〉
(3.13)
= lim

T→∞(1−iε)

[ (
e−iE0(T−t0) 〈0|Ω〉

)−1 〈0|UI(T, t0) 〈Ω|

· U †I (x0, t0)φI(x)UI(x
0, t0) · U †I (y0, t0)φI(y)UI(y

0, t0) φHφH

· UI(t0,−T ) |0〉
(
e−iE0(T+t0) 〈Ω|0〉

)−1 ] |Ω〉

= lim
T→∞(1−iε)

(
e−i2E0T | 〈0|Ω〉 |2

)−1 〈0|U(T, x0)φ(x)U(x0, y0)φ(y)U(y0,−T )︸ ︷︷ ︸
=T (φ(x)φ(y)U(T,−T ))

|0〉

In the last expression I’ve gone back to implying the I subscripts on the interac-

tion picture fields. In observing that the big underbraced product is time ordered we

are appealing to the Dyson formula for the interaction-picture evolution operators,

e.g. UI(t, t
′) = T

(
e−i

∫ t
t′ dt

′′V (t′′)
)

– so it is a sum of time-ordered products, evaluated

between the times in the argument. Notice that I did something slippery in the first

step by combining the factors into one big limit; this is OK if each factor converges

separately.

What’s the denominator? The norm of the vacuum is one, but we can assemble it

from these ingredients (3.13):

1 = 〈Ω|Ω〉 = lim
T→∞(1−iε)

(
e−i2E0T | 〈0|Ω〉 |2

)−1 〈0|U(T, t0)U(t0,−T )︸ ︷︷ ︸
=U(T,−T )

|0〉

Therefore

G(2)(x, y) = lim
T→∞(1−iε)

〈0| T
(
φ(x)φ(y)e−i

∫ T
−T dt

′V (t′)
)
|0〉

〈0| T
(
e−i

∫ T
−T dt

′V (t′)
)
|0〉

[End of Lecture 9]

The same methods give the analogous formula for G(n)(x1 · · ·xn) for any number

of any local operators. Now we can immediately perturbate to our hearts’ content

by expanding the exponentials. Let’s do some examples, then I will comment on the

familiarity of the prescription for T , and we will see that the denominator is our friend

because it cancels annoying (disconnected) contributions in the numerator.

Examples. For V = λ
4!
φ4, let’s study the numerator of G(2)(x, y) in the first few

orders of λ:

G(2)
num(x, y) = 〈0| T

(
φ(x)φ(y)e−i

∫ T
−T d

d+1z λ
4!
φ4(z)

)
|0〉
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= 〈0| T φ(x)φ(y) |0〉+
−iλ

4!

∫
dd+1z 〈0| T (φ(x)φ(y)φ(z)φ(z)φ(z)φ(z)) |0〉+O(λ2)

= ∆F (x− y) +
−iλ

4!

∫
dd+1z

(
3φ(x)φ(y)φ(z)φ(z)φ(z)φ(z) + 4 · 3φ(x)φ(z)φ(y)φ(z)φ(z)φ(z)

)
+O(λ2)

=

The O(λ2) contribution is

1

2!
(−iλ)2

∫
dd+1z1d

d+1z2 〈0| T
(
φ(x)φ(y)φ(z1)4φ(z2)4

)
|0〉

With ten fields, there will be five propagators in each diagram. The ingredients which

we must connect together are: The answer is

For example,

φ(x)φ(z1)φ(y)φ(z1)

(
φ(z1)φ(z2)

)2

φ(z2)φ(z2) ∝

up to the symmetry factor.

Feynman rules for φ4 theory in position space. The set of diagrams is made

by drawing external vertices for each xi, and n internal vertices, and connecting them

in all possible ways with propagators,

{diagrams} ≡ {A} = {A0} ∪ {A1} ∪ · · ·

where Am gives contributions proportional to λm. Then the associated amplitude is

MA and the Green’s function is G(n)(x1 · · ·xn) =
∑

AMA. To get MA,

• Put a −iλ
∫
dd+1za for each vertex (notice no 1

4!
).
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• Put a ∆F (yi − yj) for each propagator where y may be an

internal point xi or an internal point za.

• Multiply by the symmetry factor s(A). The symmetry factor is defined to be

s(A) = |Aut(A)|−1, the inverse of the order of the automorphism group of the

diagram. Symmetries of the diagram mean that the sum over contractions fails

to completely cancel Dyson’s wretched 1
n!

. For example:

s =
1

4!
· 3 =

1

8
, s

( )
=

1

4!
· 4 · 3 =

1

2
.

Do not get hung up on this right now.

Let’s do the numerator of G(4) through order λ2:

O(λ0) : + +

O(λ1) :

Notice that only the last term here is “fully connected” in the sense that you can’t

divide the diagram up into disjoint pieces without cutting propagators. The other

diagrams follow a simple pattern: the first three are obtained from the O(λ0) diagrams

by multiplying by a figure-eight bubble. The second set is obtained by mutiplying

G
(2)
0 ·G

(2)
1 , where G

(n)
m denotes the order-λm fully-connected contribution to G(n).

O(λ2) :

(3.14)
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Here’s an easy one: G(n) = 0 when n is odd. Technically, we can see this from the

fact that there is always a φ left over after all contractions, and 〈0|φ|0〉 = 0. Slightly

more deeply, this is because of the φ→ −φ symmetry.

The exponentiation of the disconnected diagrams. [Peskin page 96] There

are some patterns in these sums of diagrams to which it behooves us to attend. (The

following discussion transcends the φ4 example.) The general diagram has the form:

Only some of the components are attached to the external legs; for a given diagram

A, call the factor associated with these components Ac (note that Ac need not be fully

connected). The rest of the diagram is made of a pile of ‘bubbles’ of various types Vi
(each one internally connected) and multiplicities ni (e.g. V1 could be a figure eight,

and there could be n1 = 2 of them, as in the second term indicated in (3.14)). These

bubbles (or ‘vacuum bubbles’) would be there even if we didn’t have any external lines,

and they would have the same value; they are describing the fluctuations intrinsic to

the vacuum. The amplitude associated with the general diagram is then

MA =MAc ·
V n1

1

n1!
· V

n2
2

n2!
· · · V

nα
α

nα!

where the ni! factors are the most important appearance of symmetry factors: they

count the number of ways to permute the identical copies of Vi amongst themselves.

The numerator of G(n) is then

G
(n)
numerator = 〈0| T

(
φ1 · · ·φne−i

∫
V
)
|0〉 =

∑
A

MA =
∑
Ac

MAc

∑
{ni=0}

V n1
1

n1!
· V

n2
2

n2!
· · · V

nα
α

nα!

=
∑
Ac

MAc · eV1 · eV2 · · · eVα

=
∑
Ac

MAce
∑
i Vi (3.15)

– the bubbles always exponentiate to give the same factor of e
∑
i Vi , independant of

the external data in G. In particular, consider the case of n = 0, where there are no

external lines and hence no Ac:

G
(0)
numerator = 〈0| T e−i

∫
V |0〉 = 1 · e

∑
i Vi
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But we care about this because it is the denominator of the actual Green’s function:

G(n) =
〈0| T

(
φ1 · · ·φne−i

∫
V
)
|0〉

〈0| T e−i
∫
V |0〉

=
G

(n)
numerator

G
(0)
numerator

=
∑
Ac

MAc . (3.16)

And with that we can forget all about the bubbles. So for example,

G(2) =

G(4) =

Notice that in this manipulation (3.16) we are adding terms of many orders in

perturbation theory in the coupling λ. If we want an answer to a fixed order in λ, we

can regard anything of higher order as zero, so for example, it makes perfect sense to

write

G(2) =
· (1 + 8 + 88 + · · ·)

(1 + 8 + 88 + · · ·)
+O(λ) = · e

V

eV
+O(λ) = +O(λ).

(I only drew one kind of bubble in the previous expression since that one was easy to

type.)

Momentum space Green’s functions from Feynman diagrams. In translation-

invariant problems, things are usually a little nicer in momentum space. Let’s think

about

G̃(n)(p1 · · · pn) ≡
n∏
i=1

∫
dd+1xie

−ipixiG(n)(x1 · · ·xn).

Again, this an off-shell Green’s function, a function of general p, not necessarily

p2 = m2. It will, however, vanish unless
∑

i p
µ
i = 0 by translation invariance. Con-

sider a fully-connected contribution to it, at order λN . (We’ll get the others by

multiplying these bits.) In φ4 theory, we need to make a diagram by connecting

n external position vertices xi to N 4-valent vertices za using Feynman propagators

∆F (yA − yB) =
∫

d̄d+1qre
−i(yA−yB)qr i

q2r−m2+iε
. Since each propagator has two ends, the

number of internal lines (by the fully-connected assumption) is

NI =
# of ends of lines

2
=
n+ 4N

2
=
n

2
+ 2N.

The associated amplitude is then

ANFC =

∫
dd+1x1 · · · dd+1xne

−i
∑
i pixi(−iλ)N · s(FC)

∫
dd+1z1 · · ·

∫
dd+1zN

NI∏
r=1

∫
d̄d+1qre

−i(yA−yB)qr
i

q2
r −m2 + iε

.
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For example, consider the particular contribution with n = 4 external legs and N = 2

interaction vertices:

has NI =
4 + 2 · 4

2
= 6

Notice that we are doing a silly thing here of labelling the momenta of the external

lines (the first n momenta qi=1...n). Here’s why it’s silly: Look at the integral over

x1. Where is the dependence on x1? There is the external factor of e−ip1x1 that

we put to do the Fourier transform, and there is the propagator taking x1 to z1,

∆F (x1 − z1) =
∫

d̄d+1q1e
−i(x1−z1)q1 i

q21−m2+iε
. So the integral over x1∫

dd+1x1e
−ix1(p1−q1) = /δ

d+1
(p1 − q1)

just sets p1 = q1, and eats the
∫

d̄d+1q1. The same thing happens for each external line,

and reduces the number of momentum integrals to NI − n.

Where is the dependence on z2?∫
dd+1z2 e

−iz2(q3+q4+q5+q6) = /δ
d+1

(q3 + q4 + q5 + q6)).

Similarly, the z1 dependence is all in the exponentials:∫
dd+1z1 e

−iz1(−q3−q4+q1+q2) = /δ
d+1

(q3 + q4 − q1 − q2)).

These two factors combine to set q1 + q2 = q3 + q4 = −q5− q6: momentum is conserved

at the vertices. Notice that in the example q5 − q6 is not determined.

Each internal vertex reduces the number of undetermined momenta by one, except

one combination is already fixed by overall momentum conservation so we have left

NI − n− (N − 1) = N − n

2
+ 1

momentum integrals. This number is ≥ 0 for fully connected diagrams, and it is the

number of loops in the diagram. (This counting is the same as in a Kirchoff’s law

resistor network problem.) In the example, NL = 2− 2 + 1 = 1 which agrees with one

undetermined momentum integral.

[End of Lecture 10]
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In practice now, we need not introduce all those extra qs. Label the external lines

by p1 · · · pn, and the loop momenta by kα, α = 1..NL. In the example, we might do it

like this: for which the amplitude is

AFC(p1 · · · pn) = (−iλ)N · s(FC)/δ
(d+1)

(
∑

pi)

∫ NL∏
loops,α=1

d̄d+1kα
∏

lines,r

i

q2
r −m2 + iε

=
(−iλ)2

2!
/δ
d+1

(
4∑
i=1

pi)
n=4∏
i=1

i

p2
i −m2 − iε

∫
d̄d+1k

i

k2 −m2 + iε

i

(p1 + p2 + k)2 −m2 + iε

(You might notice that the integral over k is in fact formally infinite, since at large

k it goes like
∫ Λ d4k

k2
∼ log(Λ). Try to postpone that worry.) For now, let’s celebrate

my successful prediction, for this particular graph, that there would be poles when the

external particles are on-shell, p2
i = m2. (It would be more correct to call it Lehmann,

Symanzik and Zimmerman’s successful prediction.)

The whole two point function in momentum space is then (through order λ2) :

G̃(2) = O(λ3)

(3.17)

I draw the blue dots to emphasize the external propagators. So here are the momentum

space Feynman rules for Green’s function in φ4 theory:

• An internal line is = i
p2−m2+iε

= ∆̃F (p). Notice that since ∆F (x− y) =

∆F (y − x), the choice of how we orient the lines is not so fateful.

• An external line at fixed position, = e−ipx More generally, external

vertices are associated with the wavefunctions of the states we are inserting; here

they are plane waves.

• An internal vertex gives  (−iλ)
∫
dd+1ze−i

∑
i piz = (−iλ)/δ

d+1
(
∑

i pi),

momentum conservation at each vertex. So, set
∑

i pi = 0 at each vertex (I’ve as-

sumed the arrows are all pointing toward the vertex). After imposing momentum

conservation, the remaining consequence of the vertex is

= −iλ.
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• Integrate over the loop momenta
∏NL

α=1d̄
d+1qα for each undetermined momentum

variable. There is one for each loop in the diagram. You should think of these

integrals as just like the Feynman path integral: if there is more than one way

to get from here to there, we should sum over the amplitudes.

• Multiply by the wretched symmetry factor s(A).

• For G̃(p), multiply by an overall /δ
d+1

(
∑
p) in each diagram.

Comment on T →∞(1− iε). What happened to the limit on T? It’s hidden in

the integrals over the vertices:∫
dd+1z e−iz(

∑
i qi) · · · = lim

T→∞(1−iε)

∫
dz0ddz e−i(z

0(
∑
i q

0
i−

∑
i ~z·~pi)) · · ·

One end of the integral z0 = ±∞ is going to be infinite unless
∑

i p
0
i z

0 ∈ iR, in which

case it just oscillates. This seems scary. We can make ourselves feel better about it if

we just replace every p0 with p0(1 + iε) for some infinitesimal ε. This means that the

integrals will look like: That is:

if we use the Feynman contour for every propagator

∆F (x) =

∫
CF

d̄d+1pe−ipx
i

p2 −m2 + iεF

with εF = ε then this problem goes away.

The factors of T give another perspective on the exponentiation of the vacuum

bubbles. Consider the diagram:

= (−iλ)2

4∏
i=1

∫
d̄d+1pi/δ

d+1
(p1 + p2)/δ

d+1
(p1 + p2) · · ·

The two delta functions come from the integrals over z1,2, and we can restore sense by

remembering this:(
/δ
d+1

(p1 + p2)
)2

= /δ
d+1

(p1 + p2)

∫
dd+1z2 = /δ

d+1
(p1 + p2)2TV

where V is the volume of space. This factor arises because this process can happen

anywhere, anytime. There is one such factor for each connected component of a col-

lection of vacuum bubbles. But the free energy ∝ logZ = logG(0) should be extensive,

∝ V T . Therefore, the vacuum bubbles must exponentiate.
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3.5 Interlude: old-fashioned perturbation theory

[Schwartz, chapter 4] I want to take a brief break from the inexorable building of

theoretical machines to demonstrate some virtues of those machines. It will explain

what I was really mumbling about when I said that the Feynman propagator involves

antiparticles going backwards in time.

Consider a system which is a small perturbation of a solvable system H = H0 +

V . Suppose that the initial system H0 has a continuous spectrum, so that there are

eigenstates at every nearby energy. Then given an eigenstate of H0, H0 |ϕ〉 = E |ϕ〉, we

expect an eigenstate of H with the same energy H |ψ〉 = E |ψ〉. Palpating the previous

equation appropriately gives

|ψ〉 = |ϕ〉+
1

E −H0 + iε︸ ︷︷ ︸
≡Π

V |ψ〉

(the Lippmann-Schwinger equation). This represents the perturbed eigenstate as the

free one plus a scattering term, in terms of the ‘propagator’ Π. The iε is a safety factor

which helps us negotiate the fact that E −H0 is not actually invertible. To write this

entirely in terms of the known free state |ϕ〉, iterate. Let V |ψ〉 ≡ T |ϕ〉 where T is the

transfer matrix:

|ψ〉 = |ϕ〉+ ΠT |ϕ〉 .
Now act on both sides with V to get V |ψ〉 = T |ϕ〉 = V |ϕ〉 + VΠT |ϕ〉, which is true

for any ϕ so

T = V+VΠT = V+VΠ(V+VΠT ) = V+VΠV+VΠV+VΠVΠV+· · · =
(

1

1− VΠ

)
V

Given a complete set of eigenstates of H0, with
∑

i |ϕi〉 〈ϕi| = 1,

Tfi ≡ 〈ϕf |T |ϕi〉 = Vfi + VfjΠ(j)Vji + VfjΠ(j)VjkΠ(k)Vki + · · ·

where Vfi ≡ 〈ϕf |V |ϕi〉 gives the first Born approximation, and Π(j) ≡ 1
E−Ej , and

E = Ei = Ef , energy is conserved.

For a vivid example, consider the mediation of a force by a boson field. Let

V =
1

2
e

∫
ddxΨe(x)φ(x)Φe(x)

where ‘φ’ is for ‘photon’ and ‘e’ is for ‘electron’ but we’ve omitted spin and polarization

information, and got the statistics of the electron wrong, for simplicity. Consider the

free eigenstates |i〉 = |~p1, ~p2〉 , 〈f | = 〈~p3, ~p4|. Then

Tfi = Vfi︸︷︷︸
=0

+
∑
n

Vfn
1

Ei − En
Vni + · · · .

67



What are the possible intermediate states |n〉? It has to be two e and one φ, as in

the following visualization (not a Feynman diagram in the sense we’ve been discussing):

Time goes to the left, as always. You see that there are two classes of possibilities:

|nR〉 = |p3, pγ; p2〉 , |nA〉 = |p1; pγ, p4〉. Consider them from the point of view of particle

2. In the first (R) case, e2 feels a photon emitted by particle 1, after the emission

happens:

V R
ni =

〈
p3, pγ, p

2
∣∣V |p1, p2〉 =

〈
p3, pγ

∣∣V |p1〉 〈p2|p2〉︸ ︷︷ ︸
=1

=
e

2

∫
ddx

〈
p3, pγ

∣∣Ψe(x)φ(x)Ψe(x)
∣∣p1
〉

=
e

2

∫
ddx 〈pγ|φ(x) |0〉︸ ︷︷ ︸

=e−i~pγ ·~x

〈
p3
∣∣Ψ(x)2

∣∣p1
〉︸ ︷︷ ︸

=2e−i(~p3−~p1)·x

= e/δ
d
(~p1 − ~p3 − ~pγ) (3.18)

– momentum is conserved. Note that energy is not, Ei 6= Em (or else the denominator

is zero).

The other possibility is |nA〉 = |p1; pγ, p4〉, which means e2 feels the effects of a

photon it emitted, which is later absorbed by e1 (!!). [End of Lecture 11]

V A
ni =

〈
p4pγ

∣∣V ∣∣p2
〉

= e/δ
d
(~p2 − ~p4 − ~pγ).

Altogether, to leading nonzero order,

Tfi =
∑
n

Vfn
1

Ei − En
Vni =

∑
n=R,A

∫
ddpγ/δ

d
(p1 − p3 − pγ)/δ

d
(p2 − p4 + pγ)

e2

Ei − En
.

A bit of kinematics: let the φ have mass mγ, so for a given ~pγ, Eγ =
√
|~pγ|2 +m2

γ.

Notice that these are real particles, they satisfy the equations of motion. For the R

case, the intermediate energy is

ER
n = E3 + ER

γ + E2 = E3 +
√
|~p1 − ~p3|2 +m2

γ
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so

Ei − ER
n = E1 + E2 − (E3 + ER

γ + E2) = E1 − E3 − ER
γ = −∆E − Eγ

where ∆E ≡ E3 −E1 = E4 −E2 (by overall energy conservation). Momentum conser-

vation means p2 − p4 = p1 − p3 so

EA
γ =

√
|~p1 − ~p3|2 +m2

γ =
√
|~p2 − ~p4|2 +m2

γ = ER
γ ≡ Eγ.

Therefore

Ei − EA
n = ∆E − Eγ.

The sum of these factors is∑
n=R,A

e2

Ei − En
=

e2

−∆E − Eγ
+

e2

∆E − Eγ
=

2Eγe
2

∆E2 − E2
γ

= 2Eγ
e2

k2 −m2
γ

.

Here we defined kµ = (∆E, ~pγ)
µ, and k2 = kµk

µ is a Lorentz-invariant inner product.

Ignoring the normalization factor 2Eγ, this is the Lorentz-invariant momentum-space

propagator for the φ particle with four-momentum kµ. Notice that there is no actual

particle with that four-momentum! It is a superposition of a real particle going forward

in time and its (also real) antiparticle going backward in time. If we followed the iε

that would work out, too, to give the Feynman propagator.

3.6 From correlation functions to the S matrix

Now we resume our inexorable progress towards observable physics (such as cross sec-

tions and lifetimes). We would like to unpack the physics contained in the correlation

functions which we’ve learned to compute in perturbation theory. The first interesting

one is the two-point function.

Recall our expression for the momentum-space two-point function (3.17) in terms

of a sum of connected diagrams, ordered by the number of powers of λ. Let’s factor

out the overall delta function by writing:

G̃(2)(p1, p2) ≡ /δ
d+1

(p1 + p2)G̃(2)(p1).
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It will be useful to re-organize this sum, in the following way:

Here’s the pattern: we define a diagram to be one-particle irreducible (1PI) if it cannot

be disconnected by cutting through a single internal propagator. So for example,

is 1PI, but is not; rather, the latter contributes to the bit with two

1PI insertions. Then

G̃(2)(p) = +· · ·

So that we may write equations without pictures, let

−iΣ(p) ≡

denote the 1PI two-point function. Σ being 1PI means that the external lines sticking

out of it are ‘nubbins,’ placeholders where propagators may be attached. That’s why

there are no blue dots at the ends.

Now suppose we know Σ. It is known as the self-energy, for reasons we will see

next. Then we can write

G̃(2)(p) =
i

p2 −m2
0

+
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

+
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

(−iΣ(p))
i

p2 −m2
0

+ · · ·

=
i

p2 −m2
0

(
1 +

Σ

p2 −m2
0

+

(
Σ

p2 −m2
0

)2

+ · · ·

)
=

i

p2 −m2
0

1

1− Σ
p2−m2

0

=
i

p2 −m2
0 − Σ(p)

(3.19)

We see that the self-energy shifts the m2 of the particle, it moves the location of the

pole in the propagator. In the interacting theory, m2
0 + Σ(p)|pole is the physical mass,
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while m0 (what we’ve been calling m until just now) is deprecatingly called the ‘bare

mass’. For p2 ∼ m2, we will write

G̃(2)(p) ≡
(

iZ

p2 −m2
+ regular bits

)
(3.20)

This equation defines the residue Z which is called the ‘wavefunction renormalization

factor’. It is 1 in the free theory, and represents the amplitude for the field to create

a particle, and the other terms, which are not singular at p2 = m2, represent the

amplitude for the field to do something else (such as create multiparticle states), and

are absent in the free theory. Later (in 215C?) we will see that unitarity requires Z < 1.

Notice that if we know Σ only to some order in perturbation theory, then (3.19) is still

true, up to corrections at higher order.

The notion of 1PI extends to diagrams for G̃(n>2)(p1 · · · pn). Let

G̃
(n)
1PI(p1 · · · pn) ≡

where the blob indicates the sum over all 1PI diagrams with n external nubbins (notice

that these do not have the blue circles that were present before). This means G1PI

does not include diagrams like:

or .

Notice that 1PI diagrams are amputated – their external limbs have been cut off.

This is almost what we need to make S-matrix elements. If we multiply the n-

point function by
∏n

i=1
p2i−m2

√
Z

we cancel out the propagators from the external legs.

This object is naturally called the amputated n-point function. It differs from the 1PI

n-point Green’s function because of diagrams like this:
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which is amputated but not 1PI. If we then take p2
i → m2, we keep only the part of G̃

which is singular on the mass-shell. And here’s why we care about that:

Claim (the LSZ reduction formula):

Sfi ≡ 〈~p1 · · · ~pn|S|~k1 · · ·~km〉 =
n+m∏
a=1

(
lim

P 0
a→E~Pa

P 2
a −m2

i
√
Z

)
G̃(n+m) (k1 · · · km,−p1 · · · − pn)

(3.21)

where Pa ∈ {pi, ki}. In words: the S-matrix elements are obtained from Green’s

functions by amputating the external legs, and putting the momenta on-shell. Notice

that choosing all the final momenta pi different from all the initial momenta ki goes a

long way towards eliminating diagrams which are not fully connected.

This formula provides the bridge from time-ordered Green’s functions (which we

know how to compute in perturbation theory now) and the S-matrix, which collects

probability amplitudes for things to happen to particles, in terms of which we may

compute cross sections and lifetimes. Let us spend just another moment inspecting the

construction of this fine conveyance.

Why is LSZ true? Here’s the argument I’ve found which best combines concision

and truthiness. [It is mainly from the nice book by Maggiore; I also like Schwartz’

chapter 5; Peskin’s argument is in section 4.6.] The argument has several steps. The

field operators in this discussion are all in Heisenberg picture.

1. First, for a free field, the mode expansion implies that we can extract the ladder

operators by:
√

2ωkak = i

∫
ddx eikx (−iωk + ∂0)φfree(x)

√
2ωka

†
k = −i

∫
ddx e−ikx (+iωk + ∂0)φfree(x) (3.22)

Notice that the LHS is independent of time, but the integrand of the RHS is not.

2. Now, recall our brontosaurus expedient (introduced previously after (3.7)): turn

the interactions off at t = ±∞.18 This allows us to write the field in terms of

some pretend free fields

φ(x)

{
t→−∞
 Z

1
2φin(x)

t→+∞
 Z

1
2φout(x)

.

18Here’s why this is really bad: everything we might scatter is a boundstate. For example: atoms,

nuclei, nucleons etc... But if there are no interactions there are no boundstates.
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The factors of
√
Z are required to get the correct two point functions (3.20) near

the mass shell. The mode operators for φin are called a(in) etc. φin, out are free

fields: their full hamiltonian is H0. They are in Heisenberg picture, and the

reference time for φin, out is ±∞ respectively. Since they are free fields, we can

use (3.22) to write

√
2ωka

(in)† = −i

∫
ddx e−ikx (+iωk + ∂0)φin(x) = −iZ−1/2

∫
t→−∞

ddx e−ikx (+iωk + ∂0)φ(x)

where in the second step we used the independence on time in (3.22), even though

φ(x) is not a free field.

3. Now make this expression covariant using the fundamental theorem of calculus:

√
2ωk

(
a(in)† − a(out)†) = iZ−1/2

∫ ∞
−∞

dt∂t

(∫
ddx e−ikx (iωk + ∂0)φ(x)

)

= iZ−1/2

∫
dd+1x

e−ikx∂2
0φ− φ · ∂2

0 e
−ikµxµ︸ ︷︷ ︸

(~∇2−m2)e−ikx


IBP
= iZ−1/2

∫
dd+1xe−ikx

(
2 +m2

)
φ(x) (3.23)

In the last step we made a promise to only use wavepackets for external states,

so that we can do IBP in space.

4. Now, here’s where the S-matrix enters. Assume none of the incoming momenta

ki is the same as any outgoing momentum pj.

〈p1 · · · pn|S |k1 · · · km〉
=

∏
p,k

√
2ω 〈0|

∏
aout
p S

∏
ain†
k |0〉

=
∏
p,k

√
2ω 〈0| T

(∏
aout
p S

∏
ain†
k

)
|0〉 a

out
lives at t = +∞

=
∏
p,k

√
2ω 〈0| T

(∏
aout
p S

(
ain†
k1
− aout†

k1

) m∏
2

ain†
k

)
|0〉 since pi 6= kj , use 〈0| aout† = 0

(3.23)
= iZ−1/2

∫
dd+1xe−ik1x1 〈0| T

(∏
aout
p S

(
2 +m2

)
φ(x1)

m∏
2

ain†
k

)
|0〉

= iZ−1/2

∫
dd+1xe−ik1x1

(
2 +m2

)
〈0| T

(∏
aout
p Sφ(x1)

m∏
2

ain†
k

)
|0〉+ X

In the last step, X comes from where the 2x1 hits the time ordering symbol. This

gives terms which will not matter when we take k2 → m2, I promise.
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5. Now do this for every particle to get

〈p1 · · · pn|S |k1 · · · km〉 =
∏m

j=1

∫
dd+1yj e

+ipjyjZ−1/2 (2j +m2)∏n
i=1

∫
dd+1xi e

−ikixiZ−1/2 (2i +m2) 〈0| T φ(xi) · · ·φ(yj)S |0〉+ X

The x and y integrals are just fourier transforms, and this says that near the

mass shell,

G̃(n+m)(k1 · · · km,−p1 · · · − pn) =
n+m∏
a

i
√
Z

P 2
a −m2

〈p1 · · · pn|S |k1 · · · km〉+ regular

(where Pa ∈ {pj, ki}) which is the same as (3.21).

Comment: In our discussion of QFT, a special role has been played by fields called

φ. Suppose we have some other (say hermitian) local operator O such that

〈p| O(x) |Ω〉 = ZOe
ipx

where 〈p| is a one-particle state made by our friend φ (we could put some labels, e.g. for

spin or polarization or flavor, on both the operator and the state, but let’s not). Such

an O is called an ‘interpolating field’ or ‘interpolating operator’. And suppose we have

information about the correlation functions of O:

G
(n)
O (1 · · ·n) ≡ 〈Ω| T (O1(x1) · · · On(xn)) |Ω〉 .

There is a more general statement of LSZ:∏
a∈i

(
Z
−1/2
a i

∫
dd+1xae

−ipaxa (2a +m2
a)
)

∏
b∈f

(
Z
−1/2
b i

∫
dd+1xbe

+ipbxb (2b +m2
b)
)
G

(n)
O (1 · · ·n)

= 〈{pf}|S |{pa}〉 (3.24)

This more general statement follows as above if we can write Oa
t→−∞
 
√
Zaφin.

Here is a summary of the long logical route connecting Feynman diagrams to mea-

surable quantities:
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One step is left.

[End of Lecture 12]
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S-matrix from Feynman diagrams. The end result of the previous discussion is

a prescription to compute S-matrix elements from Feynman diagrams. In a translation-

invariant system, the S matrix always has a delta function outside of it. Also we are

not so interested in the diagonal elements of the S matrix where nothing happens. So

more useful than the S matrix itself are the scattering amplitudes M defined by

〈f | (S − 1) |i〉 ≡ (2π)d+1δ(d+1)

(∑
f

pf −
∑
i

pi

)
iMfi . (3.25)

(The object iM/δ
d+1

(
∑
p) is sometimes called the transfer matrix. The i is a conven-

tion.)

The rules for the Feynman diagram calculation ofM (for φ4 theory, as a represen-

tative example) are:

1. Draw all amputated diagrams with appropriate external nubbins for the initial

and final states. For a diagram with NL loops think of NL letters that are like k

or q or p to call the undetermined loop momenta.

2. For each vertex, impose momentum conservation and multiply by the coupling

(−iλ).

3. For each internal line, put a propagator.

4. For each loop, integrate over the associated momentum
∫

d̄d+1k.

A comment about rule 1: For tree-level diagrams (diagrams with no loops), ‘am-

putate’ just means leave off the propagators for the external lines. More generally, it

means leave off the resummed propagator (3.19). In particular, a diagram like

is already included by using the correct Z and the correct m.

Example: snucleon scattering. [Here we follow Tong §3.5 very closely] Let’s

return to the example with a complex scalar field Φ and a real scalar field φ with

Lagrangian (3.8). Relative to φ4 theory, the differences are: we have two kinds of

propagators, one of which is oriented, and instead of a 4-point vertex which costs −iλ,

we have a 3-point vertex for φΦ?Φ which costs −ig.

Let’s consider 2 → 2 scattering of Φ particles [recall HW 5 or see Tong §3.3.3 for

the artisanal version of this calculation], so

|i〉 = |~p1, ~p2〉 , |f〉 = |~p3, ~p4〉 with |~pi, ~pj〉 ≡
√

2E~pi

√
2E~pjb

†
~pi

b†~pj |0〉 .
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The Feynman rules above give, to leading nonzero order,

iM =

= (−ig)2

(
i

(p1 − p3)2 −M2 + iε
+

i

(p1 − p4)2 −M2 + iε

)
. (3.26)

The diagrams depict two ‘snucleons’ Φ (solid lines with arrows indicating snucleons

versus antisnucleons) exchanging a meson φ (double gray line, with no arrow) with

momentum k ≡ p1 − p3 = p2 − p4 (first term) or k ≡ p1 − p4 = p2 − p3 (second term).

Time goes to the left as always. Notice that here I am being careful about using arrows

on the lines to indicate flow of particle number through the diagram, while the extra

(light blue) arrows indicate momentum flow.

The meson in these diagrams is virtual, or off-shell, in the sense that it does not

satisfy its equation of motion k2 6= M2. As we saw in 3.5, each of these diagrams is

actually the sum of retarded and advanced exchange of real on-shell particles. The two

diagrams included in (3.26) make the amplitude symmetric under interchanging the

two particles in the initial or final state, as it must be because they are indistinguishable

bosons.

Two more examples with the same ingredients are useful for comparison. If we

instead scatter a snucleon and an anti-snucleon, so |i〉 =
√

2E~p1
√

2E~p2b
†
~p1

c†~p2 |0〉, then

the leading diagrams are

iM =

= (−ig)2

(
i

(p1 + p2)2 −M2 + iε
+

i

(p1 − p3)2 −M2 + iε

)
. (3.27)

This one has a new ingredient: in the first diagram, the meson momentum is k = p1+p2,

which can be on-shell, and the iε matters. This will produce a big bump, a resonance,

in the answer as a function of the incoming center-of-mass energy
√
s ≡

√
(p1 + p2)2.
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Finally, we can scatter a meson and a snucleon:

iM =

= (−ig)2

(
i

(p+ k)2 −m2 + iε
+

i

(p− k′)2 −m2 + iε

)
. (3.28)

Now the intermediate state is a snucleon.

There is a common notation for the Lorentz-invariant combinations of the momenta

appearing in these various processes, called Mandelstam variables, of which s is one.

A concise summary appears in §3.5.1 of Tong’s notes.

3.7 From the S-matrix to observable physics

Now, finally, we extract some physics that can be measured from all the machinery

we’ve built.

Mediation of forces. Consider the non-relativistic (NR) limit of the snucleon-

snucleon scattering amplitude (3.26). In the center-of-mass frame ~p ≡ ~p1 = −~p2 and

~p′ ≡ ~p3 = −~p4. In the NR limit, |~p| � m, and so p0
1 = m(1 + 1

2

(
|~p|
m

)2

+ · · · ).
Energy-momentum conservation says p1 + p2 = p3 + p4, so |~p′| = |~p| � m as well.

In this limit, the meson propagator (in the first diagram) depends on (p1 − p3)2 =

(p0
1 − p0

3)2 − (~p− ~p′)2 = −(~p− ~p′)2, so the amplitude reduces to

iM = +ig2

(
1

(~p− ~p′)2 −M2
+

1

(~p+ ~p′)2 −M2

)
.

Now compare to NR QM. The scattering amplitude in the COM frame for two particles

with relative position ~r and potential U(~r) is, in the first Born approximation, 19

iABorn(~p→ ~p′) = NR 〈~p′|U(~r) |~p〉NR = −
∫
ddrU(~r)e−i(~p−~p

′)·~r

where the two-particle state with NR normalization is

|~p〉NR =
1√

2E1

√
2E2

|p1, p2〉 =
1

2m
|p1, p2〉 .

19Please beware my signs here; thanks to Ken Intriligator for pointing out a problem here.
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The two diagrams in the relativistic answer come from Bose statistics, which means we

can’t distinguish ~p→ ±~p′ from each other; to infer the potential we can just compare

the first diagram, (2m)2iABorn(~p→ ~p′) = +ig2 1
(~p−~p′)2−M2 to find:

∫
ddr U(~r)e−i(~p−~p

′)·~r = −
∫

d̄dqM(q)ei~q·~r = −
(
g

2m

)2

(~p− ~p′)2 +M2

which means, in d = 3,20

U(~r) = −
(
g

2m

)2

4πr
e−Mr.

This is the Yukawa potential. (You encountered this potential on the homework, for

the same reason, by a different approach.) It has a range, M−1, determined by the

mass of the exchanged particle. If we take M → 0, it becomes the Coulomb potential.

The sign means that it is attractive, even though this is the potential between particle

and particle; this is a general consequence of scalar exchange. Notice that in d = 3,

the Yukawa coupling between scalars has 1 = [
∫
d4xgφΦ2] = −4 + 3 + [g] so g/m is

dimensionless.

A brief warning: while it is satisfying to make contact with something familiar

here, the way we actually measure any such potential is by scattering the particles and

measuring cross-sections.

[End of Lecture 13]

20For convenience, here’s the integral:∫
d̄3k

ei
~k·~x

~k2 +M2

y≡cos θ
=

1

(2π)2

∫ ∞
0

k2dk

k2 +M2

∫ 1

−1
dyeikyr︸ ︷︷ ︸

=2 sin kr
kr

=
1

(2π)2r

∫ ∞
−∞

dkk sin kr

k2 +M2

=
1

(2π)2r

(
1

2i

∫ ∞
−∞

dk
keikr

k2 +M2
+ h.c.

)
close contour in UHP for free

=
1

(2π)2r

1

2i
2πi

iMei(iM)r

2iM
· 2 =

e−Mr

4πr
.
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Lifetimes. [Schwartz, chapter 4] How do we compute the lifetime of an unstable

particle in QFT? Consider such a particle in its rest frame, pµ = (M,~0)µ. Let dP be

the probability that the particle decays (into some set of final states f) during a time

T . The decay rate is then dΓ ≡ 1
T
dP , the probability per unit time. I put a dΓ to

indicate a differential decay rate into some particular set of final states. If we sum over

all possible final states, we can make a practical, frequentist definition of the decay

rate, with the idea that we have a big pile of particles and we just count how many go

away in some time window:

Γ ≡ # of decays per unit time

# of particles
≡ 1

τ
(3.29)

where τ is the lifetime.

Fortunately for us, particles which are stable in the free theory can decay because

of weak interactions; in such a case, we can relate dP to an S matrix element for a

process which takes one particle to n particles, Sn←1

(
{pj}nj=1 ← (M,~0)

)
. So:

dΓ ≡ 1

T
dP =

1

T

|〈f |S |i〉|2

〈f |f〉 〈i|i〉
dΠf (3.30)

Here are two new ingredients:

(1) dΠf is the volume of the region of final-state phase space, dΠf ∝
∏n

j=1d̄
dpj. We

are allowing, as we must, for imperfect measurements. We will normalize the

density of final states so that
∫
dΠ = 1. Putting back the IR and UV walls of

our padded room as in (1.3), we take the continuum limit (N →∞) of

xi =
i

N
L, pi =

2π

L

i

N
, i = 1 · · ·N

which requires, for each spatial dimension,

∆x
∑
i

=
L

N

∑
i

N→∞,Lfixed
 

∫
dx = L and

1

2π
∆p
∑
i

=
1

2π

2π

LN

∑
i

N→∞,Lfixed
 

∫
d̄p = L−1.

This gives

dΠ =
n∏
j=1

Vd̄dpj,

a factor of the volume of space V = Ld for each final-state particle.

(2) The normalization factors 〈f |f〉 〈i|i〉 are not so innocent as they look, because of

our relativistic state normalization. Recall that |~p〉 =
√

2ω~pa
†
~p |0〉 the price for
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the relativistic invariance of which is〈
~k|~p
〉

=
√

2ω~p2ω~k · 〈0| aka
†
p |0〉︸ ︷︷ ︸

=〈0|[ak,a
†
p]|0〉=/δd(~k−~p)

= 2ω~p/δ
d
(~p− ~k)

Therefore,

〈~p|~p〉 = 2ω~p/δ
d
(0) = 2ω~p

(∫
dx ei(p=0)x

)d
= 2ω~pV.

Therefore,

|i〉 =
√

2Ma†~0 |0〉 =⇒ 〈i|i〉 = 2MV

|f〉 = |{~pj}〉 =⇒ 〈f |f〉 =
∏
j

(2ωjV ) (3.31)

where I’ve abbreviated ωj ≡ ω~pj .

Now it is time to square the quantum amplitude

〈f |S − 1|i〉 = i/δ
d+1

(pT ) 〈f |M |i〉

(pT =
∑
pi−

∑
pf is the total momentum change) to get the probability (3.30). Again

we encounter a δ2, and again we use (2π)d+1δd+1(0) = TV , so as long as f 6= i, we have

| 〈f | (S − 1) |i〉 |2 = /δ
d+1

(0)/δ
d+1

(pT )| 〈f |M |i〉 |2 = V T/δ
d+1

(pT )|M|2

so that

dP = TV /δ
d+1

(pT )
1

2M
∏n

j (2ωjV )
|M|2

n∏
j

Vd̄dpj

=
T

2M
|M|2dΠLI (3.32)

where all the factors of V went away (!), and

dΠLI ≡
∏

final state,j

d̄dpj
2ωj

/δ
d+1

(pT )

is a Lorentz-invariant measure on the allowed final-state phase space. You can see that

this is the case by the same calculation that led us to stick those 2ωjs in the states.

One more step to physics:

dΓ =
1

T
dP =

1

T

T

2M
|M|2dΠLI = |M|2︸ ︷︷ ︸

dynamics

1

2M
dΠLI︸ ︷︷ ︸

kinematics
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dΓ = |M|2 1

2M
dΠLI .

On the RHS is all stuff we know how to calculate (recall the Feynman rules forM that

we listed after (3.25)), and on the LHS is a particle decay rate.

The boxed formula gives the decay rate in the rest from of the unstable particle. In

other frames, the lifetime gets time-dilated. This must be true on general grounds of

special relativity, but we can see this directly since in a general frame, the normalization

of the initial state is not 〈i|i〉rest frame =
√

2m but 〈i|i〉 =
√

2E. Therefore

Γrest frame

Γ
=
E

m
= γ ≤ 1

and τ = τ rest frame/γ ≥ τ rest frame.

Cross sections. If we are not in the convenient situation of having in our hands a

big pile of particles which are stable in the free theory and decay because of not-too-

strong interactions, we need to be more proactive to get physics to come out: we have to

smash the particles together. When doing this, we send beams of particles at each other

and see what comes out. We will treat these beams as perfectly collimated momentum

eigenstates; if something goes wrong, we’ll make a more accurate representation and put

them in better-localized wavepackets. A quantity which is good because it is intrinsic

to the particles composing the beams is the scattering cross section, σ, defined by

Number of events of interest ≡ NANB

A
σ

where A is the common area of overlap of the beams A and B, and NA,B are the

number of particles in each beam. (Peskin does a bit more

worrying at this point, for example, about whether the beams have constant density

of particles.) By ‘events of interest’ I mean for example those particles which end up

going in a particular direction, for example in a solid angle dΩ(θ, ϕ). Restricting to

events of interest in particular direction gives the differential cross section, dσ
dΩ

. The

notation is motivated by the idea that σ =
∫
dΩ dσ

dΩ
.

The cross-section is the effective cross-sectional area of the

beam taken out of the beam and put into the particular state

of interest. Here is a picture (adapated from Schwartz’ book)

which I think makes vivid the idea behind the definition of

a cross section:

Now we relate σ to the S-matrix. The scattering rate dwfi ≡ dPfi
T

is the scattering

probability per unit time, for some fixed initial and final particle states. In a beam,
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this is related to the cross section by

dw = jdσ (3.33)

where j is the particle current density, which for the case of scattering from an initial

state with two particles A+B → ... is

j =
relative velocity of A and B

volume
=
vAB
V

.

The number of particles in each beam does not appear in (3.33) because the BHS is

intensive. Putting together these statements, we can relate the cross section to the

scattering probability:

dσ =
1

T

1

j

dN

Nincoming︸ ︷︷ ︸
=dPfi

=
V

T

1

|~vA − ~vB|
dPfi. (3.34)

The first equation in (3.34) is a practical frequentist origin of (3.33), analogous to

(3.29) for decay rates. And just as in the discussion of lifetimes above,

dP =
|〈f |S |i〉|2

〈f |f〉 〈i|i〉
dΠf .

Everything is as before except for the different initial state:

|i〉 = |~pA, ~pB〉 =⇒ 〈i|i〉 = (2ωAV )(2ωBV ).

Squaring the amplitude gives

dP =
T

V

1

2ωA2ωB
|M|2dΠLI ;

the only difference is that we replace 1
2M

with the factors for the 2-particle initial state.

Finally, dσ = V
T

1
|~vA−~vB |

dP gives

dσ =
1

2ωA2ωB

1

|~vA − ~vB|
|M|2dΠLI .

Again all the IR-divergent factors of V and T went away in the intrinsic physical

quantity, as they must.
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3.7.1 Two-body phase space

[Schwartz §5.1] To make the formulae of the previous section more concrete, let’s sim-

plify them for the case of n = 2: two particles in the final state, whose momenta we’ll

call p1, p2. Note that overall momentum conservation implies p1 + p2 = pCM ; we can

use this to eliminate p2. In that case

dΠLI = /δ
d+1

(pT )
d̄dp1

2E1

d̄dp2

2E2

Ei ≡
√
|pi|2 +m2

i

=
1

4(2π)2d−(d+1)

1

E1E2

δ(E1 + E2 − ECM) ddp1︸︷︷︸
=dd−1Ωpd−1

1 dp1

p1 ≡ |p1| > 0

=
1

4(2π)d−1

dd−1Ωpd−1
1 dp1

E1E2

θ(p1)δ(x) x(p1) ≡ E1(p1) + E2(p2 = pCM − p1)− ECM

=
1

4(2π)d−1

dd−1Ωpd−2
1

E1E2

E1E2

ECM
dxδ(x)︸ ︷︷ ︸

=1

θ(ECM −m1 −m2) dp1 =
dp1

dx
dx =

E1E2

E1 + E2

dx

p1

In the last step, we used the fact that p1 ≥ 0 means E1(p1) ≥ m1, E2(p2 = pCM −p1) ≥
m2.

2→ 2 scattering in d = 3. In the special case where the initial state also consists

of two particles, we can also simplify the formula for the cross section. Let the initial

momenta be kA, kB. In particular, the relative velocity factor is

|vA − vB|
COM~kA=−~kB=

∣∣∣∣ |kA|EkA
+
|kB|
EkB

∣∣∣∣ = |kA|
ECM
EkAEkB

Therefore (
dσ

dΩ

)
COM

=
1

64π2E2
CM

|~p1|
|~kA|
|M|2θ(ECM −m1 −m2). (3.35)

Warning: for identical particles in the final state, one must be careful about over-

counting in the integral over angles, since a rotation by π exchanges them. In this case

σ = 1
2

∫
4π
dΩ dσ

dΩ
.

[End of Lecture 14]
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4 Spinor fields and fermions

[Peskin chapter 3] Now we need to confront the possibility of fields which transform in

more interesting ways under Lorentz transformations. To do so let’s back up a bit.

4.1 More on symmetries in QFT

Lightning summary of group theory. A group G = {gi} is a set of abstract

elements,

1. two of which can be multiplied to give a third g1g2 ∈ G.

2. The product is associative (g1g2)g3 = g1(g2g3)

3. and has an identity element g0gi = gi for all gi

4. and every element has an inverse, ∀i,∃g−1
i such that gig

−1
i = g0. (we will need to

worry about distinct left and right inverses).

The order of G, denoted |G|, is the number of elements of the group. G is abelian if

the product is commutative.

A Lie group is a group whose elements depend smoothly on continuous parameters,

g(θ). These then provide local coordinates on the group manifold. The dimension

of a Lie group is the number of coordinates (to be distinguished from |G|, which is

continuously infinite for a Lie group).

A (linear) representation R of a group assigns to each abstract element g of the

group a linear operator D̂R(g) on some vector space H, R : g 7→ D̂R(g) in a way which

respects the group law (it is a group homomorphism): meaning that D̂R(g0) = 1 and

D̂R(g1)D̂R(g2) = D̂R(g1g2).21 If we choose a basis of the vector space, then D̂R(g) is

a matrix. Two representations R and R′ are regarded as the same R ' R′ if they are

related by a change of basis on H, DR(g) = S−1DR′(g)S (with S independent of g!). A

reducible representation is one for which the matrices can be made block diagonal by

a basis change. A reducible representation is equivalent to R1 ⊕ R2 ⊕ ... a direct sum

of irreducible representations, DR '

DR1 0

0 DR2

. . .

.

21Since the overall phase of a vector in H is unphysical, quantum mechanics allows for projective

representations where the group law is only satisfied up to phases. We’ll see an example below.
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The dimension of R is the dimension of H as a vector space. Notice that different

representations of the same group G can have different dimensions!

What properties of G are inherent in all of its representations? For the case of

Lie groups, one answer is the Lie algebra relations. Consider a (say n-dimensional)

representation of a group element near the identity (which let’s label the identity

element g0 ≡ e ≡ g(θ = 0) by the coordinate value θ = 0):

DR(g(θ ∼ 0)) = 1 + iθaT
a
R +O(θ2), i .e. T aR ≡ −i∂θaDR(g(θ))|θ=0

where T aR are the generators of G in the representation R. In a basis for the vector

space, they are n× n matrices.

The generators T a determine a basis of the tangent space of

G at the identity, TeG (or equivalently, by the group action,

at any other point). A finite transformation (in the compo-

nent of the Lie group which is continuously connected to the

identity element) can be written as

DR(g(θ)) = eiθaT
a
R

which is unitary if T = T †.

Given two such elements DR(g(θ1)) = eiθ
1
aT

a
R and DR(g(θ2)) = eiθ

2
aT

a
R , their product

must give a third:

DR(g1)DR(g2) = DR(g1g2) = eiθ
3
aT

a
R (4.1)

for some θ3. Expanding the log of the BHS of (4.1) to second order in the θs (see

Maggiore chapter 2.1 for more detail), we learn that we must have

θ3
a = θ1

c + θ2
c −

1

2
θ1
bθ

2
cf

bc
a +O(θ3)

which implies that

[T a, T b] = ifabc T
c

which relation is called the Lie algebra g of G, and the fs are called structure constants

of g or G. f does not depend on the representation. For those of you comfortable

with differential geometry, an easy way to see this is that the commutator is the Lie

bracket between two tangent vectors (which gives another tangent vector). Note that

the normalization of the T a is ambiguous, and rescaling T rescales f . A common

convention is to choose an orthonormal basis

trT aT b =
1

2
δab. (4.2)
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Notice that we often use lowercase letters to denote the algebra and uppercase letters

to denote the group, which is natural since the algebra generates small group transfor-

mations. The Lie algebra is defined in the neighborhood of the identity element, but

by conjugating by finite transformations, the tangent space to any point on the group

has the same structure, so it determines the local structure. It doesn’t know about

global, discrete issues, like disconnected components, so different groups can have the

same Lie algebra.

A casimir of the algebra is an operator made from the generators which commutes

with all of them. Acting on an irreducible representation (≡ one which is not reducible

≡ irrep), where all the states can be made from each other by the action of products

of generators, it is proportional to the identity.

Example: representations of the rotation group. This will be a fancy pack-

aging of familiar stuff which will make the step to Lorentz transformations painless (I

hope). Recall from QM that generators of rotations about the axes x, y, z = 1, 2, 3,

Ji=1,2,3, satisfy the algebra so(3) = su(3):

[Ji,Jj] = iεijkJk. (4.3)

So the structure constants are f ijk = εijlδlk. A Casimir of this algebra is J2 =
∑

i (J
i)

2
,

which acts of j(j + 1) on the spin-j representation, whose dimension is 2j + 1, any

non-negative integer. A finite rotation on H is

D(n̂, θ) = eiθn̂·
~J

where n̂ is a unit vector and θ is an angle, so three real parameters. Familiar matrix

solutions of (4.3) are its action on vectors, where the generators are 3× 3 matrices:(
J i(j=1)

)
jk

= iεijk

and its 2d representation on the Hilbert space of a spin-1
2

object:

J i(j= 1
2) =

1

2
σi .

Also, its one-dimensional representation, on a scalar, has J i(j=0) = 0, so eiθJ(j=0) = 1.

More generally, the 2j + 1 dimensional representation is D(j)(θ) = e−iθ
aJa with(

J3
)
mm′

= δmm′m,
(
J±
)
mm′
≡
(
J1 ± iJ2

)
mm′

= δm′,m∓1

√
(j ∓m)(j ±m+ 1),

with the basis labels taking the 2j + 1 values m,m′ ∈ {−j,−j + 1 · · · j − 1, j}.

Notice that the rotation algebra (4.3) is the statement that Ji itself transforms as

a vector (j = 1) under infinitesimal rotations. What I mean by this is: the action of G
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on H by |ψ〉 → DR |ψ〉 implies an action on linear operators on H by O 7→ DROD†R.

Relabelling the reference axes x, y, z that we used to label Ji by a rotation g produces

a rotation by the same angle in the 3d representation. The reference axes themselves

transform in the spin-1 representation:

D(j=1)(g)kjJ
j = DR(g)JkDR(g)†,

the infinitesimal version of which is (4.3) (or maybe its complex conjugate). More

generally, the equation

[J i, Kj] = iεijkKk

is the statement that K transforms as a vector.

General d. Some of what I have said so far about rotations is special to rotations

in d = 3. In particular, the notion of “axis of rotation” is (d = 3)-centric. More

generally, a rotation is specified by a (2d) plane of rotation; in d = 3 we can specify a

plane by its normal direction, the one that’s left out, J i ≡ εijkJ jk, in terms of which

the so(3) lie algebra is (using ε identities)

[J ij, Jkl] = i
(
δjkJ il + δilJ jk − δikJ jl − δjlJ ik

)
. (4.4)

The vector representation is (
J ij(1)

)k
l = i

(
δikδjl − δ

jkδil
)

(4.5)

(that is, there is a −i in the ij entry and an i in the ji entry and zeros everywhere

else). In d = 3, the spinor representation is

J ij
( 1
2)

= εijk
1

2
σk =

i

4
[σi, σj]. (4.6)

For general d, we can make a spinor representation of dimension k if we find d k × k
matrices γi which satisfy the Clifford algebra {γi, γj} = 2δij (as the Paulis do). More

on this soon.

Define the group O(d) by its action on the d-dimensional vector representation:

d× d real matrices O preserving lengths of vectors under ni 7→ Oijnj : |On|2 !
= |n|2 =

ninjδij,∀ni :

OtO = 1 or, in a basis,
(
Ot
)
i
jδjkOkl = δil. (4.7)

In words: O(d) transformations preserve the bilinear form δij. Looking in the connected

component with the identity22, O = e−iθ
ijJij , (4.7) implies that the generators J ij,

22For real matrices OtO = 1 says 1 = detOtO = (detO)
2
, so detO = ±1 gives two disconnected

components. The component with detO = 1 (containing the identity) is called SO(d). The other

component is obtained by multiplying by a diagonal matrix with an odd number of minus signs on

the diagonal.
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i, j = 1..d satisfy are antisymmetric and pure imaginary. There are d(d−1)
2

of them, and

a good basis is given by (4.5). This agrees with the d = 3 case above where there are
3·2
2

= 3 such generators. These satisfy (4.4).

A special case is SO(2) where the one generator is T =

(
0 −i

i 0

)
= σ2, and the finite

transformation is

eiβT = 1 cos β + iσ2 sin β =

(
cos β sin β

− sin β cos β

)
.

U(N). Another important example is the Lie group U(N) defined by its N -

dimensional representation as N × N complex unitary matrices 1 = M †M = MM †.

This one doesn’t arise as a spacetime symmetry, but is crucial in the study of gauge

theory, and already arose as an example of a global symmetry on the homework. We

can generate these M = e−iβ
aTa by any hermitian N ×N matrices T a. A basis is given

by the following set of generators satisfying (4.2):

T 1 =
1

2


1

−1

0
. . .

 , T 2 =
1

3


1

1

−2

0
. . .

 , T 3 =
1

6



1

1

1

−3

0
. . .


, · · ·

for i 6= j :
(
T ijx
)k

l =
1

2

(
δikδjl + δjkδil

)
,
(
T ijy
)k

l =
i

2

(
δikδjl − δ

jkδil
)
, TN

2

=
1√
2N

1N×N

Altogether there are N(N−1)
2
· 2 + N = N2 of these. Only the last one has a nonzero

trace. The ones called T ijx and T ijy only have nonzero entries in the ij and ji place,

and are like σx and σy respectively. A finite transformation is

e−iβ
aTa = e−i

∑N2−1
a=1 βaTa︸ ︷︷ ︸
=M

e−iβ
N2

TN
2︸ ︷︷ ︸

=e−iβN
2
/
√

2N

where the first factor has detM = 1 (since log detM = tr logM = −i
∑N2−1

a=1 βatr (T a) =

0) and the second is just a phase. The subgroup with detM = 1 is called SU(N). This

shows that U(N) = SU(N)× U(1).

A special case is SU(2) which has N2 − 1 = 22 − 1 = 3 generators, which are 2× 2

and are T a = 1
2
σa Pauli matrices. So SU(2) and SO(3) have the same lie algebra. They

are not the same group, though, since SU(2) is twice as big: a 2π rotation is not the

identity (but squares to it). Half-integer spin representations of SU(2) are projective
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representations of SO(3) – the SO(3) group law is only satisfied up to a phase (in fact,

a sign).

Lorentz group. The Lorentz group can be defined, like O(d) above, as the linear

transformations preserving (proper) lengths of vectors. This implies

η = ΛtηΛ i.e. ηµν =
(
Λt
)
µ
ρηρσΛσ

ν . (4.8)

There are four disconnected components of solutions to this condition. As for O(d),

taking the det of both sides of (4.8) implies that such a matrix has det Λ = ±1; the

two components are called proper and improper Lorentz transformations, respectively.

The µν = 00 component of (4.8) says

1 =
(
Λ0

0

)2 −
∑
i

(
Λi

0

)2
=⇒

(
Λ0

0

)2 ≥ 1

which has two components of solutions, Λ0
0 ≥ 1 (orthochronous) and Λ0

0 ≤ −1 (not

orthochronous).

Below we will focus on the proper, or-

thochronous component. The other three

components are obtained by multiplying

one of these by one or both of the follow-

ing extra discrete symmetries (whose action

on (real) vectors is P =

(
1

−13×3

)
and

T =

(
−1

13×3

)
. (A warning about time

reversal: In order to preserve the time evo-

lution operator e−iHt while reversing t and

preserving the Hamiltonian, the time rever-

sal transformation T must also be accom-

panied by complex conjugation K : i→ −i,

and the combined operation T = T ⊗K is

therefore antilinear.)

The identity component is called SO(1, d). More generally O(m,n) is the group of

linear operations preserving the matrix with m −1s and n +1s on the diagonal, which

I will also call ηµν . All the steps leading to the associated algebra (4.4) (and generators

in the m + n dimensional representation (4.5)) are the same as for SO(d) with the

replacement δij 7→ ηµν . We will nevertheless resort to some special features of the case

d = 3 to build representations.

[End of Lecture 15]
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4.2 Representations of the Lorentz group on fields

Consider a Lorentz-invariant field theory of a collection of fields φr = (φ1...φn, ψα, Aµ · · ·)r.
Together they form a (in general reducible) representation of the Lorentz group

φr(x) 7→ Drs(Λ)φs(Λx)

whereDrs(Λ) is some matrix representation. So far we know two possibilities: the scalar

(one-dimensional) representation, where D(Λ) = 1, and the vector (d+ 1-dimensional)

representation, where D(Λ) = Λ is a (d+ 1)× (d+ 1) matrix. (We can also take direct

sums of these to make reducible representations.)

But there are other irreps. To find more, let’s think about the algebra in more

detail by extracting it from the representation on 4-vectors

V µ → V ′µ = Λµ
νV

ν , Λ(θa, βa) = exp

−iθa T arot︸︷︷︸
≡Ja

−iβa T aboost︸ ︷︷ ︸
≡Ka

 .

Let’s find the fabc by building the Js and Ks: with the time component first, the matrix

representations are

J i =

(
0

Ji

)
(4.9)

where the 3× 3 matrix is (Ji)jk = iεijk and(
Ki
)
j0

= −iδij (4.10)

and other components zero. To check this, consider a boost in the x direction:

e−iβK
1

= 1− iβK1 +O(β)2 =

 1 −β
−β 1

12×2

+O(β2) =

 γ −βγ
−βγ γ

12×2

+O(β2).

(4.11)

That is, δV 0 = βV 1, δV 1 = βV 0, δV 2,3 = 0. The others are related to this one

by a rotation. In (4.11), we only checked the infinitesimal transformation; but this

is enough, by the uniqueness of solutions of linear first-order differential equations:

∂βΛ(β) = −iKΛ with initial condition Λ(β = 0) = 1 has a unique solution, and so our

solution must be the correct one. We’ll use this strategy several times below. 23

23In case you are wondering, the finite transformation is e−iβK
1

=

 coshβ − sinhβ

− sinhβ coshβ

12×2.

 Note

that the parameter β here is the rapidity; it is additive under successive finite boosts, unlike the

velocity (though they agree when infinitesimal sinhβ = v
c +O(v/c)2.)
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Notice with slight horror that the boost generators are not hermitian, and hence

the finite boost operator is not unitary. This is a symptom of the fact that the Lorentz

group is non-compact (in the sense that its group manifold is not compact: think of

the orbits of rotations on a 4-vector (a sphere, compact), and the orbits of a boost on

a 4-vector (a hyperbola, non-compact)). For (faithful) representations of non-compact

groups, ‘unitary’ and ‘finite-dimensional’ are mutually exclusive.

The commutators of these objects are24

[J i, J j] = iεijkJk, [J i, Kj] = iεijkKk (4.12)

(which are respectively the statements that the rotation and boost generators each

form a vector) and

[Ki, Kj] = −iεijkJk (4.13)

which says two boosts commute to a rotation. Notice that these equations are not

changed by the (parity-like) operation K → −K.

Now consider ~J± ≡ 1
2

(
~J ± i ~K

)
. The observation that K → −K changes nothing

implies that they satisfy

[J i+, J
j
−] = 0, [J i±J

j
±] = iεijkJk±,

two independent su(2) algebras, which will be called left and right. Formally, we’ve

shown that as algebras over the complex numbers, so(1, 3) ' su(2)L × su(2)R. But

we know what the representations of su(2)L × su(2)R are! We just have to specify a

representation of each. So we can label states in an irrep by (j+,m+, j−,m−) with

m± ∈ {−j± · · ·+ j±}; this has dimension (2j+ + 1)(2j− + 1).

Let me emphasize here that we are identifying the possible ways that the Lorentz

group can act on fields, not on the particle excitations of such fields. The resulting

unitaries on the Fock space will come later.

Weyl spinors. Let’s focus on the first nontrivial entry in the table. This is a

24Like we did for O(d), we can slick this up, and generalize to other SO(1, d) by collecting the

generators into an antisymmetric matrix Jµν with components J ij = εijkJk, J0i = Ki = −J i0
(exactly as ~E, ~B are collected into Fµν). This object satisfies the direct analog of (4.4)

[Jµν , Jρσ] = i (ηνρJµσ + ηµσJνρ − (µ↔ ν))

and the fundamental (d+ 1-dimensional vector) representation matrices solving this equation are

(Jµν)
ρ
σ = i (ηνρδµσ − (µ↔ ν)) .
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(j+, j−) dim Preview of physics

(0, 0) 1 scalar

(1
2
, 0) 2 left-handed Weyl spinor

(0, 1
2
) 2 right-handed Weyl spinor

(1
2
, 0)⊗ (0, 1

2
) = (1

2
, 1

2
) 2× 2 = 4 4-vector

(1
2
, 0)⊕ (0, 1

2
) 2 + 2 = 4 Dirac spinor (reducible)

(1, 0)⊕ (0, 1) 3 + 3 = 6 V µν = ±εµνρσV ρσ, V µν = −V νµ, antisymmetric tensor

Table 1: Lorentz representations on fields.

2-component field ψ =

(
ψ1

ψ2

)
on which 2× 2 Lorentz matrices act as

D( 1
2
,0)(θ, β) = e−i(θ

iJi+βiKi).

But the fact that it’s a singlet of SU(2)R means that

0 = J i−ψ =
1

2
(J − iK)iψ

that is J = iK when acting on ψ, which says that the nontrivial generators act as

J i+ψ =
1

2
(J + iK)iψ =

1

2
(J + J)iψ = J iψ.

But we know a 2 × 2 representation of this object: ~J( 1
2) = 1

2
~σ and hence ~K = −i1

2
~σ.

You can check that these satisfy the three relations (4.12), (4.13). Therefore

ψα 7→
(
e−i

1
2
θ·σ− 1

2
β·σ
)
α

βψβ =
(
e−

1
2
σ·(β+iθ)

)
α

βψβ ≡Mα
βψβ.

Notice that this matrix M is an ordinary rotation with a complexified angle; it is

actually an SL(2,C) matrix, a general 2 × 2 complex matrix, with unit determinant.

It is common to call the (1
2
, 0) representation a left-handed (L) Weyl spinor.

For the (0, 1
2
) or right-handed representation, χ, the same story obtains but now(

~J+

)
α̇

β̇χβ̇ = 0 and hence J = −iK. Note the dotted indices to distinguish reps of the

two SU(2)s. Therefore

χα̇ 7→
(
e−i

1
2
θ·σ+ 1

2
β·σ
)
α̇

β̇ψβ̇ =
(
e

1
2
σ·(β−iθ)

)
α̇

β̇ .

Please don’t get too hung up on dotting the indices, since as we’ll see, there are ways to

turn an L spinor into an R spinor. For example, the parity operation K → −K, J → J

interchanges the two.

93



Invariants. In order to write Lorentz-invariant local lagrangians, we need to know

how to make Lorentz-invariant quantities out of products of fields and their derivatives.

For example, given Lorentz vectors V µ, Uµ, the object V µUµ = V µUνηµν is a Lorentz

scalar (by the defining property of the Lorentz matrices). Can we make a singlet from

two Weyl spinors, (1
2
, 0) ⊗ (1

2
, 0)? Yes: we know (e.g. from basic QM) that SU(2)

representations combine as 1
2
⊗ 1

2
= 0⊕1 where the triplet (spin one) part is symmetric

and the singlet (spin 0) is the antisymmetric combination, ↑↓ − ↓↑. More explicitly,

ψαξβε
αβ ≡ ψαξ

α is a singlet. To see this explicitly:(
iσ2ψ

)
7→ iσ2e−

1
2

(β+iθ)·σψ Insert 1 = σ2σ2 before ψ

= exp

−1

2

(
~β + i~θ

)
·
(
σ2~σσ2

)︸ ︷︷ ︸
=−~σt

(iσ2ψ
)

which means that if ψα 7→Mα
βψβ, then

ψα ≡
(
iσ2ψ

)t
α 7→ ψβ

(
e+ 1

2
(β+iθ)·~σ

)
β

α ≡ ψβ
(
M−1

)
β
α

so ψαψα is invariant. Notice that on Weyl spinors, we raise and lower indices with

εαβ ≡ (iσ2)
αβ

=

(
0 1

−1 0

)αβ
which is a good idea because it is an invariant tensor, as

we just showed.

The same story holds for the (0, 1
2
) “right-handed” Weyl representation, that is we

can make a singlet using an epsilon tensor. It will be useful to write out the matrices:

χα̇ ≡ εα̇β̇χβ̇ 7→
(
e+ 1

2
(β−iθ)·σt

)α̇
β̇χ

β̇ = χβ̇
(
e+ 1

2
(β−iθ)·σ

)
β̇

α̇ = χβ̇
(
(M?)−1)

β̇
α̇.

Next, we will show that the (1
2
, 1

2
) = (1

2
, 0) ⊗ (0, 1

2
) representation is indeed a 4-

vector. To see why this might be, notice that we just showed that if a left-handed

Weyl spinor transforms as ψ → Mψ then ψ? → M?ψ? transforms like a right-handed

Weyl spinor.

Introduce the following ‘intertwiners’:

σµαα̇ ≡ (1αα̇, ~σαα̇)µ , σ̄µα̇α ≡ (1 α̇α,−~σα̇α)µ .

Our next job is to show that these objects eat a L and an R Weyl spinor and spits

out a vector, or vice versa. So for example, I claim that if Vµ is a vector then Vµσ
µ
αα̇

transforms as (1
2
, 0)⊗(0, 1

2
). And given any two L and R Weyl spinors ψ, χ, ψασµαα̇χ

α̇Vµ
is a singlet.
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To summarize:

(
1

2
, 0) 3 ψL 7→MLψL = e

1
2

(−iθ−β)·σψL

(0,
1

2
) 3 ψR 7→MRψL = e

1
2

(−iθ+β)·σψR

You can see from this expression and σ2σiσ2 = − (σi)
?

that σ2M?
Lσ

2 = MR and

therefore σ2ψ?L ∈ (0, 1
2
).

Claim: for any ξR, ψR ξ†Rσ
µψR is a (complex) 4-vector. To see this, first notice

(using σ† = σ) that ξ†R 7→ ξ†Re
1
2

(+iθ+β)·σ, so

ξ†Rσ
µψR 7→ ξ†R e

1
2

(+iθ+β)·σσµe
1
2

(−iθ+β)·σ︸ ︷︷ ︸
?
=Λ(θ,β)µνσν

ψR

where

Λ(θ, β)µν =
(
ei(θ·J+β·K)

)µ
ν

is the vector representation of the Lorentz transformation with rotation ~θ and boost
~β. To check this, it suffices to check the infinitesimal version (by the uniqueness of

solutions to linear first-order ODEs):

δ
(
ξ†Rσ

µψR

)
= δξ†Rσ

µψR + ξ†Rσ
µδψR

= ξ†R

(
1

2
(iθ + β)j σjσµ + σµ

1

2
(−iθ + β)j σj

)
ψR

=


ξ†R

1
2
2βjσ

jψR ...if µ = 0

ξ†R
1
2

βj (σjσi + σiσj
)︸ ︷︷ ︸

=2δij

+iθj
(
σjσi − σiσj

)︸ ︷︷ ︸
=−2iεijkσk

ψR ...if µ = i

On the other hand, using the form of the vector Lorentz generators (4.9), (4.10), the

transformation of a vector is

δV µ =
(
iβj
(
Kj
)µ

ν + iθj
(
J j
)µ

ν

)
V ν =

{
βjV

j ...if µ = 0

βiV
0 − θjεjimV m ...if µ = i

which is just the form we’ve found.

[End of Lecture 16]

A few more claims and consequences:

• Since the vector representation matrices K, J in (4.9), (4.10) are pure imaginary,

the matrices are real for any θ, β and we can impose the reality condition V µ =

(V µ)? consistent with Lorentz orbits. This is not true of the Weyl spinors by

themselves.
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• Similarly, for any ξL, ψL ξ
†
Lσ̄

µψL is a (complex) 4-vector. Notice that we need to

use the σ̄µ, so that

δ
(
ξ†Lσ̄

µψL

)
=
(
−βiξ†LσiψL, βiξ

†
LψL + εijkθjξ

†
LσkψL

)µ
• Our explicit calculation was about ξ†Rσ

µψR. But we showed that ξ†R transforms

like a χL. So χαLσ
µ
αα̇ψ

α̇
R is a vector, too. And χαLσ

µ
αα̇ψ

α̇
RVµ is Lorentz invariant.

• Notice that ξ†RψR is not Lorentz invariant (even if ξ = ψ), it is rather the 0

component of a four-vector. The dotted index can be a bit helpful in reminding

us that ψ†LψL is not a singlet, since if the index on (ψL)α is undotted then
(
ψ†L

)α̇
has a dotted index.

On the other hand, given an R and an L spinor,

δξ†L = ξ†L (+iθ − β) · σ/2

the combination ξ†LψR is Lorentz invariant, since

δ
(
ξ†LψR

)
= ξ†L

(
1

2
(iθ − β) · σ +

1

2
(−iθ + β) · σ

)
ψR = 0. (4.14)

• Two more occasionally-useful facts:

V µσµ =

(
V 0 + V 3 V 1 − iV 2

V 1 + iV 2 V 0 − V 3

)
7→MV µσµM

†

Also, detV µσµ = V µVµ is Lorentz invariant.

4.3 Spinor lagrangians

Given a Weyl spinor field ψR, we’d like to make a local lorentz-invariant lagrangian

of the form L
(
ψR, ψ

†
R, ∂µψR, ∂µψ

†
R

)
. The sort of obvious generalization of the KG

lagrangian i ψ†R (2 +m2)ψR which transforms like ψ†RψR, which is not boost invariant.

On the other hand, the object ψ†Rσ
µψR is a vector, and we can find another index with

which to contract by taking a derivative:

LWeyl ≡ ψ†Rσ
µi∂µψR = ψ†Ri∂tψR + ψ†R~σ ·

(
i~∇
)
ψR

is a nice Lorentz invariant kinetic term. The factor of i is to make i∂µ hermitian, so

L†Weyl = −i
(
∂µψ

†
R

)
(σµ)† ψR

IBP
= ψ†Rσ

µi∂µψR = LWeyl.
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Notice that we neglected the total derivative ∂µ

(
ψ†Rσ

µψR

)
which does not change the

equations of motion.

For a left-handed field, the Lorentz-invariant Weyl lagrangian involves σ̄µ = (1,−~σ)µ:

LWeyl(ψL) = ψ†Lσ̄
µi∂µψL.

What about mass terms? For a single R Weyl field, we could use the ε tensor:

ψRiσ2ψR + h.c.

is Lorentz invariant. It is not invariant under ψR → eiθψR, it violates the particle

number. Neutrinos may have such a term, but electrons don’t.

Dirac spinors. To make a particle-number-conserving Lorentz-invariant mass

term, we need one of each L and R, and the Dirac mass pairs them up via the in-

variant ψ†LψR + h.c.. We can slick this up, by combining the two 2-component spinors

into one 4-component spinor Ψ:(
1

2
, 0

)
⊕
(

0,
1

2

)
3 Ψ ≡

(
ψL
ψR

)
.

Now let

Ψ̄ ≡
(
ψ†R, ψ

†
L

)
= ψ†

(
0 12×2

12×2 0

)
≡ Ψ†γ0.

Then we can package the whole thing beautifully as

LDirac = ψ†Riσµ∂µψR + ψ†Liσ̄µ∂µψL −m
(
ψ†LψR + ψ†RψL

)
= Ψ̄ (iγµ∂µ −m) Ψ

with

γµ ≡
(

0 σµ

σ̄µ 0

)
. (4.15)

The equations of motion are

0 =
∂S

∂Ψ̄
= (iγµ∂µ −m) Ψ ≡ (i/∂ −m) Ψ.

Being explicit about indices, the Dirac equation is 0 = (iγµab∂µ −mδab) Ψb with a, b =

1..4.

Notice that by dimensional analysis of the kinetic terms, [Ψ] = 3/2, so [m] = 1, so

m is indeed a mass. Its sign has not been fixed (and I will probably mix up m and −m
at various points).
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• The Dirac (or gamma) matrices satisfy the Clifford algebra

{γµ, γν} = 2ηµν .

Any set of four matrices satisfying this equation can be combined to form a 4d

representation of so(1, d) in the form

JµνDirac ≡
i

4
[γµ, γν ].

If you want to see the algebra involved in this statement, see David Tong’s notes.

• The particular basis of gamma matrices we’ve chosen (4.15) is called the Weyl

basis. It makes the reducibility of the Dirac rep manifest, since the resulting Jµν

are block diagonal:

JµνDirac

Weyl basis
=

i

4

[(
0 σµ

σ̄µ 0

)
,

(
0 σν

σ̄ν 0

)]
=

i

4

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)

=


i
4

(
−2σi 0

0 2σi

)
= − i

2
σi ⊗ σ3 if µ = 0, ν = i

i
4

(
−[σi, σj] 0

0 −[σi, σj]

)
= +1

2
εijkσk ⊗ 12×2 if µ = i, ν = j

(4.16)

So you see that in the Weyl basis, we already know that these satisfy the so(1, d)

algebra since it is just the Lorentz generators for the WeylL and WeylR represen-

tations in blocks.

• This 4-dimensional Dirac representation is not the 4d vector representation. We

can see this in several ways: It is complex (the generators are not pure imaginary),

though more on this below. It is reducible (we built it by adding together two

irreps!). And it is definitely different because, using (4.16), we have, e.g. J12 =
1
2
σ3 ⊗ 1, so

ΛDirac(θ = 2πẑ) = e−i2πJ
12

= eiπσ
3⊗1 = cosπ1 + sin πσ3 ⊗ 1 = −1.

This is just as in the non-relativistic case.

• The Weyl spinors ψL, ψR are irreps. What’s the big deal about the Dirac rep?

Only that the electron is a Dirac spinor (and some other folks are too). Before we

learned about neutrino masses, they could have been Weyl spinors. Now we have

two possibilities: either there is a secret (heavy, non-interactive) partner with

whom the neutrinos pair up by a Dirac mass, and/or lepton number is violated

by a Majorana mass term (see the homework).

98



• Other bases of the gamma matrices are possible and sometimes useful. If we

replace γµ with

γµ 7→ γ̃µ = UγµU †, Ψ 7→ Ψ̃ = UΨ

for some 4 × 4 unitary U then this gives an equivalent representation, since

{γ̃µ, γ̃ν} = 2ηµν still and hence S̃µν = USµνU † will still solve so(1, d).

A particular useful other basis is the Majorana basis

γ0
m =

(
0 σ2

σ2 0

)
, γ1

m =

(
iσ1 0

0 iσ1

)
, γ2

m =

(
0 −σ2

σ2 0

)
, γ3

m =

(
iσ3 0

0 −iσ3

)
.

They have the property that they are all imaginary, which means so is the result-

ing Lorentz generators Jµνm , which means that all the matrix elements of eiθµνJ
µν
m

are real. So it is consistent to impose a reality condition on the spinors in this

basis. ηm = η?m. (The reality condition can be imposed in any basis, but in

another γµm = Uγ̃µU †, the condition looks like (U?)−1 Uψ = ψ?.) This 4d real

representation is still different from the vector; a proof is that a 2π rotation is still

−1. A good analogy is (real scalar):(complex scalar)::(majorana spinor):(Dirac

spinor). For example, a Majorana spinor particle will be its own antiparticle, just

like for a real scalar.

• The Dirac equation (i/∂ −m) Ψ = 0 implies the wave equation. Act on the BHS

by

(i/∂ +m) (BHS) =⇒ 0 = (i/∂ +m) (i/∂ −m) Ψ

=
(
−γµγν∂µ∂ν −m2

)
Ψ

=

−1

2

 [γµ, γν ]︸ ︷︷ ︸
antisymmetric

+ {γµ, γν}︸ ︷︷ ︸
=2ηµν

 ∂µ∂ν︸︷︷︸
symmetric

−m2

Ψ

= −
(
∂2 +m2

)
Ψ.

• The equation of motion for Ψ̄ can be obtained by taking the dagger25, or by IBP

in LDirac:

LDirac
IBP
= Ψ̄

(
−i
←
∂ µγ

µ −m
)

Ψ + total deriv

so 0 = ∂SDirac

∂Ψ
= Ψ̄

(
−i
←
∂ µγ

µ −m
)
.

• The Dirac lagrangian is real if m = m?, since we already checked the kinetic

terms.

25In doing so, note that γ0 =
(
γ0
)†

, but the spatial ones (~γ)
†

= −~γ are anti-hermitian. This

compensates the fact that that the ~γs acquire a minus sign in moving through the γ0 in Ψ̄. x
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• Lorentz transformations of Dirac spinors. We have Ψ 7→ e−iθµνJ
µν
DiracΨ ≡

Λ 1
2
Ψ with Λ 1

2
=

(
M 0

0 σ2M?σ2

)
. The Dirac conjugate spinor transforms as

Ψ̄ 7→ Ψ†e+iθµν(JµνDirac)
†

γ0 = Ψ†γ0Λ−1
1
2

= Ψ̄Λ−1
1
2

.

Here we used that the ij components of JDirac are hermitian and commute with

γ0 (same for L,R), while the 0i components are antihermitean and anticommute

with γ0 (opposite sign for L,R). This makes it clear that the mass term Ψ̄Ψ is

Lorentz invariant.

The gamma matrices also provide nice packaging of the relation we showed above

between vectors and bispinors26:

Λ−1
1
2

(θ)γµΛ 1
2
(θ) = Λµ

ν(θ)γ
ν . (4.17)

This means that any product of gamma matrices between two spinors V µ1···µn ≡
Ψ̄γµ1 · · · γµnΨ is a tensor, in the sense that V µ1···µn 7→ Λµ1

ν1 · · ·Λµn
νnV

ν1···νn . To

see this, just use V µ1···µn 7→ Ψ̄Λ−1
1
2

γµ1 · · · γµnΛ 1
2
Ψ, insert 1 = Λ 1

2
Λ−1

1
2

in between

each pair of gammas, and use (4.17).

Notice that any combination of Aµ1···µnΨ̄γµ1 · · · γµnΨ which is symmetric under

interchange of indices can be written using the Clifford algebra to a tensor with

fewer indices. Let γµν ≡ 1
2
[γµ, γν ] be just the antisymmetric bit, and similarly for

more indices. In fact, any bispinor ΓabΨ̄aΨb can be decomposed as a sum of these

tensors:
∑

nAµ1···µnΨ̄γµ1···µnΨ. This follows from counting: 4×4 = 1+4+6+4+1.

• Consider the object γ5 ≡ iγ0γ1γ2γ3 = − i
4!
εµνρσγ

µγνγργσ. The factor of i is

chosen so that (γ5)
†

= γ5. Notice that (γ5)
2

= 1 so its eigenvalues are ±1. Since

it contains one of each of the other four gamma matrices, it anticommutes with

each of them: {γ5, γµ} = 0,∀µ. Since the Lorentz generators JµνDirac are quadratic

in γs, this implies [γ5, JµνDirac] = 0, i.e. γ5 is a Casimir, proportional to the identity

on irreps, indeed ±1. By direct calculation, in the Weyl basis,

γ5 Weyl basis
=

(
−1

1

)
26This is really the same equation as we showed above. In Dirac notation its infinitesimal version

(1 + iθ · JDirac) γ
µ (1− iθ · JDirac) = (1− iθ · Jvector)µ νγν

follows from

[γµ, JµνDirac] = (Jρσvector)
µ
νγ

ν .
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is ±1 on right-handed and left-handed spinors, respectively. This means that the

chirality projectors PR/L ≡ 1±γ5
2

project onto R/L spinors, respectively, P 2
R/L =

PR/L. Notice that PLγ
µ = γµPR.

• Our basis of bispinors can be rewritten using γ5. Using γµνρσ = −iεµνρσγ5 and

γµνρ = +iεµνρσγσγ
5, we can make a basis of (hermitean) bispinors as in the

table below. The modifier ‘pseudo’ here refers to the properties under parity; for

Bispinor multiplicity representation

Ψ̄1Ψ 1 scalar

Ψ̄γµΨ 4 vector

iΨ̄γµνΨ 6 antisymmetric tensor

iΨ̄γµγ5Ψ 4 pseudovector

iΨ̄γ5Ψ 1 pseudovector

example, in terms of Ψ =
(
ψL ψR

)
, consider iΨ̄γ5Ψ = i

(
ψ†LψR − ψ

†
RψL

)
. It is

Lorentz invariant (since it is of the form (4.14)), but under parity P : ψL ↔ ψR
(that is, parity acts by γ0 on Dirac spinors) it goes to minus itself.

Why care about these bispinors? One reason is that we can make 4-fermion

interactions out of them. For example, Ψ̄γµνΨ · Ψ̄γµνΨ is a Lorentz-invariant

local interaction term which we might add to our Lagrangian.

Another reason is that the vector combinations play an important role:

jµ ≡ Ψ̄γµΨ = ψ†Rσ
µψR + ψ†Lσ̄

µψL

is the Noether current associated with the symmetry Ψ → eiαΨ of the Dirac

Lagrangian. You can directly check that ∂µj
µ = 0 using the Dirac equation.

Similarly, the axial current

jµ5 ≡ Ψ̄γµγ5Ψ = ψ†Rσ
µψR − ψ†Lσ̄

µψL

would be the Noether current associated with the transformation Ψ → eiαγ
5
Ψ.

This a symmetry rotates the L and R bits oppositely, and is only a symmetry if

m = 0. Indeed, the Dirac equation implies that ∂µj
µ
5 = 2imΨ̄Ψ. For E � m,

the breaking of this symmetry by m can be ignored and it is still useful. The

combinations

jµR/L ≡ Ψ̄γµ
(

1± γ5

2

)
Ψ

involve only the Weyl components and are separately conserved if both jµ and

jµ5 are conserved.
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Coupling to the electromagnetic field. Here’s another purpose for the current.

Suppose our spinor field is propagating in a background electromagnetic field with

vector potential Aµ. The whole thing should be Lorentz invariant, so we should be

able to couple them via a Lorentz-invariant Lagrangian. How can we resist adding

LEM = −ejµAµ for some constant e (blame Ben Franklin for the sign). The full

Lagrangian is then

Ψ̄[i (∂µ + ieAµ) γµ −m]Ψ

and the Dirac equation is modified to

0 = (iγµDµ −m) Ψ, where DµΨ ≡ (∂µ + ieAµ) Ψ

is the gauge covariant derivative in the following sense: DµΨ 7→ e−iα(x)DµΨ under

Ψ → e−iα(x)Ψ(x), Aµ → Aµ + 1
e
∂µα. We could have used the demand that the action

respects this transformation to determine the coupling to Aµ to replace ∂µ → Dµ.

The solutions of the Dirac equation in a background EM field are no longer solutions

of the KG equation:

0 =
(
i /D +m

) (
i /D −m

)
Ψ =

(
iDµiDνγ

µγν −m2
)

Ψ .

Whereas mixed partials commute, [∂µ, ∂ν ] = 0, the covariant derivatives need not:

[Dµ, Dν ] = ei (∂µAν − ∂νAµ) = eiFµν

so the antisymmetric term matters:

0 =

(
(∂µ + ieAµ)2 + e

i

4
[γµ, γν ]Fµν +m2

)
Ψ

Weyl basis
=

(∂µ + ieAµ)2 − e

( ~B + i ~E
)
· ~σ (

~B − i ~E
)
· ~σ

+m2

Ψ . (4.18)

In the last step we used the form of the Lorentz generators JµνDirac = i
4
[γµ, γν ] in the

Weyl basis. This extra term (relative to the gauge covariant scalar wave equation) is

an intrinsic magnetic dipole moment of a Dirac particle. This is a consequence of the

Dirac equation with implications for the non-relativistic limit.

[End of Lecture 17]

Notice that we could add extra terms coupling the spin to the EM field strength

LDM = Fµν
(
gmΨ̄iγµνΨ + geΨ̄iγµνγ5Ψ

)
but now [ge,m] = −1 so these coefficients (which would change the magnetic and electric

dipole moments respectively) are suppressed by the inverse of some new mass scale (a

priori independent of m), which is presumably large or we would have noticed it, and

hence we will ignore such terms for a while.
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4.4 Free particle solutions of spinor wave equations

[Peskin §3.3] To understand a quantum scalar field, we had to know that the solutions

of the KG equation were plane waves e−ipx with p2 = m2 (then we associated a mode

operator a~p with each solution and added them up). To do the analog for spinors, we’ll

need to know the free particle solutions.

Let’s focus on the Dirac equation. This implies the wave equation, so solutions can

be made from superpositions of plane waves with p2 = m2

Ψ(x) = e−ipxu(p)

but the Dirac equation places a further restriction on the constant spinor u(p):

0 = (γµp
µ −m)u(p).

Let’s assume m 6= 0 and solve this in the rest frame, p0 = (m,~0). Then we can find

the answer for general pµ (with p0 > 0) by a boost: u(p) = Λ 1
2
u(p0).

0 = (mγ0 −m)u(p0) = m

(
−1 1

1 −1

)
u(p0)

which is solved by u(p0) ∝
(
ξ

ξ

)
for any 2-component spinor ξ. The fact that there are

two solutions for each p is the “intrinsic two-valuedness” associated with spin 1
2
. It will

be convenient to normalize the solutions by

u(p0) =
√

2m

(
ξ

ξ

)
, ξ†ξ = 1.

We can choose a basis for such ξs which diagonalize σ3, e.g. ξ1 =

(
1

0

)
, ξ2 =

(
0

1

)
in

the standard basis for the Paulis. ξ is an ordinary non-relativistic spinor.

Now, under a boost in the z direction (suppressing the x, y components which

remain zero),

p0 7→
(
E

p3

)
= exp

(
η

(
0 1

1 0

))(
m

0

)
=

(
m cosh η

m sinh η

)
,

and the positive-energy solution of the Dirac equation becomes

u(p0) 7→ Λ 1
2
(η)u(p0) = exp

(
1

2
η

(
σ3

−σ3

))
︸ ︷︷ ︸

cosh(η/2)1−sinh(η/2)

σ3

−σ3



√
m

(
ξ

ξ

)
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=

(√E + p3P+ +
√
E − p3P−

)
ξ(√

E − p3P+ +
√
E + p3P−

)
ξ

 P± ≡
1

2

(
1± σ3

)
=

(√E + p3σ3P+ +
√
E − p3σ3P−

)
ξ(√

E − p3σ3P+ +
√
E + p3σ3P−

)
ξ

 =

(√
p · σξ√
p · σ̄ξ

)
.

In the final expression, we define the square root of a matrix by its action on eigenstates.

The last expression also works for any boost direction since it’s rotation invariant.

Using the identity

(p · σ) (p · σ̄) = p2 (4.19)

(check it on the homework) we can check directly that this expression actually solves

the Dirac equation for general p:

(pµγ
µ −m)

(√
p · σξ√
p · σ̄ξ

)
=

(
−m σ · p
σ̄ · p −m

)(√
p · σξ√
p · σ̄ξ

)
=

(
−m√p · σ +

√
p2
√
p · σ√

σ̄ · p
√
p2 −

√
σ̄ · pm

)(
ξ

ξ

)
p2=m2

= 0.

Negative-energy solutions. Just as for the KG equation, there are also negative-

energy solutions with the same ~p (which are not related to the previous by any or-

thochronous Lorentz transformation):

Ψ(x) = v(p)e+ip·x, p2 = m2, p0 > 0

where the Dirac equation further imposes

vs(p) =

( √
p · σηs

−
√
p · σ̄ηs

)
, s = 1, 2.

Normalization. A Lorentz-invariant normalization condition is

ūsur = 2mξ†sξr = 2mδsr v̄rvs = −2mδrs.

This is equivalent to the following statements about the Lorentz-variant quantities:

u†r(p)us(p) = 2Epξ
†
rξs = 2Epδrs v†rvs = +2Epη

†
rηs = 2Epδ

rs.

Notice that for each p, 0 = ūr(p)vs(p) = v̄r(p)us(p) (but (ur)† (p)vs(p) 6= 0).

Completeness relations. Suppose we choose a basis

12×2 =
∑
s=1,2

ξs (ξs)† . (4.20)
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Then

∑
s=1,2

us(p)ūs(p) =
∑
s

(√
p · σξs√
p · σ̄ξs

)(
(ξs)†

√
p · σ̄, (ξs)†√p · σ

)
(4.20)
=

(√
p · σ
√
p · σ̄

(√
p · σ

)2

(
√
p · σ̄)

2 √
p · σ̄√p · σ

)
(4.19)
=

(
m p · σ
p · σ̄ m

)
= γ · p+m ≡ /p+m. (4.21)

Similarly,
∑

s vv̄ = /p−m. Note that these completeness relations for spinor polariza-

tions are analogous to the relation I quoted for photon polarizations (1.19).

Helicity. Define the helicity operator, acting on one-particle states

ĥ ≡ p̂ · ~S ≡ p̂i · J iDirac = p̂i
1

2

(
σi

σi

)
.

p̂ = ~p
|~p| is a unit vector, so ĥ2 = 1/4 and the eigenvalues are±1/2, which are called right-

handed and left-handed. (Sometimes people normalize the helicity so that h = ±1.)

Naturally, positive-energy Weyl R/L spinors are helicity eigenstates, with h = ±1/2

respectively, since the R/L Weyl equation is 0 = p01 ∓ piσi, and p0 = |~p|. More

generally, consider the ultra-relativistic limit of a Dirac spinor, where E =
√
~p2 +m2 →

|~p|, with (WLOG) ~p = ẑp3,

u(Ep, p
3) =




√
E − p3

(
1

0

)
√
E + p3

(
1

0

)
 Ep→|~p|→

√
2E


0

0

1

0

 , if σ3 = +1


√
E + p3

(
0

1

)
√
E − p3

(
0

1

)
 Ep→|~p|→

√
2E


0

1

0

0

 , if σ3 = −1

These are helicity eigenstates. More generally, any ultrarelativistic spinor wavefunction

can be decomposed into a linear combination of such helicity eigenstates. For massive

particles (away from this limit), you can switch the helicity by outrunning the particle;

it is not Lorentz invariant.

105



4.5 Quantum spinor fields

What did we need to build the Fock space of a relativistic scalar field? A quick

recapitulation: For each mode, we had ladder operators, a 6= a†, and a number operator

N = a†a which was hermitian and hence observable. The ladder operators are so called

because

[N, a] = −a, [N, a†] = a† . (4.22)

This says that given a number eigenstate N |n〉 = n |n〉, we can make others by

N (a |n〉) (4.22)
= (n− 1) (a |n〉) and N

(
a† |n〉

) (4.22)
= (n+ 1)

(
a† |n〉

)
. And we know n ≥ 0

since 0 ≤ ||a |n〉 ||2 = 〈n|N |n〉 = n 〈n|n〉, so there must exist a lowest n0 that we can’t

lower any further, a |n0〉 = 0, but then n0 |n0〉 = N |n0〉 = a† a |n0〉︸ ︷︷ ︸ = 0, so n0 = 0.

Hence, a ladder of eigenstates of N with eigenvalues 0, 1, 2, 3, ....

OK, but here’s why I just did that: the necessary equation (4.22) did not require that

[a, a†] = 1. In fact, (4.22) would also follow from the anticommutation relation

aa† + a†a ≡ {a, a†} = 1, {a, a} = 0 = {a†, a†}.

To see this, note the identity [AB,C] = A{B,C} − {A,C}B, so

[a†a, a] = a†{a, a} − {a†, a}a = −a.

But now 0 = {a, a} = 2a2 means a2 = 0 and
(
a†
)2

= 0: the ladder only has only one

rung. |0〉 with a |0〉 = 0 and |1〉 = a† |0〉, and there is no |2〉 ∝
(
a†
)2 |0〉 = 0. This is

Pauli exclusion.

For multiple modes, we can take

{ai, a†j} = δij, {ai, aj} = 0 = {a†i , a
†
j}.

And states look like

a†ia
†
j |0〉 = ± |00001i00...001j0000〉 = −a†ja

†
i |0〉

we have to remember the order in which the quanta are created to get the sign right (the

overall choice is a convention, but relative signs are physics). This is Fermi statistics.

Given a field, how do we know whether to use commutators or anticommutators? A

practical answer: try both and one of them will be bad somehow. The general answer,

with Lorentz invariance, is the spin-statistics theorem: fields with half-integer spin are

fermionic, and those with integer spin are bosonic. Schwartz, §12.4 has an illuminating
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argument for the connection between spin and statistics from the Lorentz-invariance

of the S-matrix.

Anticommuting scalar fields? Consider a real scalar φ(x) =
∫

d̄dp√
2ωp

ape
−ipx +

h.c., with π = φ̇ and

H =
1

2

∫ (
π2 +

(
~∇φ
)2

+m2φ2

)
=

∫
d̄dp

ωp
2

(
a†pap + apa

†
p

)
.

You see that if {ap, a†p′} = /δ
d
(p−p′) then we get a hamiltonian which is just an infinite

constant, independent of the state. Not such a useful energy functional. We also get

{φ(x), π(y)} = 0.

The situation is worse for a complex scalar, with Φ(x) =
∫

d̄dp√
2ωp

(
ape
−ipx + b†pe

ipx
)
.

Then with anticommutators we get

H =

∫
d̄dp

1

2
ωp
(
a†pap − b†pbp

)
and the energy is unbounded below. We could alternatively allow negative norm states

or non-local anticommutators. Is that any better?

[End of Lecture 18]

Dirac Hamiltonian. From the Dirac lagrangian, we have the canonical momen-

tum density Π = ∂L
∂Ψ̇

= iΨ̄γ0 = iΨ† and the hamiltonian density

h = ΠΨ̇− L = iΨ†∂tΨ︸ ︷︷ ︸
=iΨ̄γ0∂tΨ

−L = Ψ̄
(
i~γ · ~∇+m

)
Ψ

eom
= Ψ†i∂tΨ. (4.23)

Following our nose and writing the operator-valued field as a sum over all solutions

of the eom weighted by ladder operators, we have

Ψ(x) =

∫
d̄3p√

2ωp

∑
s=1,2

(
us(p)e−ipxasp + vs(p)eipxbs†p

)
Ψ̄(x) =

∫
d̄3p√

2ωp

∑
s=1,2

(
ūs(p)eipxas†p + v̄s(p)e−ipxbsp

)
(4.24)

where, as for the scalar, we implicitly set p0 = ω~p.

The hamiltonian is then (using the last expression in (4.23))

H =

∫
d3 h

=

∫
d3x

∫
d̄3p√

2ωp

∫
d̄3q√

2ωq

∑
ss′

(
us†(p)eipxas†p + vs†(p)e−ipxbsp

) (
ωqu

s(q)e−iqxasq − ωqvs(q)eiqxbs†q
)
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This is of the form u†u + v†v + u†v + v†u. In the first two terms, the x integral is∫
d3xei(p−q)x = δ(3)(p − q) and in the mixed uv terms, we have ~q = −~p. We use the

spinor identities

u†s(p)us′(p) = v†s(p)vs′(p) = +2ωpδss′ , u†s(p)vs′(−p) = v†s(p)us′(−p) = 0

and get

H =

∫
d̄3p ωp

∑
s

(
as†p asp − bspb

s†
p

)
.

Now, if [b, b†] = 1, this is
∑

p ωp(N
a
p − N b

p) + constant and the world explodes in a

spontaneous shower of antiparticles lowering the energy by coming from nowhere. If

instead we have anticommutation relations,

{bs(p), bs′(q)†} = /δ
d
(p− q)

then this is

H =

∫
d̄3p ωp

∑
s

(Na
s (p) +N b

s (p)) + const

and all is well, H−E0 ≥ 0. (Here we only used {b, b†} = δ You could ask why we can’t

have [a, a†] = 1 still. That would just be gross.)

This gives canonical equal time local anticommutators

{Ψ(~x)a,Π(~y)b}ET = iδd(~x− ~y)δab

or

{Ψ(~x)a, Ψ̄(~y)b}ET = iγ0
abδ

d(~x− ~y).

Dirac propagator. [Peskin §4.7] Now we will efficiently redo the story of interac-

tion picture perturbation theory and Wick’s theorem for Dirac spinor fields. The story

differs by just a few very important signs.

Time ordering for fermions is defined with an extra minus sign:

T (A1(x1) · · ·An(xn)) ≡ (−1)PA1′(x1′) · · ·An′(xn′), x0
1′ > x0

2′ > · · · > x0
n′

where P ≡ the number of fermion interchanges required to get from the ordering 1...n

to the ordering 1′...n′ (mod two). Similarly, normal ordering is

: ABC · · · :≡ (−1)PA′B′C ′ · · · ,

108



where on the RHS all annihilation operators are to the right of all creation operators,

and P is defined the same way. 27 Wick’s theorem is then still

T (ABC · · · ) =: ABC · · · : +all contractions.

The possible contractions of Dirac fields are:

Ψ(x)Ψ(y) = 0, Ψ̄(x)Ψ̄(y) = 0, Ψ(x)Ψ̄(y) = SF (x− y),

where SF is the Feynman propagator for the Dirac field, if you like we could define it

by this equation. It is

SabF (x− y) = 〈0| T
(
Ψa(x)Ψ̄b(y)

)
|0〉

= θ(x0 − y0) 〈0|Ψa(x)Ψ̄b(y) |0〉−θ(y0 − x0) 〈0| Ψ̄b(y)Ψa(x) |0〉
= θ(x0 − y0) 〈0|Ψ(+)

a (x)Ψ̄
(−)
b (y) |0〉︸ ︷︷ ︸

=〈0|{Ψ(+)
a (x),Ψ̄

(−)
b (y)}|0〉≡S+

−θ(y0 − x0) 〈0| Ψ̄(+)
b (y)Ψ(−)

a (x) |0〉︸ ︷︷ ︸
〈0|{Ψ̄(+)

b (y),Ψ
(−)
a (x)}|0〉≡S−

Ψ ≡ Ψ(+)︸︷︷︸
a

+ Ψ(−)︸︷︷︸
b†

The S+ bit, made only from as, is a c-number

S+
ab(x− y) = {Ψ(+)

a (x), Ψ̄
(−)
b (y)} =

∫
d̄3p√

2ω~p
e−ipx

∑
s=1,2

∫
d̄3q√

2ω~q
e+iqy

∑
s′=1,2

usa(p)ū
s′

b (q) {asp, as
′†
q }︸ ︷︷ ︸

=/δ
d
(p−q)δss′

=

∫
d̄3p

2ω~p
e−ip(x−y)

∑
s

usa(p)ū
s
b(p)︸ ︷︷ ︸

(4.21)
= (/p+m)

ab

=

∫
d̄3p

2ω~p
(i/∂x +m)ab e

−ip(x−y)

= (i/∂x +m)ab

∫
d̄3p

2ω~p
e−ip(x−y)︸ ︷︷ ︸

=∆+(x−y)

∆+(x− y)
(2.3)
=

∫
C+

d̄4pe−ip(x−y) i

p2 −m2

=

∫
C+

d̄4pe−ip(x−y)
i
(
/p+m

)
ab

p2 −m2
(4.25)

The same calculation for S−, the bit involving {b,b†}, gives the same integrand, the

only difference, as for the complex KG field, is the contour C+ → C−. Getting the

27Why the extra signs? One way to see that they must be there is if they weren’t everything would

be zero. With the sign, the following two choices for a normal ordered product are equivalent:

: apaqa
†
r := (−1)2a†rapaq = (−1)3a†raqap,

but without it, we would conclude that the LHS would be zero.
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same integrand with the same sign required the relative minus (the red one above)

which for bosons came from the sign in the commutator [b,b†] = bb† − b†b. Adding

the two terms together, we learn that the momentum space Dirac propagator is

S̃(p) =
i
(
/p+m

)
p2 −m2

=
i
(
/p+m

)(
/p+m

) (
/p−m

) =
i

/p−m
. (4.26)

(These matrices all commute with each other, so my cavalier manipulation of them

can be done in the eigenbasis of /p without trouble.) It is not a coincidence that the

numerator of the propagator is the polarization sum:
∑

s u
s(p)ūs(p) = /p+m

The position-space Feynman propagator comes from integrating (4.26) over the

Feynman contour, as for scalars:

SF (x− y) =

∫
CF

d̄4p
i

/p−m
e−ip(x−y).

Fermions and causality. Earlier I made a big deal that we need commutators

to vanish outside the lightcone to prevent acausal communication. But the Dirac field

Ψ(x) doesn’t commute with Ψ̄(y) for spacelike x− y (rather, they anticommute). Why

is this OK? What saves the day is the fact that we can’t measure a single fermion

operator. The operators we can measure (such as the number density of fermions Ψ†Ψ,

or their momentum density Ψ†~∇Ψ) are all made of even powers of Ψ and Ψ̄. And these

do commute outside the lightcone.

A principle which would make this restriction on what we can measure precisely

true and inevitable is if fermion parity is gauged. By ‘fermion parity’ I mean the

transformation which takes Ψ→ −Ψ for every fermionic operator in the world. By ‘is

gauged’ I mean that this transformation should be regarded as an equivalence relation,

rather than a transformation which relates distinct physical configurations. In that

case, a local operator with an odd number of fermions would not be gauge invariant.
28

28This point of view, that locality should be built into the Hilbert space, and that therefore that

fermion parity should be gauged, is advocated forcefully by Wen, Quantum Field Theory of Many-

Body Systems (Oxford, 2004) in Chapter 10. It is not clear how to include gravitational degrees of

freedom in this principle.
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5 Quantum electrodynamics

We must fill a small hole in our discussion, to help our fermions interact. In §1.3, we

figured out a bit of the quantum theory of the radiation field. A few things we did not

do: study the propagator, figure out the data on external states, and the relation of

between the masslessness of the photon and gauge invariance. After that we will couple

electrons and photons and study leading-order (tree-level) processed in the resulting

theory of quantum electrodynamics (QED).

5.1 Vector fields, quickly

[We’ll follow Ken Intriligator’s efficient strategy for this discussion.] Consider the

following Lagrangian for a vector field Aµ (which I claim is the most general quadratic

Poincaré-invariant Lagrangian with at most two derivatives):

L = −1

2

∂µAν∂µAν + a ∂µA
µ∂νA

ν︸ ︷︷ ︸
=(∂A)2

+bAµA
µ + cεµνρσ∂µAν∂ρAσ

 .

The sign is chosen so that spatial derivatives are suppressed, and the normaliza-

tion of the first term is fixed by rescaling A. The last term is a total derivative,

εµνρσ∂µAν∂ρAσ ∝ ∂µ (εµνρσAν∂ρAσ), and will not affect the EOM or anything at all in

perturbation theory; it is called a θ term. The EOM are

0 =
δ

δAν(x)

∫
L = −∂2Aν − a∂ν (∂ · A) + bAν

which like any translation invariant linear equation is solved by Fourier transforms

Aµ(x) = εµe
−ikx if

k2εµ + akµ (k · ε) + bεµ = 0.

There are two kinds of solutions: longitudinal ones with εµ ∝ kµ (for which the disper-

sion relation is k2 = − b
1+a

), and transverse solutions ε · k = 0 with dispersion k2 = −b.
The longitudinal mode may be removed by taking b 6= 0 and a→ −1, which gives the

Proca Lagrangian:

La=−1,b=−µ2 = −1

4
FµνF

µν +
1

2
µ2AµA

µ

Note that the EOM (Proca equation) 0 = ∂·F·ν + µ2Aν implies 0 = ∂νAν by 0 =

∂µ∂νFµν . So each component of Aµ satisfies the KG equation, k2 = µ2. In the rest
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frame, we can choose a basis of plane wave solutions which are eigenstates of

Jz = i

 +1

−1

 , namely, ε(±) =
1√
2


0

1

∓i

0

 , ε(0) =


0

0

0

1

 .

They are normalized so that ε(r) · ε(s) = +δrs and
∑

r=±1,0 ε
(r)?
µ ε

(r)
ν = −ηµν + kµkν

µ2
so

that they project out ε ∝ k. Notice that if ~p ∝ ẑ (for example in the masselss case

with pµ = (E, 0, 0, E)µ) then these ε are also helicity eigenstates: h = ~S · p̂ = Jz.

Canonical stuff: The canonical momenta are πi = ∂L
∂Ȧi

= −F 0i = Ei (as for

electrodynamics in §1.3) and π0 = ∂L
∂Ȧ0

= 0. This last bit is a little awkward, but it

just means we can solve the equations of motion for A0 algebraically in terms of the

other (real) dofs:

0 =
δS

δA0

= ~∇· ~E−µ2A0 = (−∇2+µ2)A0+~∇· ~̇A =⇒ A0(~x) =

∫
d3ye−µ|~x−~y|

(
−~∇ · ~̇A

)
4π|~x− ~y|

.

(5.1)

So at each moment A0 is determined by Ai. (Notice that this is still true for µ → 0.)

The hamiltonian density is

h = +
1

2

(
F 2

0i +
1

2
F 2
ij + µ2A2

i + µ2A2
0

)
=

1

2

(
~E2 + ~B2 + µ2 ~A2 + A0

(
~∇ · ~E − µ2A0

))
≥ 0,

where positivity follows from the fact that it is a sum of squares of real things.

The canonical equal time commutators are then

[Ai(t, ~x), F j0(t, ~y)] = iδji δ
(3)(~x− ~y)

which if we add up the plane wave solutions as

Aµ(x) =
∑
r=1,2,3

∫
d̄3k√
2ωk

(
e−ikxarkε

(r)
µ + e+ikxar†k ε

(r)?
µ

)
give the bosonic ladder algebra for each mode

[ark, a
s†
p ] = /δ

(3)
(~k − ~p)δrs.

The normal-ordered hamiltonian is

: H :=
∑
r

∫
d̄3k ωka

r†
k ark.
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The propagator for the Aµ(x) field is

〈T Aµ(x)Aν(y)〉 =

∫
d̄4ke−ik(x−y)

[
−i(ηµν − kµkν/µ2)

k2 − µ2 + iε

]
. (5.2)

Notice that like in the spinor case the polarization sum
∑

r ε
r?
µ ε

r
ν appears in the numer-

ator of the propagator. The quantity in square brackets is then the momentum-space

propagator. Since 〈0|Aµ(x) |k, r〉 = εrµ(k)e−ikx , a vector in the initial state produces a

factor of εrµ(k), and in the final state gives ε?.

Massless case. In the limit µ → 0 some weird stuff happens. If we couple Aµ
to some object jµ made of other matter, by adding ∆L = jµAµ, then we learn that

∂µA
µ = µ−2∂µj

µ. This means that in order to take µ→ 0, it will be best if the current

is conserved ∂µj
µ.

One example is the QED coupling, jµ = Ψ̄γµΨ. We saw that this coupling Aµj
µ

arose from the ‘minimal coupling’ prescription of replacing ∂µ → Dµ = ∂µ + ieqAµ
in the Dirac Lagrangian. In that case, the model had a local invariance under Aµ →
Aµ + ∂µλ(x)/e,Ψ(x) → eiqλ(x)Ψ(x). For λ non-constant (and going to zero far away),

this is a redundancy of our description rather than a symmetry (for example, they

have the same configuration of ~E, ~B,
∮
A). That is, configurations related by this

gauge transformation should be regarded as equivalent.

Another example can be obtained by taking a complex scalar and doing the same

replacement: L = DµΦ?DµΦ + ... Notice that in this case the vertex involves a deriva-

tive, so it comes with a factor of −ieq(pΦ + pΦ?)
µ. Also, there is a AµAνΦ

?Φ coupling,

which gives a vertex proportaional to −ie2q2ηµν .

How do I know that configurations related by a gauge transformation should be

regarded as equivalent? If not, the kinetic operator for the massless vector field

(ηµν (∂ρ∂ρ)− ∂µ∂ν)Aν = 0 is not invertible, since it annihilates Aν = ∂νλ.

[End of Lecture 19]

What’s the propagator, then? One strategy is to simply ignore the gauge equiva-

lence and use the same propagator (5.2) that we found in the massive case with µ→ 0.

Since the dynamics are gauge invariant, it will never make gauge-variant stuff, and the

longitudinal bits ∝ kµkν in (5.2) (which depend on µ) will just drop out, and we can

take µ → 0 in the denominator at the end. This actually works. The guarantee that

it works is the QED Ward identity: any amplitude with an external vector ε(k)µ is of

the form

= iM = iMµ(k)εµ(k)
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and if all external fermion lines are on-shell then

Mµ(k)kµ = 0.

There is a complicated diagrammatic proof of this statement in Peskin; we will see some

illustrations of it below (I also recommend Zee §II.7). It is basically a statement of

current conservation: such an amplitude is made (by LSZ) from a correlation function

involving an insertion of the electromagnetic current jµ(k) =
∫
d4x e−ikxjµ(x), in the

form,Mµ ∼ ... 〈Ω|....jµ(k)...|Ω〉, and kµj
µ(k) = 0 is current conservation. A systematic

proof using this point of view is easy with the path integral (in 215C).

This property guarantees that we will not emit any longitudinal photons, since the

amplitude to do so is the µ→ 0 limit of

A

(
emit εLλ = 1

µ
(k, 0, 0,−ω)λ

with kλ = (ω, 0, 0, k)λ

)
∝ εLµMµ =

1

µ

(
kM0 − ωM3

)
=

1

µ

kM0 −
√
k2 + µ2︸ ︷︷ ︸

=k+µ2

2k
+...

M3


=

1

µ
kµMµ︸ ︷︷ ︸

=0,by Ward

− µ

2k
M3 +O(µ3)︸ ︷︷ ︸
→0 as µ→0

µ→0→ 0.

Gauge fixing. You might not be happy with the accounting procedure I’ve advo-

cated above, where unphysical degrees of freedom are floating around in intermediate

states and only drop out at the end by some formal trick. In that case, a whole zoo of

formal tricks called gauge fixing has been prepared for you. Here’s a brief summary to

hold you over until 215B.

At the price of Lorentz invariance, we can make manifest the physical dofs, by

choosing Coulomb gauge. That means we restrict ∂µA
µ = 0 (so far, so Lorentz in-

variant) and also ~∇ · ~A = 0. Looking at (5.1), we see that this kills off the bit of A0

that depended on ~A. We also lose the helicity-zero polarization ~∇ · ~A ∝ ε(0). But the

Coulomb interaction is instantaneous action at a distance.

To keep Lorentz invariance, we can instead merely discourage configurations with

∂ · A 6= 0 by adding a term to the action

L = −1

4
FµνF

µν − 1

2ξ
(∂ · A)2

for some arbitrary number ξ. Physics should not depend on ξ, and this is a check on

calculations. The propagator is

〈T Aµ(x)Aν(y)〉α =

∫
d̄4k e−ik(x−y)

[
−i(ηµν − (1− ξ)kµkν/µ2)

k2 − µ2 + iε

]
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and again the bit with kµkν must drop out. ξ = 1 is called Feynman gauge and makes

this explicit. ξ = 0 is called Landau gauge and makes the propagator into a projector

onto k⊥.

It becomes much more important to be careful about this business in non-Abelian

gauge theory.

29

5.2 Feynman rules for QED

First, Feynman rules for Dirac fermion fields, more generally30. As always in these

notes, time goes to the left, so I draw the initial state on the right (like the ket) and

the final state on the left (like the bra).

29 By the way, you might be bothered that we didn’t go back to our table 1 of possible Lorentz

representations on fields to think about spin one particles. Indeed, we could start with the (1, 0)⊕(0, 1)

antisymmetric tensor Fµν as our basic object. (See, for example, the book by Haag, page 47.) Indeed,

in this way we could construct a theory of a free EM field. But don’t we need a vector potential to

couple to charged matter? The answer turns out to be ‘no,’ as explained by Mandelstam here. The

price is that the charged fields depend on not just a point, but a choice of path; if we did introduce

the vector potential, they would be related to our fields by

Φ(x, P ) = ei
∫
P
AΦ(x),

where P is a path which ends at x and infinity. This Wilson line ei
∫
P
A carries away the gauge

transformation, so that Φ(x, P ) is actually invariant under gauge transformations that fall off at

infinity.

Thanks to Wei-Ting Kuo for asking about this.
30Another good example of a QFT with interacting fermions is the Yukawa theory theory of a Dirac

fermion field plus a scalar φ and an interaction

V = gφΨ̄Ψ =⇒ = − igδrr
′
. (5.3)

Notice that in 3 + 1 dimensions, [g] = +4− [φ]− 2[Ψ] = 4− 1− 2 3
2 = 0, the coupling is dimensionless.

This describes more realistically the interactions between nucleons (which are fermions, as opposed to

snucleons) and scalar pions, which hold together nuclei. It also is a crude sketch of the Higgs coupling

to matter; notice that if φ is some nonzero constant 〈φ〉, then there is a contribution to the mass of

the fermions, g 〈φ〉.
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1. An internal fermion line gives

=
i

/k −mΨ

which is a matrix on the spinor indices.

There are four possibilities for an external fermion line of definite momentum.

2. = Ψ|p, r〉 = ur(p)

3. = 〈p, r|Ψ = ūr(p)

4. = Ψ̄|p, r〉 = v̄r(p)

5. = 〈p, r|Ψ̄ = vr(p)

6. Some advice: When evaluating a Feynman diagram with spinor particles, always

begin at the head of the particle-number arrows on the fermion lines, and keep

going along the fermion line until you can’t anymore. This will keep the spinor

indices in the form of matrix multiplication. Why: every Lagrangian you’ll ever

encounter has fermion parity symmetry, under which every fermionic field gets

a minus sign; this means fermion lines cannot end, except on external legs. The

result is always of the form of a scalar function (not a matrix or a spinor) made

by sandwiching gamma matrices between external spinors:

r′p′ rp =
∑

a,b...=1..4

ūr
′
(p′)a (pile of gamma matrices)ab u

r(p)b

Furthermore, in S-matrix elements the external spinors u(p), v(p) satisfy the equa-

tions of motion (/p −m)u(p) = 0, a fact which can be used to our advantage to

shrink the pile of gammas.

There can also be fermion lines which form internal loops (though not at tree

level, by definition). In this case, the spinor indices form a trace,∑
a

(pile of gamma matrices)aa ≡ tr (pile of gamma matrices) .

We’ll learn to compute such traces below (around (5.5)); in fact, traces appear

even in the case with external fermions if we do not measure the spins.
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7. Diagrams related by exchanging external fermions have a relative minus sign.

8. Diagrams with an odd number of fermion loops have an extra minus sign.

The last two rules are best understood by looking at an example in detail.

To understand rule 8 consider the following amplitude in the Yukawa theory with

interaction (5.3): It is a contribution to the meson propagator.

It is proportional to∑
abcd

Ψ̄a(x)Ψc(x)Ψ̄c(y)Ψd(y) = (−1)trΨ(x)Ψ̄(y)Ψ(x)Ψ̄(y) = (−1)trSF (x− y)SF (x− y)

[Peskin page 119] To understand rule 7 consider ΨΨ → ΨΨ (nucleon) scattering

in the Yukawa theory: The blob represents the matrix

element

0 〈p3r3; p4r4| T e−i
∫
V d4z |p1r1; p2r2〉0

where the initial state is

|p1r1; p2r2〉0 = ar1†p1 ar2†p2 |0〉
and the final state is

0 〈p3r3; p4r4| = (|p3r3; p4r4〉0)† = 〈0| ar4p4a
r3
p3

= −〈0| ar3p3a
r4
p4

where note that the dagger reverses the order.

The leading contribution comes at second order in V :

0 〈p3r3; p4r4| T
(

1

2!
(ig)2

∫
d4z1

∫
d4z2

(
Ψ̄Ψφ

)
1

(
Ψ̄Ψφ

)
2

)
|p1r1; p2r2〉0

To get something nonzero we must contract the φs with

each other. The diagrams at right indicate best the pos-

sible ways to contract the fermions. Exchanging the roles

of z1 and z2 interchanges two pairs of fermions so costs

no signs and cancels the 1
2!

.

The overall sign is annoying but can be fixed by demand-

ing that the diagonal bit of the S-matrix give

〈p3p4| (1 + ...) |p1p2〉 = +δ(p1 − p3)δ(p2 − p4) + · · ·

The relative sign is what we’re after, and it comes by comparing the locations of fermion
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operators in the contractions in the two diagrams at right. In terms of the contractions,

these t− and u− channel diagrams are related by leaving the annihilation operators

alone and switching the contractions between the creation operators and the final state.

Denoting by a†1,2 the fermion creation operators coming from the vertex at z1,2,

〈0| ap4 ap3a
†
1︸ ︷︷ ︸ a†2... + 〈0| ap4 ap3a

†
1a
†
2︸ ︷︷ ︸ ...

= 〈0| ap4 ap3a
†
1︸ ︷︷ ︸ a†2... − 〈0| ap4a

†
1︸ ︷︷ ︸ ap3a

†
2︸ ︷︷ ︸ ...

In the last expression the fermion operators to be contracted are all right next to each

other and we see the relative minus sign.

While we’re at it, let’s evaluate this whole amplitude to check the Feynman rules

I’ve claimed and get some physics out. It is

Sfi = −g2

∫
dz1dz2

∫
d̄4q

e−iq(z1−z2)i

q2 −m2 + iε

(
e−ız2(p1−p3)ūr3(p3)ur1(p1) · e−ız1(p2−p4)ūr4(p4)ur2(p2)− (3↔ 4)

)
.

In the first (t-channel) term, the integrals over z1,2 gives /δ(p1 − p3 − q)/δ(p2 − p4 − q),
and the q integral then gives δ(p1 + p2 − p3 − p4), overall momentum conservation. In

the second (u-channel) term, q = p1 − p4 = p3 − p2. Altogether,

Sfi = 1 + /δ
4
(pT )iM

with

iM = −ig2

(
1

t−m2
(ū3u1) (ū4u2)− 1

u−m2
(ū4u1) (ū3u2)

)
(5.4)

with t ≡ (p1 − p3)2, u ≡ (p1 − p4)2. This minus sign implements Fermi statistics.

Yukawa force revisited. In the non-relativistic limit, we can again relate this

amplitude to the force between particles, this time with the actual spin and statistics of

nucleons. In the COM frame, p1 = (m, ~p), p2 = (m,−~p) and p3 = (m, ~p′), p4 = (m,−~p′).

The spinors become urp =
√
m

(
ξr

ξr

)
so that ū3u1 ≡ ū(p3)r3u(p1)r1 = 2mξ†r3ξr1 =

2mδr3r1 . Let’s simplify our lives and take two distinguishable fermions (poetically,

they could be proton and neutron, but let’s just add a label to our fermion fields;

they could have different masses, for example, or different couplings to φ, call them

g1, g2). Then we only get the t-channel diagram. The intermediate scalar momentum

is q = p1 − p3 = (0, ~p− ~p′) so t = (p1 − p3)2 = −~q2 = − (~p− ~p′)2 and

iMNR,COM = ig1g2
1

~q2 +m2
φ

4m2δr1r3δr2r
4

.
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Compare this to the NR Born approximation matrix element

2πδ(Ep − Ep′)
(
−iṼ (~q)

)
= NR 〈~p′|S |~p〉NR

=
∑
r4

∫
d̄3p′V

4∏
i=1

1√
2Ei︸ ︷︷ ︸

= 1√
2m

4

Sfi

= 2πδ(Ep − Ep′)δr1r3
ig1g2

~q2 +m2
φ

where in the second line we summed over the spins of the second particle, and corrected

the relativistic normalization, so that NR 〈~p′|~p〉NR = /δ
3
(p − p′). This is completely

independent of the properties of the second particle. We infer that the scalar mediates

a force with potential U(x) = −g1g2e
−mφr

4πr
. It is attractive if g1g2 > 0.

Back to QED. The new ingredients in QED are the propagating vectors, and the

interaction hamiltonian V = eΨ̄γµΨAµ. The rest of the Feynman rules are

9. The interaction vertex gets a

= − ieγµ

10. An external photon in the initial state gets a εµ(p), and in the final state gets a

εµ?(p).

11. An internal photon line gets a

=
i

k2 −m2
γ

(
−ηµν + (1− ξ)kµkν/k2

)
where mγ = 0 (it’s sometimes useful to keep it in there for a while as an IR

regulator) and the value of ξ is up to you (meaning that your answers for physical

quantities should be independent of ξ).

Spinor trace ninjutsu.

The trace is cyclic: trAB · · ·C = trCAB. (5.5)

Our gamma matrices are 4× 4, so tr1 = 4.
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trγµ = tr
(
γ5
)2
γµ

(5.5)
= trγ5γµγ5 {γ

5,γµ}=0
= −trγµ = 0. (5.6)

The same works for any odd number of gammas.

trγµγν
clifford

= −trγνγµ + 2ηµνtr1
(5.5)
= −trγµγν + 8ηµν =⇒ trγµγν = 4ηµν . (5.7)

trγµγνγργσ = 4 (ηµνηρσ + ησµηνρ − ηµρηνσ) . (5.8)

Why is this? The completely antisymmetric bit vanishes because it is proportional to

γ5 which is traceless (by the same argument as (5.6)). If any pair of indices is the same

then the other two must be too by (5.7). If adjacent pairs are the same they can just

square to one and we get +1; if alternating pairs are the same (and different from each

other) then we must move them through each other with the anticommutator. If they

are all the same we get 4.

trγµγνγργσγ5 = −4iεµνρσ.

5.3 QED processes at leading order

Now we are ready to do lots of examples, nearly all of which (when pushed to the

end) predict cross sections which are verified by experiments to about one part in

137.31 Here 1
137
≈ α ≡ e2

4π
is the small number by which the next order corrections are

suppressed. 32

Did I mention that the antiparticle of the electron, predicted by the quantum Dirac

theory (i.e. by Dirac), is the positron? It has the same mass as the electron and the

opposite electromagnetic charge, since the charge density is the 0 component of the

electromagnetic current, jµ = Ψ̄γµΨ, so the charge is∫
d3xj0(x) =

∫
Ψ̄γ0Ψ =

∫
Ψ†Ψ =

∫
d̄3p

∑
s

(
a†p,saps − b†p,sbps

)
.

So b† creates a positron.

[Schwarz §13.3] Perhaps the simplest to start with is scattering of electrons and

positrons. We can make things even simpler (one diagram instead of two) by including

31I guess it is this overabundance of scientific victory in this area that leads to the intrusion of so

many names of physicists in the following discussion.
32This statement is true naively (in the sense that the next diagrams which are nonzero come with

two more powers of e), and also true in fact, but in between naiveté and the truth is a long road of

renormalization, which begins next quarter.
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also the muon, which is a heavy version of the electron33, and asking about the process

µ+µ− ← e+e−. At leading order in e, this comes from

iMµ+µ−←e+e− =

= (−ieūs3(p3)γµvs4(p4))muons

−i
(
ηµν − (1−ξ)kµkν

k2

)
k2

(−iev̄s2(p2)γνus1(p1))electrons (5.9)

with k ≡ p1 + p2 = p3 + p4 by momentum conservation at each vertex. I’ve labelled

the spinors according to the particle types, since they depend on the mass.

Ward identity in action. What about the kµkν term in the photon propagator?

The spinors satisfy their equations of motion, /p1
u1 = meu1 (where u1 ≡ us1p1 for short)

and v̄2/p2
= −mev̄2. The kν appears in

kν v̄2γ
νu1 = v̄2

(
/p1

+ /p2

)
u1 = v̄2/p1

u1 + v̄2/p2
u1 = (m−m)v̄u = 0.

(The other factor is also zero, but one factor of zero is enough.) Therefore

M =
e2

s
ū3γµv4 · v̄2γ

µu1

where s ≡ k2 = (p1 + p2)2 = E2
CoM is the Mandelstam variable. And I am relying on

you to remember which spinors refer to muons (3,4) and which to electrons (1,2).

Squaring the amplitude. We need to findM† (the dagger here really just means

complex conjugate, but let’s put dagger to remind ourselves to transpose and reverse

the order of all the matrices). Recall the special role of γ0 here:

γ†µγ0 = γ0γµ, γ†0 = γ0.

This means that for any two Dirac spinors,(
Ψ̄1γ

µΨ2

)†
= Ψ̄2γ

µΨ1.

(This is the same manipulation that showed that the Dirac Lagrangian was hermitian.)

So

M† =
e2

s
(v̄4γ

µu3) (ū1γµv2) .

33Who ordered that? (I. Rabi’s reaction to learning about the muon.) I hope you don’t find it too

jarring that the number of ‘elementary’ particles in our discussion increased by three in the last two

paragraphs. People used to get really disgruntled about this kind of thing. But here we have, at last,

uncovered the true purpose of the muon, which is to halve the number of Feynman diagrams in this

calculation (compare (5.14)).
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and therefore

|Mµ+µ−←e+e− |2 =
e4

s2
(v̄4γ

µu3) (ū3γ
νv4)︸ ︷︷ ︸

out

· (ū1γµv2) (v̄2γνu1)︸ ︷︷ ︸
in

. (5.10)

These objects in parentheses are just c-numbers, so we can move them around, no

problem. I’ve grouped them into a bit depending only on the initial state (the electron

stuff 1, 2) and a bit depending only on the final state (the muon stuff 3,4).

Average over initial, sum over final. In the amplitude above, we have fixed the

spin states of all the particles. Only very sophisticated experiments are able to discern

this information. So suppose we wish to predict the outcome of an experiment which

does not measure the spins of the fermions involved. We must sum over the final-state

spins using ∑
s4

vs4a (p4)v̄s4b (p4) =
(
/p4
−mµ

)
ab

=
∑
s4

v̄s4b (p4)vs4a (p4)

(where I wrote the last expression to emphasize that these are just c-numbers) and∑
s3

us3a (p3)ūs3b (p3) =
(
/p3

+mµ

)
ab
.

Looking at just the ‘out’ factor of |M|2 in (5.10), we see that putting these together

produces a spinor trace, as promised:∑
s3,s4

(
ū(p3)s3a γ

µ
ab v(p4)s4b

)(
v̄(p4)s4c︸ ︷︷ ︸

(/p4−mµ)bc

γνcdu
s3(p3)d

)
= γµab(/p4

−mµ)bcγ
ν
cd(/p3

+mµ)da

= tr
(
γµ
(
/p4
−mµ

)
γν
(
/p3

+mµ

))
= p4ρp3σtrγµγργνγσ −m2

µtrγµγν

(5.7),(5.8)
= 4

pµ4pν3 + pν3p
µ
4 − p3 · p4︸ ︷︷ ︸

≡p34

ηµν −m2
µ

 (5.11)

If also we don’t know the initial (electron) spins, then the outcome of our experiment

is the average over the initial spins, of which there are four possibilities. Therefore, the

relevant probability for unpolarized scattering is

1

4

∑
s1,2,3,4

|M|2 =
e4

4s2
tr
(
γµ
(
/p4
−mµ

)
γν
(
/p3

+mµ

))
tr
(
γν

(
/p2
−mµ

)
γµ

(
/p1

+mµ

))
(5.11) twice

=
4e4

s2

(
p13p24 + p14p23 +m2

µp12 +m2
ep34 + 2m2

em
2
µ

)
algebra

=
2e4

s2

(
t2 + u2 + 4s(m2

e +m2
µ)− 2(m2

e +m2
µ)2
)

(5.12)
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where we used all the Mandelstam variables:

s ≡ (p1 + p2)2 = (p3 + p4)2 = E2
CoM = 4E2

t ≡ (p1 − p3)2 = (p2 − p4)2 = m2
e +m2

µ − 2E2 + 2~k · ~p
u ≡ (p1 − p4)2 = (p2 − p3)2 = m2

e +m2
µ − 2E2 − 2~k · ~p

where the particular kinematic variables (in the rightmost

equalities) are special to this problem, in the center of

mass frame (CoM), and are defined in the figure at right.

Really there are only two independent Lorentz-invariant

kinematical variables, since s+ t+ u =
∑

im
2
i .

Now we can use the formula (3.35) that we found for a differential cross section

with a two-body final state, in the CoM frame:(
dσ

dΩ

)
CoM

=
1

64π2ECoM

|~p|
|~k|

(
1

4

∑
spins

|M|2
)

=
α2

16E6

|~p|
|~k|

(
E4 + |~k|2|~p|2 cos2 θ + E2(m2

e +m2
µ)
)

(5.13)

where α ≡ e2

4π
is the fine structure constant. This can be boiled a bit with kinematical

relations |~k| =
√
E2 −m2

e, |~p| =
√
E2 −m2

µ to make manifest that it depends only on

two independent kinematical variables, which we can take to be the CoM energy E

and the scattering angle θ in ~k · ~p = |~k||~p| cos θ (best understood from the figure). It

simplifies a bit if we take E � me, and more if we take E � mµ ∼ 200me to

dσ

dΩ
=

α2

4E2

(
1 + cos2 θ

)
.

In fact, the two terms here come respectively from spins transverse to the scattering

plane and in the scattering plane; see Schwartz §5.3 for an explanation.

There is a lot more to say about what happens when we scatter an electron and a

positron! Another thing that can happen is that the final state could be an electron

and positron again (Bhabha scattering34).

They are not necessarily the same e− and e+, though

(except in the sense that they are all the same), because

another way to get there at tree level is the second, t-

channel, diagram, at right. The intermediate photon in

that diagram has kt = (p1−p3), so that the denominator

of the propagator is t = k2
t = (p1 − p3)2 instead of s.

34See figure 3 here. Now remember that a person doesn’t have much control over their name. By

the way, I totally believe the bit about non-perturbative strings = lint.
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Squaring this amplitude gives

|Ms +Mt|2 = |Ms|2 + |Mt|2 + 2Re(MsM?
t ), (5.14)

interference terms. Interference terms mean that you have to be careful about the

overall sign or phase of the amplitudes. In this case, there is a relative minus sign, by

exactly the calculation we did to get (5.4).

Above we’ve studied an exclusive cross-section in the sense that we fixed the final

state to be exactly a muon and an antimuon. It has also been very valuable to think

about inclusive cross-sections for e+e− scattering, because in this way you can make

anything that the s-channel photon couples to, if you put enough energy into it.

e−e− → e−e−. What happens if instead we scatter two

electrons (Möller scattering)? In that case, the leading

order diagrams are the ones at right. Now the interme-

diate photons have kt = (p1 − p3) and ku = (p1 − p4)

respectively, so that the denominator of the propaga-

tor is t and u in the two diagrams. The evaluation of

these diagrams has a lot in common with the ones for

e+e− → e+e−, namely you just switch some of the legs

between initial and final state.

The relation between such amplitudes is called crossing

symmetry. Let’s illustrate it instead for e−µ− ← e−µ−,

where again there is only one diagram, related by cross-

ing to (5.9). The diagram is the one at right. (The muon

is the thicker fermion line.)

iM = = (−ieū3γ
µu1))electrons

−i
(
ηµν − (1−ξ)kµkν

k2

)
k2

(−ieū2γ
νu4)muons (5.15)

with k ≡ p1 − p3 = p2 − p4. It differs from (5.9) by replacing the relevant vs with

us for the initial/final antiparticles that were moved into final/initial particles, and

relabelling the momenta. After the spin sum,

1

4

∑
s1,2,3,4

|M|2 =
e4

4t2
tr
(
γµ
(
/p4

+mµ

)
γν
(
/p2

+mµ

))
tr
(
γν

(
/p3

+me

)
γµ

(
/p1

+me

))
this amounts to the replacement (p1, p2, p3, p4)→ (p1,−p3, p4,−p2); on the Mandelstam

variables, this is just the permutation (s, t, u)→ (t, u, s).

124



Electron-proton scattering. The answer is basically the same if we think of the

heavy particle in (5.15) as a proton (we have to flip the sign of the charge but this gets

squared away since there is no interference in this case). ep→ ep is called Rutherford

scattering, for good reason35.

Electron-photon scattering. In the case of the process e−γ ← e−γ, 36 we meet

a new ingredient, namely external photons:

iM = ≡ iMs + iMt

= (−ie)2εµ1ε
?ν
4 ū3

(
γν

i/ks +m

s−m2
γµ + γµ

i/kt +m

t−m2
γν

)
u2 . (5.16)

The two amplitudes have a relative plus since we only mucked with the photon contrac-

tions, they just differ by how the gamma matrices are attached. If you don’t believe

me, draw the contractions on this:

〈γe| (Ψ̄ /AΨ)1(Ψ̄ /AΨ)2 |γe〉

(I’m not going to TeX it, thank you).

Now, if we don’t measure the photon polarizations, we need

P =
1

4

∑
polarizations, spins

|M|2.

The key ingredient is the completeness relation∑
i=1,2

εi?µ (k)εjν(k) = −ηµν + something proportional to kµkν .

We can do various incantations to find a definite coefficient, but it will not matter

because of the Ward identity: anytime there is an external photon ε(k)µ, the amplitude

is M = Mµε
µ(k) and satisfies kµMµ = 0. Therefore, we can ignore the term about

which I was vague and we have∑
polarizations

|M|2 =
∑
i

εi?µMµ?Mνεiν = −ηµνMµ?Mν + (terms with Mµk
µ)

35If you don’t know why, you should go read Inward Bound, by Abraham Pais, as soon as possible.
36which at high energy is called Compton scattering and at low energies is called Thomson scattering.

Despite my previous curmudgeonly footnote chastising the innocent reader for a poor knowledge of

the history of science, I do have a hard time remembering which name goes where. Moreover, as much

as I revere the contributions of many of these folks, I find that using their names makes me think

about the people instead of the physics. No one owns the physics! It’s the same physics for lots of

space aliens, too.
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= −M?
µMµ.

Don’t be scared of the minus sign, it’s because of the mostly minus signature, and

makes the thing positive. But notice the opportunity to get negative probabilities if

the gauge bosons don’t behave!

You get to boil the Compton scattering probability some more on the homework.

Good luck!

To be continued ... here.
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