University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics C (Physics 212A) Fall 2015 Worksheet 4

Announcements

- The 212A web site is:
http://physics.ucsd.edu/~mcgreevy/f15/.
Please check it regularly! It contains relevant course information!

Problems

1. Talking 'bout My Generation Let's think about translations.
(a) Define the operator $T(x)$ by the following:

$$
\begin{equation*}
T(x)|y\rangle=|y+x\rangle \tag{1}
\end{equation*}
$$

Show that $T(x)$ is unitary by considering the action of $T^{-1}(x)=T(-x)$
(b) Given the above we can express 1 by $T(x)=e^{-i K x}$ where K is hermitian.

Let $|k\rangle$ be an eigenbasis of $K ; K|k\rangle=k|k\rangle$. What is the action of $T(x)|k\rangle$?
Denote $\langle y \mid k\rangle=\phi_{k}(y)$. Note that by unitarity:

$$
\begin{equation*}
\langle y| T(x)|k\rangle=\langle y| T^{\dagger}(-x)|k\rangle \tag{2}
\end{equation*}
$$

What does 2 imply about $\phi_{k}(y)$?
(c) Recall plane waves have momentum related to their de Broglie wavelength: $p=\hbar k$ Rewrite $T(x)$ with the implied expression for the operator P. This is why we say momentum generates translations!
We can use a clever trick to get P on its own: $\frac{\partial}{\partial x} T(x)=-\frac{i}{\hbar} P T(x)$
Write an expression for $\left\langle x^{\prime}\right| P|x\rangle$ Hint: Derivative of a delta function
Recall that by some integration by parts:

$$
\begin{equation*}
\int \mathrm{d} x \delta^{\prime}(x-y) f(x)=0-\int \mathrm{d} x \delta(x-y) f^{\prime}(x)=-f^{\prime}(y) \tag{3}
\end{equation*}
$$

For f which vanishes at $\pm \infty$
Use (3) to derive the familiar expression for P by considering:

$$
\begin{equation*}
P \psi(x)=\langle x| P|\psi\rangle \tag{4}
\end{equation*}
$$

2. Building Bloch's Theorem

Consider a 1D Hamiltonian with a periodic potential $V(x)=V(x+n a)$ for $n \in \mathbb{Z}$ and a the lattice spacing.
(a) Define the operator T^{n} by $T^{n}|x\rangle=|x+n a\rangle$. Show this is a symmetry.
(b) Assuming H has no shared degeneracy with T, show that any eigenfunctions of this system can be chosen to obey

$$
\begin{equation*}
\psi_{k}(x-a)=e^{-\mathbf{i} k a} \psi_{k}(x) \tag{5}
\end{equation*}
$$

Recall that $T|k\rangle=e^{-\mathrm{i} k a}|k\rangle$ and $\langle x \mid k\rangle \equiv \psi_{k}(x)$.
(c) Infer from (5) that one can then write $\psi_{k}(x)=e^{\mathrm{i} k x} u_{k}(x)$ where $u_{k}(x)=u_{k}(x+a)$

Note that k is different from our usual momentum. It's a crystal momentum!
(d) Show explicitly that for $P=-\mathbf{i} \partial_{x}$ that $P \psi_{k}(x) \neq k \psi_{k}(x)$
(e) Show that $\frac{-\pi}{a} \leq k \leq \frac{\pi}{a}$. What is $k+\frac{2 \pi}{a}$?

3. A Theorem of Kramer

Most symmetries are unitary. Some are anti-unitary. Time reversal is one of the latter. Denote this operator with \mathcal{T}.
Something one might expect classically is that $\mathcal{T} x \mathcal{T}^{-1}=x$ but $\mathcal{T} p \mathcal{T}^{-1}=-p$. It makes things run backwards.
A similar story is true for angular and spin momentum. $\mathcal{T} S \mathcal{T}^{-1}=-S$
(a) Consider the action of \mathcal{T} on a spin- $\frac{1}{2}: \mathcal{T}|0\rangle$ where $S_{z}|0\rangle=\frac{1}{2}|0\rangle$.

Show that $\mathcal{T}=-\mathbf{i} Y K$ is a suitable representation for \mathcal{T} where K implements complex conjugation ${ }^{1}$ and Y is the Pauli matrix $\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$.
What is \mathcal{T}^{2} in this case?
(b) Consider a system whose Hamiltonian H is time reversal symmetric. Show that if $|\psi\rangle$ is an eigenstate then $\mathcal{T}|\psi\rangle$ is as well.
Does this change the energy of the state?
(c) Imagine this is a spin- $\frac{1}{2}$ system such that $|\psi\rangle$ is an eigenstate of S_{z} as well.

How are $|\psi\rangle$ and $\mathcal{T}|\psi\rangle$ related? Can they be the same?

[^0]
[^0]: ${ }^{1}$ This is what makes it anti-unitary.

