University of California at San Diego – Department of Physics – Prof. John McGreevy

Quantum Mechanics (Physics 212A) Fall 2015 Assignment 8

Due 12:30pm Wednesday, November 25, 2015

1. Probability current for charged particle

Check that probability is still conserved $\partial_t \rho + \vec{\nabla} \cdot \vec{j}_A = 0$ for a charged particle, with $\rho(x,t) = |\psi(x,t)|^2$ and

$$\vec{j}_A \equiv \frac{\hbar}{2m\mathbf{i}} \left(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^* \right) - \frac{e}{mc} \psi^* \psi \vec{A}.$$

Check that \vec{j}_A is gauge invariant if the gauge transformation acts on the wavefunction by

$$\vec{A} \to \vec{A} + \vec{\nabla}\lambda, \quad \psi \to e^{\pm \mathbf{i}\frac{e\lambda}{\hbar c}}\psi$$

for one choice of the sign in the exponent.

(As a check of the sign, you can check that the Schrödinger equation maps to itself under the transformation.)

2. Landau levels [Shankar]

In this problem we will consider a charged particle in a uniform magnetic field $\vec{B} = B\tilde{z}$. We will ignore the dimension in which the field is pointed, so the particle moves only in the two directions x, y transverse to the field. This problem is a crucial ingredient in the quantum Hall effect(s).

Consider a particle of charge q in a vector potential

$$\vec{A} = \frac{B}{2} \left(-y\check{x} + x\check{y} \right).$$

- (a) Show that the magnetic field is as stated above.
- (b) Show that a classical particle in this potential will move in circles at an angular frequency $\omega_0 = \frac{qB}{mc}$ where m is the mass.
- (c) Consider the Hamiltonian for the corresponding quantum problem

$$\mathbf{H} = \frac{1}{2m} \left(\left(\mathbf{p}_x + \frac{qB}{2c} \mathbf{y} \right)^2 + \left(\mathbf{p}_y - \frac{qB}{2c} \mathbf{x} \right)^2 \right).$$

Show that

$$\mathbf{Q} \equiv \frac{1}{qB} \left(c \mathbf{p}_x + \frac{qB}{2} \mathbf{y} \right) \text{ and } \mathbf{P} \equiv \left(\mathbf{p}_y - \frac{qB}{2c} \mathbf{y} \right)$$

are canonical in the sense that $[\mathbf{Q}, \mathbf{P}] = \mathbf{i}\hbar$. Write **H** in terms of these operators and show that the allowed levels are $E_n = \left(n + \frac{1}{2}\right)\hbar\omega_0$.

- (d) What is the multiplicity of each of these energy eigenvalues? Hint: find another canonical pair of operators that commutes with **H** and with **Q**, **P**.
- (e) To understand the degeneracy better, let's write the wavefunctions for n = 0 (the *lowest Landau level* (LLL)) in terms of $z \equiv x + \mathbf{i}y, z^* \equiv x \mathbf{i}y$. Recall that the groundstate(s) of a harmonic oscillator satisfy $\mathbf{a}|0\rangle = 0$. Write this condition for the n = 0 states in terms of z, z^* . Writing the LLL wavefunctions as

$$\psi_0(z, z^\star) = \langle x, y | n = 0 \rangle = e^{-\frac{qB}{4\hbar c} z z^\star} u(z, z^\star)$$

show that the condition is solved when $u(z, z^*)$ is any holomorphic function: $\partial_{z^*} u = 0.$

- (f) [optional] A useful basis of such functions is monomials $u_m = z^m$. Show that $\psi_{0,m} \equiv z^m e^{-\frac{1}{4\ell_B^2} z z^*}$ (where $\ell_B \equiv \frac{\hbar c}{qB}$ is the magnetic length) is peaked for large m at a radius $r_m = \sqrt{2m}\ell_B$.
- (g) [optional] Show that $\psi_{0,m}$ is an eigenstate of the angular momentum $\mathbf{L}_z = \mathbf{i} (\mathbf{x} \mathbf{p}_y \mathbf{y} \mathbf{p}_x) = \mathbf{i} \hbar \partial_{\varphi}$, where $z \equiv r e^{\mathbf{i} \varphi}$.
- (h) [optional] If the system is a disc of radius R there is a biggest value of m that can fit. Show that the number of LLL states that can fit is

$$N = \frac{\Phi_B}{\Phi_0}$$

where $\Phi_B = \pi R^2 B$ is the flux through the sample and $\Phi_0 \equiv \frac{2\pi\hbar c}{q}$ is the flux quantum which appeared in the periodicity of the interference pattern in the Aharonov-Bohm experiment.

3. Aharonov-Casher effect [Commins]

Consider a neutral particle with spin- $\frac{1}{2}$ (such as a neutron), described by the Lagrangian

$$L = \frac{1}{2}mv^2 + \mu\vec{\sigma}\cdot\left(\vec{v}\times\vec{E}\right)$$

where $\vec{\sigma}$ is the spin operator and $\vec{v} \equiv \dot{\vec{x}}$.

Find the canonical momentum and the Hamiltonian.

Consider an experiment where a cylindrically-symmetric electric field \vec{E} is produced by a line charge with charge-per-unit-length λ extended in the \check{z} direction. Two beams of the particles described by L are sent in paths around the line charge and allowed to interfere. Show that the phase shift between the two waves arising from the line charge is

$$\delta_{\pm} = \pm \frac{4\pi\lambda\mu}{\hbar c}$$

for spin up/down in the \check{z} basis.