University of California at San Diego - Department of Physics - Prof. John McGreevy

Quantum Mechanics (Physics 212A) Fall 2015 Assignment 7

Due 12:30pm Wednesday, November 18, 2015

1. Shape-invariant potentials. [Commins]

A particle of unit mass moves in a certain one-dimensional potential $V_{-}(x)$. The boundstates $u_{0}, u_{1} \ldots u_{n}$ have energies $E_{0}, E_{1} \ldots E_{n}$ respectively, in order of increasing energy. The groundstate wavefunction is

$$
u_{0} \propto(\operatorname{sech} \beta x)^{p}
$$

where $\beta, p>0$ are real parameters.
(a) Find the superpotential $W(x)$.
(b) Find V_{-}and its partner potential V_{+}.
(c) Obtain a general formula for the E_{n}. What restriction applies to p so that there exist n boundstates?
(d) Find u_{1}, up to normalization.
(e) Use the result of part 1c to discuss the potential $V=-V_{0} \operatorname{sech}^{2} \beta x$ where $V_{0}>0$, and show the boundstate eigenvalues for $m=\hbar=1$ are given by

$$
E_{n}=-\frac{\beta^{2}}{8}\left(-(1+2 n)+\sqrt{1+8 V_{0} / \beta^{2}}\right)^{2}
$$

2. WKB vs exact solution.

Consider again the problem of a particle in a linear confining potential $V(x)=|x|$.
Compare the numerical values of the first three energy levels to the WKB approximation answers.

Consider the case of a quantum ball bouncing on the floor. Approximate the floor as a hard wall.

How can you obtain the eigenfunctions for this case from the previous case?
Draw the phase space orbits for this case.

3. Whittaker functions! [optional]

In deriving the connection formulae which relate WKB solutions to the Schrödinger equation in neighboring allowed and forbidden regions, we assumed that the potential had nonzero slope F_{0} at the turning point. What should you do if this assumption fails, and the potential looks like this:

