
University of California at San Diego – Department of Physics – Prof. John McGreevy

Quantum Mechanics (Physics 212A) Fall 2015
Assignment 10

Due 12:30pm Wednesday, December 9, 2015

December 2 is the final lecture. This problem set may be handed in at my office (MH5222)

or Shauna’s (MH4206). Just put it under the door if no one is there.

1. Bases for rotation generators.

Find the transformation which relates the (x̌, y̌, ž) basis where the rotation generators

are −i~ ~J with

J1 =

0

0 −1

1 0

 , J2 =

 0 1

0

−1 0

 , J3 =

0 −1

1 0

0

 .

to the |j,m〉 basis for spin j = 1. Hint: diagonalize J3.

2. Uncertainty and angular momentum. [from Commins]

(a) As usual, a simultaneous eigenstate of J2 and J3 is denoted |j,m〉. Show that the

expectation values for J1 and J2 are zero in such a state.

(b) Show that if any operator commutes with two components of an angular momen-

tum operator then it also commutes with the third component.

(c) Show that

(∆Jx)
2 + (∆Jy)

2 ≥ ~|〈Jz〉|. (1)

(d) Earlier, we showed that

∆Jx∆Jy ≥
~
2
|〈Jz〉|. (2)

Show that for a state |j,m〉 the inequalities (1) and (2) are both saturated if and

only if m = −j or m = j.

3. Relation between angular momentum and harmonic oscillator algebras.

You’ll have noticed some similarities between our analysis of the SHO and the an-

gular momentum algebra. Here is a precise connection between them. Consider two

independent SHOs, with destruction operators ar, r = 1, 2, so that

[ar, as] = [a†r, a
†
s] = 0, [ar, a

†
s] = δrs.
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Let

S ≡ 1

2

(
a†1a1 + a†2a2

)
J1 ≡

1

2

(
a†2a1 + a†1a2

)
J2 ≡

i

2

(
a†2a1 − a†1a2

)
J3 ≡

1

2

(
a†1a1 − a†2a2

)
(a) Show that the the Ji satisfy the su(2) algebra (set ~ = 1), and that

∑
i J

2
i =

S(S + 1). Conclude that [S, ~J] = 0.

(b) Show that

|j,m〉 =
(
a†1

)j+m (
a†2

)j−m
|0〉 1√

(j +m)!(j −m)!

form the (normalized, orthogonal) basis for the standard representation of {J2,J3}
discussed in lecture. Here |0〉 is the SHO groundstate a1|0〉 = 0 = a2|0〉.

(c) (Simple but useful, I think.) Draw a picture of these states: label the axes by the

eigenvalues of the two number operators. Circle the states with the same j.

(d) [optional] Now regard the two SHOs as describing the coordinates of one parti-

cle in a two-dimensional rotation-invariant potential, so ar ∼ Qr + iPr. What

transformations do these operators generate?

4. Addition of angular momentum example.

What is 1⊗1 ? Find the matrix of Clebsch-Gordan coefficients by the method described

in lecture.

5. Spherical harmonics and rotation matrices.

Consider a particle free to move on the unit sphere (imagine a particle in d = 3 with

a central potential V (r) with a very deep minimum at r = 1). A basis is labelled by

polar coordinates |θ, ϕ〉 ≡ |ň〉 where ň is a unit vector. A resolution of the identity in

this (position) basis is 1 =
∫
dΩ |θ, ϕ〉〈θ, ϕ| with

∫
dΩ... ≡

∫ π
0
dθ
∫ 2π

0
dϕ sin θ.

(a) We can make the state |ň〉 by starting with |ž〉 and acting with an appropriate

rotation:

|ň〉 = Rň|ž〉.

Show that there is an ambiguity in choosing Rň since Rň and RňR(ž, γ) will

produce the same state.

(b) Another basis for this Hilbert space is the one |`,m〉 which diagonalizes L2 and

Lz; the identity is 1 =
∑

`∈Z≥0,m=−`,..` |`,m〉〈`,m|. The position basis components

of |`,m〉 are the spherical harmonics:

〈θ, ϕ|`,m〉 = Y`,m(θ, ϕ).
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Starting with this expression, show that

Y`,m(θ, ϕ) =
∑
m′

〈ž|`,m′〉
(
D(`)
mm′(Rň)

)?
where D(`)

mm′(Rň) ≡ 〈`,m|Rň|`,m′〉.

(c) Show that the freedom to redefine Rň in part 5a implies that

〈ž|`,m〉 = 0 unless m = 0.

(d) Conclude that

Y`,m(θ, ϕ) =

√
2`+ 1

4π
eimϕd

(`)
m,0(θ)

where d was defined in lecture.
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