University of California at San Diego - Department of Physics - Prof. John McGreevy

Quantum Mechanics (Physics 212A) Fall 2015 Assignment 10

Due 12:30pm Wednesday, December 9, 2015

December 2 is the final lecture. This problem set may be handed in at my office (MH5222) or Shauna's (MH4206). Just put it under the door if no one is there.

1. Bases for rotation generators.

Find the transformation which relates the $(\check{x}, \check{y}, \check{z})$ basis where the rotation generators are $-\mathbf{i} \hbar \overrightarrow{\mathcal{J}}$ with

$$
\mathcal{J}_{1}=\left(\begin{array}{ccc}
0 & & \\
& 0 & -1 \\
1 & 0
\end{array}\right), \quad \mathcal{J}_{2}=\left(\begin{array}{cc}
0 & \\
& 0 \\
& 0 \\
-1 & 0
\end{array}\right), \quad \mathcal{J}_{3}=\left(\begin{array}{ccc}
0 & -1 \\
1 & 0 & \\
& & 0
\end{array}\right) .
$$

to the $|j, m\rangle$ basis for spin $j=1$. Hint: diagonalize \mathbf{J}_{3}.
2. Uncertainty and angular momentum. [from Commins]
(a) As usual, a simultaneous eigenstate of \mathbf{J}^{2} and \mathbf{J}_{3} is denoted $|j, m\rangle$. Show that the expectation values for \mathbf{J}_{1} and \mathbf{J}_{2} are zero in such a state.
(b) Show that if any operator commutes with two components of an angular momentum operator then it also commutes with the third component.
(c) Show that

$$
\begin{equation*}
\left(\Delta J_{x}\right)^{2}+\left(\Delta J_{y}\right)^{2} \geq \hbar\left|\left\langle\mathbf{J}_{z}\right\rangle\right| . \tag{1}
\end{equation*}
$$

(d) Earlier, we showed that

$$
\begin{equation*}
\Delta J_{x} \Delta J_{y} \geq \frac{\hbar}{2}\left|\left\langle\mathbf{J}_{z}\right\rangle\right| . \tag{2}
\end{equation*}
$$

Show that for a state $|j, m\rangle$ the inequalities (1) and (2) are both saturated if and only if $m=-j$ or $m=j$.

3. Relation between angular momentum and harmonic oscillator algebras.

You'll have noticed some similarities between our analysis of the SHO and the angular momentum algebra. Here is a precise connection between them. Consider two independent SHOs, with destruction operators $\mathbf{a}_{r}, r=1,2$, so that

$$
\left[\mathbf{a}_{r}, \mathbf{a}_{s}\right]=\left[\mathbf{a}_{r}^{\dagger}, \mathbf{a}_{s}^{\dagger}\right]=0, \quad\left[\mathbf{a}_{r}, \mathbf{a}_{s}^{\dagger}\right]=\delta_{r s} .
$$

Let

$$
\begin{aligned}
\mathbf{S} \equiv \frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}+\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right) & \mathbf{J}_{1} \equiv \frac{1}{2}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}+\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right) \\
\mathbf{J}_{2} \equiv \frac{\mathbf{i}}{2}\left(\mathbf{a}_{2}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{1}^{\dagger} \mathbf{a}_{2}\right) & \mathbf{J}_{3} \equiv \frac{1}{2}\left(\mathbf{a}_{1}^{\dagger} \mathbf{a}_{1}-\mathbf{a}_{2}^{\dagger} \mathbf{a}_{2}\right)
\end{aligned}
$$

(a) Show that the the \mathbf{J}_{i} satisfy the $\mathfrak{s u}(2)$ algebra (set $\hbar=1$), and that $\sum_{i} \mathbf{J}_{i}^{2}=$ $\mathbf{S}(\mathbf{S}+1)$. Conclude that $[\mathbf{S}, \overrightarrow{\mathbf{J}}]=0$.
(b) Show that

$$
|j, m\rangle=\left(\mathbf{a}_{1}^{\dagger}\right)^{j+m}\left(\mathbf{a}_{2}^{\dagger}\right)^{j-m}|0\rangle \frac{1}{\sqrt{(j+m)!(j-m)!}}
$$

form the (normalized, orthogonal) basis for the standard representation of $\left\{\mathbf{J}^{2}, \mathbf{J}_{3}\right\}$ discussed in lecture. Here $|0\rangle$ is the SHO groundstate $\mathbf{a}_{1}|0\rangle=0=\mathbf{a}_{2}|0\rangle$.
(c) (Simple but useful, I think.) Draw a picture of these states: label the axes by the eigenvalues of the two number operators. Circle the states with the same j.
(d) [optional] Now regard the two SHOs as describing the coordinates of one particle in a two-dimensional rotation-invariant potential, so $\mathbf{a}_{r} \sim \mathbf{Q}_{r}+\mathbf{i P} \mathbf{P}_{r}$. What transformations do these operators generate?

4. Addition of angular momentum example.

What is $\underline{1} \otimes \underline{1}$? Find the matrix of Clebsch-Gordan coefficients by the method described in lecture.

5. Spherical harmonics and rotation matrices.

Consider a particle free to move on the unit sphere (imagine a particle in $d=3$ with a central potential $V(r)$ with a very deep minimum at $r=1$). A basis is labelled by polar coordinates $|\theta, \varphi\rangle \equiv|\check{n}\rangle$ where \check{n} is a unit vector. A resolution of the identity in this (position) basis is $\mathbb{1}=\int d \Omega|\theta, \varphi\rangle\langle\theta, \varphi|$ with $\int d \Omega \ldots \equiv \int_{0}^{\pi} d \theta \int_{0}^{2 \pi} d \varphi \sin \theta$.
(a) We can make the state $|\check{n}\rangle$ by starting with $|\check{z}\rangle$ and acting with an appropriate rotation:

$$
|\check{n}\rangle=R_{\check{n}}|\check{z}\rangle .
$$

Show that there is an ambiguity in choosing $R_{\check{n}}$ since $R_{\check{n}}$ and $R_{\check{n}} R(\check{z}, \gamma)$ will produce the same state.
(b) Another basis for this Hilbert space is the one $|\ell, m\rangle$ which diagonalizes \mathbf{L}^{2} and \mathbf{L}_{z}; the identity is $\mathbb{1}=\sum_{\ell \in \mathbb{Z}_{\geq 0}, m=-\ell, . . \ell}|\ell, m\rangle\langle\ell, m|$. The position basis components of $|\ell, m\rangle$ are the spherical harmonics:

$$
\langle\theta, \varphi \mid \ell, m\rangle=Y_{\ell, m}(\theta, \varphi) .
$$

Starting with this expression, show that

$$
Y_{\ell, m}(\theta, \varphi)=\sum_{m^{\prime}}\left\langle\check{z} \mid \ell, m^{\prime}\right\rangle\left(\mathcal{D}_{m m^{\prime}}^{(\ell)}\left(R_{\check{n}}\right)\right)^{\star}
$$

where $\mathcal{D}_{m m^{\prime}}^{(\ell)}\left(R_{\check{n}}\right) \equiv\langle\ell, m| R_{\check{n}}\left|\ell, m^{\prime}\right\rangle$.
(c) Show that the freedom to redefine $R_{\check{n}}$ in part 5a implies that

$$
\langle\check{z} \mid \ell, m\rangle=0 \text { unless } m=0 .
$$

(d) Conclude that

$$
Y_{\ell, m}(\theta, \varphi)=\sqrt{\frac{2 \ell+1}{4 \pi}} e^{\mathrm{i} m \varphi} d_{m, 0}^{(\ell)}(\theta)
$$

where d was defined in lecture.

