University of California at San Diego - Department of Physics - Prof. John McGreevy

Quantum Mechanics (Physics 212A) Fall 2015 Assignment 9

Due 12:30pm Wednesday, December 2, 2015

1. Projective representations [optional]

Consider a group G , with elements $g_{1}, g_{2}, g_{1} g_{2}$ et cetera. (For simplicity suppose G has a finite number of elements.) Suppose G has a projective representation on a Hilbert space \mathcal{H} by unitaries $\mathbf{U}(g)$:

$$
\mathbf{U}\left(g_{1}\right) \mathbf{U}\left(g_{2}\right)=\omega\left(g_{1}, g_{2}\right) \mathbf{U}\left(g_{1} g_{2}\right) .
$$

We will ask two questions:
(a) What constraints does associativity

$$
\left(\mathbf{U}\left(g_{1}\right) \mathbf{U}\left(g_{2}\right)\right) \mathbf{U}\left(g_{3}\right)=\mathbf{U}\left(g_{1}\right)\left(\mathbf{U}\left(g_{2}\right) \mathbf{U}\left(g_{3}\right)\right)
$$

impose on the phases $\omega\left(g_{1}, g_{2}\right)$?
(b) When can we get rid of the phases $\omega\left(g_{1}, g_{2}\right)$ by redefining the phases of $\mathbf{U}(g)$:

$$
\mathbf{U}(g) \rightarrow u(g) \mathbf{U}(g) \quad ?
$$

More specifically, identify the resulting equivalence relation among the phases $u\left(g_{1}, g_{2}\right)$.

Cultural remark: The space of solutions of the condition 1a modulo the equivalence relation 1 b defines the Borel cohomology group $H^{2}(\mathrm{G}, \mathrm{U}(1))$, which classifies projective representations of G.
(c) Now we'll study an example. Take $G=\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ with elements $\mathbb{1}, g_{x}, g_{z}, g_{x} g_{z}$ and multiplication rules: $g_{x}^{2}=\mathbb{1}, g_{z}^{2}=1, g_{x} g_{z}=g_{z} g_{x}$. Show that on a two-dimensional Hilbert space, the Pauli operators

$$
\mathbf{U}\left(g_{x}\right)=\boldsymbol{\sigma}^{x}, \quad \mathbf{U}\left(g_{z}\right)=\boldsymbol{\sigma}^{z}
$$

furnish a projective representation of G. Find $\mathbf{U}\left(g_{x} g_{z}\right)$ and $\mathbf{U}\left(g_{z} g_{x}\right)$. Notice that although g_{x} and g_{z} commute, these two objects are not equal.

