University of California at San Diego - Department of Physics - Prof. John McGreevy

Quantum Mechanics (Physics 212A) Fall 2015 Assignment 8

Due 12:30pm Wednesday, November 25, 2015

1. Probability current for charged particle

Check that probability is still conserved $\partial_{t} \rho+\vec{\nabla} \cdot \vec{j}_{A}=0$ for a charged particle, with $\rho(x, t)=|\psi(x, t)|^{2}$ and

$$
\vec{j}_{A} \equiv \frac{\hbar}{2 m \mathbf{i}}\left(\psi^{\star} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{\star}\right)-\frac{e}{m c} \psi^{\star} \psi \vec{A} .
$$

Check that \vec{j}_{A} is gauge invariant if the gauge transformation acts on the wavefunction by

$$
\vec{A} \rightarrow \vec{A}+\vec{\nabla} \lambda, \quad \psi \rightarrow e^{ \pm i \frac{e \lambda}{\overline{c c}}} \psi
$$

for one choice of the sign in the exponent.
(As a check of the sign, you can check that the Schrödinger equation maps to itself under the transformation.)
2. Landau levels [Shankar]

In this problem we will consider a charged particle in a uniform magnetic field $\vec{B}=B \check{z}$. We will ignore the dimension in which the field is pointed, so the particle moves only in the two directions x, y transverse to the field. This problem is a crucial ingredient in the quantum Hall effect(s).

Consider a particle of charge q in a vector potential

$$
\vec{A}=\frac{B}{2}(-y \check{x}+x \check{y}) .
$$

(a) Show that the magnetic field is as stated above.
(b) Show that a classical particle in this potential will move in circles at an angular frequency $\omega_{0}=\frac{q B}{m c}$ where m is the mass.
(c) Consider the Hamiltonian for the corresponding quantum problem

$$
\mathbf{H}=\frac{1}{2 m}\left(\left(\mathbf{p}_{x}+\frac{q B}{2 c} \mathbf{y}\right)^{2}+\left(\mathbf{p}_{y}-\frac{q B}{2 c} \mathbf{x}\right)^{2}\right)
$$

Show that

$$
\mathbf{Q} \equiv \frac{1}{q B}\left(c \mathbf{p}_{x}+\frac{q B}{2} \mathbf{y}\right) \text { and } \mathbf{P} \equiv\left(\mathbf{p}_{y}-\frac{q B}{2 c} \mathbf{y}\right)
$$

are canonical in the sense that $[\mathbf{Q}, \mathbf{P}]=\mathbf{i} \hbar$. Write \mathbf{H} in terms of these operators and show that the allowed levels are $E_{n}=\left(n+\frac{1}{2}\right) \hbar \omega_{0}$.
(d) What is the multiplicity of each of these energy eigenvalues? Hint: find another canonical pair of operators that commutes with \mathbf{H} and with \mathbf{Q}, \mathbf{P}.
(e) To understand the degeneracy better, let's write the wavefunctions for $n=0$ (the lowest Landau level (LLL)) in terms of $z \equiv x+\mathbf{i} y, z^{\star} \equiv x-\mathbf{i} y$. Recall that the groundstate(s) of a harmonic oscillator satisfy $\mathbf{a}|0\rangle=0$. Write this condition for the $n=0$ states in terms of z, z^{\star}. Writing the LLL wavefunctions as

$$
\psi_{0}\left(z, z^{\star}\right)=\langle x, y \mid n=0\rangle=e^{-\frac{q B}{4 h c} z z^{\star}} u\left(z, z^{\star}\right)
$$

show that the condition is solved when $u\left(z, z^{\star}\right)$ is any holomorphic function: $\partial_{z^{\star}} u=0$.
(f) [optional] A useful basis of such functions is monomials $u_{m}=z^{m}$. Show that $\psi_{0, m} \equiv z^{m} e^{-\frac{1}{4 \ell_{B}^{2}} z z^{\star}}$ (where $\ell_{B} \equiv \frac{\hbar c}{q B}$ is the magnetic length) is peaked for large m at a radius $r_{m}=\sqrt{2 m} \ell_{B}$.
(g) [optional] Show that $\psi_{0, m}$ is an eigenstate of the angular momentum $\mathbf{L}_{z}=\mathbf{i}\left(\mathbf{x p}_{y}-\mathbf{y} \mathbf{p}_{x}\right)=$ $\mathbf{i} \hbar \partial_{\varphi}$, where $z \equiv r e^{\mathbf{i} \varphi}$.
(h) [optional] If the system is a disc of radius R there is a biggest value of m that can fit. Show that the number of LLL states that can fit is

$$
N=\frac{\Phi_{B}}{\Phi_{0}}
$$

where $\Phi_{B}=\pi R^{2} B$ is the flux through the sample and $\Phi_{0} \equiv \frac{2 \pi \hbar c}{q}$ is the flux quantum which appeared in the periodicity of the interference pattern in the Aharonov-Bohm experiment.

3. Aharonov-Casher effect [Commins]

Consider a neutral particle with spin- $\frac{1}{2}$ (such as a neutron), described by the Lagrangian

$$
L=\frac{1}{2} m v^{2}+\mu \vec{\sigma} \cdot(\vec{v} \times \vec{E})
$$

where $\vec{\sigma}$ is the spin operator and $\vec{v} \equiv \dot{\vec{x}}$.
Find the canonical momentum and the Hamiltonian.
Consider an experiment where a cylindrically-symmetric electric field \vec{E} is produced by a line charge with charge-per-unit-length λ extended in the \check{z} direction. Two beams
of the particles described by L are sent in paths around the line charge and allowed to interfere. Show that the phase shift between the two waves arising from the line charge is

$$
\delta_{ \pm}= \pm \frac{4 \pi \lambda \mu}{\hbar c}
$$

for spin up/down in the \check{z} basis.

