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1. Paulis

(a) Show (from the matrix representations) that

σiσj = iεijkσ
k + δij1 (1)

where εijk is the completely antisymmetric tensor in three indices, with

ε123 = ε312 = ε231 = +1, ε231 = ε132 = ε321 = −1

and εijk = 0 if any two indices are equal. (On the right hand side of (1), we are

using the Einstein summation convention.)

(b) Use (1) to show that

(ň · ~σ)2 = 1

if ň is a unit vector.

(c) Show by series expansion that

eiň·~σθ = cos θ1 + i sin θň · σ.

2. Projector onto spin-up along ň.

Show that the projector onto the state of a qbit | ↑ň〉 with spin up along an arbitrary

unit vector ň (defined by the relation ň · ~σ| ↑ň〉 = | ↑ň〉)1 can be written as

| ↑ň〉〈 ↑ň | =
1

2
(1 + ň · σ) .

That is: check that the operator on the RHS is hermitian, squares to itself, and acts

correctly on a basis.

3. Functions of operators.

Given a linear operator A, define the ‘superoperator’ adA, which implements the adjoint

action of A, by

adA(B) = [A,B].

1Sometimes it is called |+ň〉 ≡ | ↑ň〉.
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(a) Show that this operator is a derivation,

adA(BC) = (adAB)C +B(adAC) . (2)

That is: it satisfies a product rule, like a derivative.

(b) Show that (for finite-dimensional Hilbert spaces) one can “integrate by parts”

under the trace:

tr [BadAC] = −tr [(adAB)C] .

(c) We are going to derive the formula

eA+B = eAeĈA(B), (3)

where

ĈA =

∫ 1

0

ds e−sadA =
eadA − 1

adA
=
∞∑
n=0

(−1)n

(n+ 1)!
adnA = 1− 1

2
adA +

1

6
ad2

A + . . . .

To do this, consider the operator-valued function

G(s) = e−sAes(A+B).

Derive a first-order differential equation for G(s) and solve it.

(d) For the special case where [A,B] = c is a c-number show that (4) implies

eA+B = eAeBe−
1
2
c. (4)

4. Time evolution of a two-level system. [Le Bellac]

Consider the Hamiltonian

H = ~
(
A B

B −A

)
in the basis |0〉 ≡ | ↑〉, |1〉 ≡ | ↓〉, where A,B are real numbers. Set ~ = 1. You know

the eigensystem of this matrix from our discussion of Pauli gymnastics. It is useful to

write it in terms of Ω, θ defined by

Ω = 2
√
A2 +B2, tan θ =

B

A
.

(a) The state vector at time t can be written as

|ϕ(t)〉 = c+(t)|0〉+ c−(t)|1〉.

Find a system of ODEs for the components c±(t) that follow from the Schrödinger

equation.
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(b) Decompose the initial state |ϕ(t = 0)〉 in the energy eigenbasis (H|ε±〉 = ε±|ε±〉):

|ϕ(t = 0)〉 =
∑
±

a±|ε±〉 .

Express c+(t) in terms of the coefficients a±.

(c) Suppose c+(0) = 0. Find a± (up to a phase) in terms of A,B (or rather, Ω and

θ). Find the probability of finding the system in the state | ↑〉 at time t.

5. The variational method. [Le Bellac]

(a) Let |ϕ〉 be a vector (not necessarily normalized) in the Hilbert space of states,

and let H be a Hamiltonian of interest. The expectation value 〈H〉ϕ is

〈H〉ϕ =
〈ϕ|H|ϕ〉
〈ϕ|ϕ〉

.

Show that if the minimum and maximum of this quantity on the space of states are

obtained for |ϕ〉 = |ϕm〉 and |ϕ〉 = |ϕM〉 respectively, then |ϕm,M〉 are eigenvectors

of H with the smallest and largest eigenvalues in the spectrum, Em, EM .

(b) Suppose the vector |ϕ〉 depends on a parameter α: |ϕ〉 = |ϕ(α)〉. Show that if

∂α〈H〉φ(α)|α=α0 = 0

then Em ≤ 〈H〉ϕ(α0) if α0 is a minimum of 〈H〉ϕ(α). Similarly, show that EM ≥
〈H〉ϕ(α0) if α0 is a maximum of 〈H〉ϕ(α).

This fact forms the basis of an approximation method called the variational

method. If you have a good guess for the form of the groundstate, you can

find the best approximation within that family of states, and it produces a bound

on the correct groundstate energy.

(c) Consider the special case of dimH = 2, with Hamiltonian

H =

(
a+ c b

b a− c

)
with a, b, c real. Parametrizing the variational state as

|ϕ(α)〉 =

(
cosα/2

sinα/2

)
,

find the values of α = α0 which extremize the expectation value of the Hamilto-

nian. Show that this reproduces the eigenstates:

|χ+〉 =

(
cos θ/2

sin θ/2

)
, |χ−〉 =

(
− sin θ/2

cos θ/2

)
.

where tan θ = b/c.
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6. The Feynman-Hellmann theorem. Suppose the Hamiltonian depends on a pa-

rameter s, H = H(s). Suppose E(s) is a non-degenerate eigenvalue with normalized

eigenvector |φ(s)〉. Show that

∂sE(s) = 〈φ(s)|∂sH(s)|φ(s)〉.
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