
University of California at San Diego – Department of Physics – Prof. John McGreevy

General Relativity (225A) Fall 2013
Assignment 8 – Solutions

Posted November 13, 2013 Due Monday, December 2, 2013

In the first two problems here we will think about solutions of Einstein’s equations with
nonzero cosmological constant, positive and negative.

1. AdS as a solution of Einstein’s equations.

Consider the anti-de Sitter (AdS) metric (in so-called Poincaré coordinates)

ds2
AdS = L2 dz2 + ηµνdx

µdxν

z2
(1)

where ηµν is the Minkowski metric in e.g. D = 2+1 dimensions. Show that this metric
satisfies Einstein’s equations with negative cosmological constant Λ. More specifically:

(a) Consider the action

S[g] =

∫
d4x
√
g (R− 2Λ)

with Λ a (negative) constant1. What are the equations of motion for the metric?

0 =
δS

δgµν(x)
= −Gµν − Λgµν .

We can interpret the second term here as the ‘matter’ stress tensor Tµν = −Λgµν .
Notice that I have chosen units where 16πGN = 1.

(b) Compute the Einstein tensor for the metric (1).

The nonzero Christoffel symbols are

Γzii =
1

z
= −Γztt = −Γzzz (i = x, y, no sum).

The nonzero components of the Riemann tensor (in these coordinates) are all ± 1
z2

.
The nonzero parts of the Ricci tensor are

Rµµ = (−1)µ
3

z2
(no sum) .

1 A way to remember the correct sign (in red) here: one way to get Λ is to put a scalar field at the
minimum of its potential every where in spacetime: Λ = V (φ0), but V (φ) appears with a minus sign in the
action.
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The Ricci scalar is − 12
L2 . Therefore we see that AdS space is a so-called Einstein

space, for which the Einstein tensor is proportional to the metric itself:

Gαβ = agαβ

with a = 3
L2 for 3 + 1-dimensional AdS.

(c) Find the relation between Λ and L for which Einstein’s equation is solved.

The equation of motion says
Gαβ = Λgαβ

so we see that we must set

Λ = −a = − 3

L2

for AdS4.

(d) Optional bonus problem: determine the relation between L and Λ for AdSD for
arbitrary D.

To find the pattern for general D it is best to use tetrad methods. Then you
will find that the spin connection coefficients are ωẑ

î = 1
z
dxiηii (no sum on i) and

Ωẑ
î = 1

z2
dxi ∧ dz so the nonzero components of Rµνρ

σ = ebρe
σ
aΩµνb

a are

Rµνµ
ν = ηµµηνν

1

z2
, µ 6= ν

(notice that the indices in this expression run over t, xi and z). Then we get all
the numerical factors from the traces:

Rµν = Rµρν
ρ = (D − 1)

1

z2
ηµν

and

R = gµνηµν =
z2

L2
ηµν

D − 1

z2
ηµν =

D(D − 1)

L2
.

Finally, the Einstein tensor is

Rµν−
1

2
gµνR =

1

z2
ηµν

(
(D − 1)− 1

2
D(D − 1)

)
=

1

z2
ηµν

(
(D − 1)− 1

2
D(D − 1)

)
= − 1

z2
ηµν

(D − 2)(D − 1)

2
so the general relation between the cosmological constant Λ and the so-called AdS
radius L is

−(D − 2)(D − 1)

2
= L2Λ.

(e) Show that the AdS metric can also be written as

ds2
AdS = dy2 + e−

2y
L ηµνdx

µdxν (2)

by the change of variables z = Le
y
L . (This form will be useful for comparison with

the next problem.)

Plug in z and dz = z
L

dy.
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2. de Sitter space.

Consider the ansatz
ds2

FRW = −dt2 + a(t)2dxidxjδij

where a(t) is a function we will determine.
Remarks: (1) this is the form of the FRW metric from a previous problem set, and (2)
this metric is quite similar to the expression for the AdS metric in (2); specifically, they
are related by the replacement t→ iy, y → −it which exchanges a spacelike coordinate
for a timelike coordinate (a ‘Wick rotation’), if we set set a = e

y
L .

(a) Compute the Einstein tensor for this metric.

The nonzero components are

Gtt = 3

(
ȧ

a

)2

, Gii = −ȧ2 − 2aä .

(b) Consider the Einstein’s equations with the stress tensor resulting from a positive
cosmological constant, and find the resulting differential equation for the ‘scale
factor’ a(t).

Gµν = 16πGNΛgµν

gives

tt : 3

(
ȧ

a

)2

= 16πGNΛ

and
ii : − ȧ2 − 2aä = 16πGNΛa2 .

(c) Solve this equation to find the form of the FRW metric which results when the
stress tensor is dominated by a positive cosmological constant, as it is presently
in our universe. (Note that if we chose some other matter on the RHS we would
find a different behavior of a(t).)

[Hint 1: consider the tt component of the Einstein equation first.
Hint 2: The second remark above is a good hint about the form of the solution.]

The tt equation is solved by
ȧ

a
= ±H0

with H0 ≡ 16πGNΛ/3. The general solution of this (linear) equation is a(t) =
A+e

H0t + A−e
−H0t. However, the ii equation is not linear; it is solved by either

an expanding solution a(t) = a(0)eH0t or a crunching solution a(t) = a(0)e−H0t.
(The two are related by replacing t→ −t, which preserves the form of the Einstein
equations.) The expanding solution looks like:

ds2
FRW = −dt2 + a0e

−2H0tdxidxjδij
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3. Killing vector fields imply conservation laws.

(a) Show that Killing’s equation
ξα;β + ξβ;α = 0 (3)

is equivalent to Lξg = 0, where g is the metric tensor, and L is the Lie derivative2.

If we take v1 = ∂µ, v2 = ∂ν to be coordinate vector fields, we have [k, v1] = −kα,µ∂α
and the equation in the footnote says

gµν,αξ
α = −ξα,µgαν + ξα,νgαµ

It’s easy to see how to make this manifestly covariant by choosing Riemann normal
coords at the point p, of interest where gµν,α = 0, so the equation becomes

0 = ξν,µ + ξµ,ν .

But in RNC, we have ,=; at p, so the equation becomes

0 = ξν;µ + ξµ;ν .

(b) If ξ is a Killing vector field (i.e. satisfies (3)) and and T µν is the (covariantly con-
served) energy momentum tensor, show that Jµ ≡ T µνξν is a conserved current,
Jµ;µ = 0.

(c) Given a time coordinate on your spacetime (and hence a notion of constant-time
slices) use ξ to construct a quantity which is time-independent.

Q(t) =

∫
fixed t

d3x
√
gJ t(x)

This is independent of t by the argument in section 4 of the lecture notes, with
appropriate factors of

√
g inserted, as appropriate for a covariantly conserved

current: 0 = ∇µJ
µ = 1√

g
∂µ
(√

gJµ
)
.

4. Conformal coupling of a scalar field. (This problem is optional.)

The stress tensor for a scalar field with action (in arbitrary number of dimensions n)
is

S0[φ, g] = −1

2

∫
dnx
√
g
(
gµν∂µφ∂νφ+ φ2

)
=

∫
d4x
√
gL

is

(T0)µν = − 2
√
g

δS0[φ, g]

δgµν(x)
= ∂µφ∂νφ−

1

2
Lgµν .

2Reminder: The Lie derivative is a derivation, and therefore for any two vector fields, v1,2,

Lξ (g(v1, v2)) = (Lξg) (v1, v2) + g( Lξv1︸︷︷︸
=[ξ,v1]

, v2) + g(v1,Lξv2).
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(a) Compute the trace, (T0)µµ.

Recall that we associated vanishing trace of the stress tensor with scale invariance.
Here we will show that it is possible to choose the constant γ in

S = S0 + γ

∫
dnx
√
gRφ2

(where R is the Ricci scalar curvature) so that this action is scale invariant.3

(b) Show that for a certain value of γ the action S is invariant under the local scale
transformation

ds2 → ds̃2 = Ω2(x)ds2

(also called a Weyl transformation or local conformal transformation (since it
preserves angles)) if we also make the replacement

φ(x)→ Ω
2−n
2 (x)φ(x) .

Find the right γ.

(c) Find the improved stress tensor

Tµν = − 2
√
g

δS

δgµν

and show that it is traceless.

3Hint: you may find it useful to use Appendix D of Wald. In particular, equation D.8 tells us the behavior
of the Ricci tensor under a position-dependent rescaling of the metric. Specifically, if ds̃2 = Ω2(x)ds2 then

R̃µν = Rµν − (n− 2)∇µ∇ν log Ω− gµνgρσ∇ρ∇σ log Ω
+ (n− 2) (∇µ log Ω)∇ν log Ω− (n− 2)gµνg

ρσ (∇ρ log Ω)∇σ log Ω. (4)
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