University of California at San Diego - Department of Physics - TA: Shauna Kravec

Quantum Mechanics C (Physics 212A) Fall 2015 Worksheet 1

Announcements

- The 212A web site is:
http://physics.ucsd.edu/~mcgreevy/f15/ .
Please check it regularly! It contains relevant course information!
- Greetings everyone! This week is Dirac notation/linear algebra bootcamp.

Problems

1. Compatible Measurements

Consider the following matrices: $X=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ and $Q=\left(\begin{array}{cc}5 & 3 a \\ 6 & b\end{array}\right)$
(a) For what values of a and b are these simultaneously diagonalizable?

We define the commutator $[M, N]=M N-N M$
(b) For these particular values of a and b what is $[X, Q]$?
(c) Does $Z=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ work?

2. Projecting

We say P is a projector if $P^{2}=P$; projecting twice is the same as once.
A hermitian projection is one where $P^{\dagger}=P^{1}$
(a) Prove that $(\mathbb{1}-P)$ is also a projector
(b) Show that $(\mathbb{1}-P)$ and P are complementary.

That is: range $(\mathbb{1}-P)=$ null P and null $(\mathbb{1}-P)=$ range P
This shows that every vector $|\psi\rangle$ can be written as $|\psi\rangle=P|\psi\rangle+(\mathbb{1}-P)|\psi\rangle$
(c) Show that for every normalized $|\psi\rangle$ that $0 \leq\langle\psi| P|\psi\rangle \leq 1$
(d) Show that a hermitian projector can never lengthen a vector.

[^0]
3. Represent

Suppose the vectors $\{|a\rangle,|b\rangle,|c\rangle\}$ form an orthonormal basis for \mathcal{H} where some operator \hat{K} lives. Suppose we know also that these vectors are eigenvectors of \hat{K} :

$$
\begin{equation*}
\hat{K}|a\rangle=5|a\rangle \quad \hat{K}|b\rangle=-12|b\rangle \quad \hat{K}|c\rangle=2 \mathbf{i}|c\rangle \tag{1}
\end{equation*}
$$

(a) Write the matrix \hat{K} using Dirac notation. Hint: $\hat{K}=a|a\rangle\langle a|+b|b\rangle\langle b|+c|c\rangle\langle c|$
(b) Consider $|\psi\rangle=\frac{1}{\sqrt{2}}(2|a\rangle+5 \mathbf{i}|c\rangle)$ and compute $\langle\psi| \hat{K}|\psi\rangle$.

Do this using Dirac notation and regular matrix multiplication.

4. Gone with a Trace

Recall the trace of an operator $\operatorname{Tr}[A]=\sum_{m}\langle m| A|m\rangle$ for the some basis set $\{|m\rangle\}$
Prove that this definition is independent of basis.
Prove the cycle property: $\operatorname{Tr}[A B C]=\operatorname{Tr}[B C A]=\operatorname{Tr}[C A B]$
Note that this implies if A is diagonalizable with eigenvalues λ_{i} that $\operatorname{Tr}[A]=\sum_{i} \lambda_{i}$

5. A Very Useful Trick

Consider an operator A. Show the following identity

$$
\begin{equation*}
\operatorname{det} e^{A}=e^{\operatorname{Tr}[A]} \tag{2}
\end{equation*}
$$

Hint: Recall that the determinant is the product of eigenvalues

6. Another Useful Trick

Recall that for generic operators A and B that $e^{A} e^{B} \neq e^{A+B}$ but rather

$$
\begin{equation*}
Z(A, B) \equiv \log \left(e^{A} e^{B}\right)=A+B+\frac{1}{2}[A, B]+\cdots \tag{3}
\end{equation*}
$$

where the \cdots are terms involving commutators of commutators. Ick. This is known as the BCH expansion. Note the possibility to simplify.
One formal expression for (3) is

$$
\begin{equation*}
Z(A, B)=A+B+\int_{0}^{1} \mathrm{~d} t \sum_{n=1}^{\infty} \frac{\left(\mathbb{1}-e^{L_{A}} e^{t L_{B}}\right)^{n-1}}{n(n+1)} \frac{\left(e^{L_{A}}-\mathbb{1}\right)}{L_{A}}[A, B] \tag{4}
\end{equation*}
$$

where $L_{X} Y \equiv[X, Y]$
Consider $[A, B]=u A+v B+c \Perp$.
(a) Show that $L_{A}[A, B]=v[A, B]$ and $L_{B}[A, B]=-u[A, B]$
(b) Simplify (4) using the above eigenvalue relations.
(c) Evaluate the integral/sum explicitly. Use $\frac{\log (x) x}{x-1}=1-\sum_{n=1}^{\infty} \frac{(1-x)^{n}}{n(n+1)}$

You should get $Z(A, B)=A+B+f(u, v)[A, B]$ where

$$
\begin{equation*}
f(u, v)=\frac{(u-v) e^{u+v}-\left(u e^{u}-v e^{v}\right)}{u v\left(e^{u}-e^{v}\right)} \tag{5}
\end{equation*}
$$

[^0]: ${ }^{1}$ These are also called orthogonal.

