University of California at San Diego – Department of Physics – Prof. John McGreevy

General Relativity (225A) Fall 2013 Assignment 8 – Solutions

Posted November 13, 2013

Due Monday, December 2, 2013

In the first two problems here we will think about solutions of Einstein's equations with nonzero cosmological constant, positive and negative.

1. AdS as a solution of Einstein's equations.

Consider the anti-de Sitter (AdS) metric (in so-called Poincaré coordinates)

$$ds_{AdS}^{2} = L^{2} \frac{dz^{2} + \eta_{\mu\nu} dx^{\mu} dx^{\nu}}{z^{2}}$$
(1)

where $\eta_{\mu\nu}$ is the Minkowski metric in *e.g.* D = 2 + 1 dimensions. Show that this metric satisfies Einstein's equations with negative cosmological constant Λ . More specifically:

(a) Consider the action

$$S[g] = \int \mathrm{d}^4 x \sqrt{g} \left(R - 2\Lambda \right)$$

with Λ a (negative) constant¹. What are the equations of motion for the metric?

$$0 = \frac{\delta S}{\delta g_{\mu\nu}(x)} = -G_{\mu\nu} - \Lambda g_{\mu\nu} \; .$$

We can interpret the second term here as the 'matter' stress tensor $T_{\mu\nu} = -\Lambda g_{\mu\nu}$. Notice that I have chosen units where $16\pi G_N = 1$.

(b) Compute the Einstein tensor for the metric (1). The nonzero Christoffel symbols are

$$\Gamma_{ii}^{z} = \frac{1}{z} = -\Gamma_{tt}^{z} = -\Gamma_{zz}^{z} \quad (i = x, y, \text{ no sum}).$$

The nonzero components of the Riemann tensor (in these coordinates) are all $\pm \frac{1}{z^2}$. The nonzero parts of the Ricci tensor are

$$R_{\mu\mu} = (-1)^{\mu} \frac{3}{z^2}$$
 (no sum).

¹ A way to remember the correct sign (in red) here: one way to get Λ is to put a scalar field at the minimum of its potential every where in spacetime: $\Lambda = V(\phi_0)$, but $V(\phi)$ appears with a minus sign in the action.

The Ricci scalar is $-\frac{12}{L^2}$. Therefore we see that AdS space is a so-called *Einstein* space, for which the Einstein tensor is proportional to the metric itself:

$$G_{\alpha\beta} = ag_{\alpha\beta}$$

with $a = \frac{3}{L^2}$ for 3 + 1-dimensional AdS.

(c) Find the relation between Λ and L for which Einstein's equation is solved. The equation of motion says

$$G_{\alpha\beta} = \Lambda g_{\alpha\beta}$$

so we see that we must set

$$\Lambda = -a = -\frac{3}{L^2}$$

for AdS_4 .

(d) Optional bonus problem: determine the relation between L and Λ for AdS_D for arbitrary D.

To find the pattern for general D it is best to use tetrad methods. Then you will find that the spin connection coefficients are $\omega_{\hat{z}}{}^{\hat{i}} = \frac{1}{z} \mathrm{d} x^i \eta^{ii}$ (no sum on i) and $\Omega_{\hat{z}}{}^{\hat{i}} = \frac{1}{z^2} \mathrm{d} x^i \wedge \mathrm{d} z$ so the nonzero components of $R_{\mu\nu\rho}{}^{\sigma} = e^b_{\rho} e^{\sigma}_a \Omega_{\mu\nu b}{}^a$ are

$$R_{\mu\nu\mu}{}^{\nu} = \eta_{\mu\mu}\eta_{\nu\nu}\frac{1}{z^2}, \mu \neq \nu$$

(notice that the indices in this expression run over t, x^i and z). Then we get all the numerical factors from the traces:

$$R_{\mu\nu} = R_{\mu\rho\nu}{}^{\rho} = (D-1)\frac{1}{z^2}\eta_{\mu\nu}$$

and

$$R = g^{\mu\nu}\eta_{\mu\nu} = \frac{z^2}{L^2}\eta^{\mu\nu}\frac{D-1}{z^2}\eta_{\mu\nu} = \frac{D(D-1)}{L^2}$$

Finally, the Einstein tensor is

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{1}{z^2}\eta_{\mu\nu}\left((D-1) - \frac{1}{2}D(D-1)\right) = \frac{1}{z^2}\eta_{\mu\nu}\left((D-1) - \frac{1}{2}D(D-1)\right)$$
$$= -\frac{1}{z^2}\eta_{\mu\nu}\frac{(D-2)(D-1)}{2}$$

so the general relation between the cosmological constant Λ and the so-called AdS radius L is

$$-\frac{(D-2)(D-1)}{2} = L^2 \Lambda.$$

(e) Show that the AdS metric can also be written as

$$\mathrm{d}s_{\mathrm{AdS}}^2 = \mathrm{d}y^2 + e^{-\frac{2y}{L}}\eta_{\mu\nu}\mathrm{d}x^{\mu}\mathrm{d}x^{\nu} \tag{2}$$

by the change of variables $z = Le^{\frac{y}{L}}$. (This form will be useful for comparison with the next problem.)

Plug in z and $dz = \frac{z}{L} dy$.

2. de Sitter space.

Consider the ansatz

$$\mathrm{d}s_{\mathrm{FRW}}^2 = -\mathrm{d}t^2 + a(t)^2 \mathrm{d}x^i \mathrm{d}x^j \delta_{ij}$$

where a(t) is a function we will determine.

Remarks: (1) this is the form of the FRW metric from a previous problem set, and (2) this metric is quite similar to the expression for the AdS metric in (2); specifically, they are related by the replacement $t \to iy, y \to -it$ which exchanges a spacelike coordinate for a timelike coordinate (a 'Wick rotation'), if we set set $a = e^{\frac{y}{L}}$.

(a) Compute the Einstein tensor for this metric. The nonzero components are

$$G_{tt} = 3\left(\frac{\dot{a}}{a}\right)^2, \quad G_{ii} = -\dot{a}^2 - 2a\ddot{a}$$

(b) Consider the Einstein's equations with the stress tensor resulting from a *positive* cosmological constant, and find the resulting differential equation for the 'scale factor' a(t).

$$G_{\mu\nu} = 16\pi G_N \Lambda g_{\mu\nu}$$

gives

$$tt:$$
 $3\left(\frac{\dot{a}}{a}\right)^2 = 16\pi G_N\Lambda$

and

$$ii: -\dot{a}^2 - 2a\ddot{a} = 16\pi G_N \Lambda a^2$$

(c) Solve this equation to find the form of the FRW metric which results when the stress tensor is dominated by a positive cosmological constant, as it is presently in our universe. (Note that if we chose some other matter on the RHS we would find a different behavior of a(t).)

[Hint 1: consider the *tt* component of the Einstein equation first.

Hint 2: The second remark above is a good hint about the form of the solution.] The tt equation is solved by

$$\frac{\dot{a}}{a} = \pm H_0$$

with $H_0 \equiv 16\pi G_N \Lambda/3$. The general solution of this (linear) equation is $a(t) = A_+ e^{H_0 t} + A_- e^{-H_0 t}$. However, the *ii* equation is not linear; it is solved by *either* an expanding solution $a(t) = a(0)e^{H_0 t}$ or a crunching solution $a(t) = a(0)e^{-H_0 t}$. (The two are related by replacing $t \to -t$, which preserves the form of the Einstein equations.) The expanding solution looks like:

$$\mathrm{d}s_{\mathrm{FRW}}^2 = -\mathrm{d}t^2 + a_0 e^{-2H_0 t} \mathrm{d}x^i \mathrm{d}x^j \delta_{ij}$$

3. Killing vector fields imply conservation laws.

(a) Show that Killing's equation

$$\xi_{\alpha;\beta} + \xi_{\beta;\alpha} = 0 \tag{3}$$

is equivalent to $\mathcal{L}_{\xi}g = 0$, where g is the metric tensor, and \mathcal{L} is the Lie derivative². If we take $v_1 = \partial_{\mu}, v_2 = \partial_{\nu}$ to be coordinate vector fields, we have $[k, v_1] = -k^{\alpha}_{,\mu}\partial_{\alpha}$ and the equation in the footnote says

$$g_{\mu\nu,\alpha}\xi^{\alpha} = -\xi^{\alpha}_{,\mu}g_{\alpha\nu} + \xi^{\alpha}_{,\nu}g_{\alpha\mu}$$

It's easy to see how to make this manifestly covariant by choosing Riemann normal coords at the point p, of interest where $g_{\mu\nu,\alpha} = 0$, so the equation becomes

$$0 = \xi_{\nu,\mu} + \xi_{\mu,\nu}.$$

But in RNC, we have =; at p, so the equation becomes

$$0 = \xi_{\nu;\mu} + \xi_{\mu;\nu}$$

- (b) If ξ is a Killing vector field (*i.e.* satisfies (3)) and and $T^{\mu\nu}$ is the (covariantly conserved) energy momentum tensor, show that $J^{\mu} \equiv T^{\mu\nu}\xi_{\nu}$ is a conserved current, $J^{\mu}_{;\mu} = 0.$
- (c) Given a time coordinate on your spacetime (and hence a notion of constant-time slices) use ξ to construct a quantity which is time-independent.

$$Q(t) = \int_{\text{fixed t}} \mathrm{d}^3 x \sqrt{g} J^t(x)$$

This is independent of t by the argument in section 4 of the lecture notes, with appropriate factors of \sqrt{g} inserted, as appropriate for a covariantly conserved current: $0 = \nabla_{\mu} J^{\mu} = \frac{1}{\sqrt{g}} \partial_{\mu} \left(\sqrt{g} J^{\mu} \right)$.

4. Conformal coupling of a scalar field. (This problem is optional.)

The stress tensor for a scalar field with action (in arbitrary number of dimensions n) is

$$S_0[\phi,g] = -\frac{1}{2} \int \mathrm{d}^n x \sqrt{g} \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \phi^2 \right) = \int \mathrm{d}^4 x \sqrt{g} \mathcal{L}$$

is

$$(T_0)_{\mu\nu} = -\frac{2}{\sqrt{g}} \frac{\delta S_0[\phi, g]}{\delta g^{\mu\nu}(x)} = \partial_\mu \phi \partial_\nu \phi - \frac{1}{2} \mathcal{L} g_{\mu\nu}.$$

²Reminder: The Lie derivative is a derivation, and therefore for any two vector fields, $v_{1,2}$,

$$\mathcal{L}_{\xi}(g(v_1, v_2)) = (\mathcal{L}_{\xi}g)(v_1, v_2) + g(\underbrace{\mathcal{L}_{\xi}v_1}_{=[\xi, v_1]}, v_2) + g(v_1, \mathcal{L}_{\xi}v_2)$$

(a) Compute the trace, $(T_0)^{\mu}_{\mu}$.

Recall that we associated vanishing trace of the stress tensor with scale invariance. Here we will show that it is possible to choose the constant γ in

$$S = S_0 + \gamma \int \mathrm{d}^n x \sqrt{g} R \phi^2$$

(where R is the Ricci scalar curvature) so that this action is scale invariant.³

(b) Show that for a certain value of γ the action S is invariant under the local scale transformation

$$\mathrm{d}s^2 \to \mathrm{d}\tilde{s}^2 = \Omega^2(x)\mathrm{d}s^2$$

(also called a *Weyl transformation* or *local conformal transformation* (since it preserves angles)) if we also make the replacement

$$\phi(x) \to \Omega^{\frac{2-n}{2}}(x)\phi(x)$$
.

Find the right γ .

(c) Find the improved stress tensor

$$T_{\mu\nu} = -\frac{2}{\sqrt{g}} \frac{\delta S}{\delta g^{\mu\nu}}$$

and show that it is traceless.

$$\tilde{R}_{\mu\nu} = R_{\mu\nu} - (n-2)\nabla_{\mu}\nabla_{\nu}\log\Omega - g_{\mu\nu}g^{\rho\sigma}\nabla_{\rho}\nabla_{\sigma}\log\Omega
+ (n-2)(\nabla_{\mu}\log\Omega)\nabla_{\nu}\log\Omega - (n-2)g_{\mu\nu}g^{\rho\sigma}(\nabla_{\rho}\log\Omega)\nabla_{\sigma}\log\Omega.$$
(4)

³Hint: you may find it useful to use Appendix D of Wald. In particular, equation D.8 tells us the behavior of the Ricci tensor under a position-dependent rescaling of the metric. Specifically, if $d\tilde{s}^2 = \Omega^2(x)ds^2$ then