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1. Infinitesimal coordinate transformations. Under a coordinate transformation,
" — T#(x), the metric tensor transforms as'

Iuw (%) = Gy (T) = 0”027 Gpo () -
Show that for an infinitesimal transformation Z# = z# + €*(x), this takes the form

OGuw = gﬁw(ﬁ) - gul/@) = —(Vyue, + Vie,)
(This will be useful for the following problem.)

2. Conservation of the improved stress tensor. Our improved stress tensor is defined

as
= 208

V909w

where S is an action for a matter field (such as a scalar field ¢ or a Maxwell field A,,, or
a particle trajectory). We would like to show that 7" defined this way is covariantly
conserved when evaluated on solutions of the equations of motion of the matter fields.
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For simplicity consider a scalar field ¢. Its EoM is 0 =

(a) Show that under an infinitesimal coordinate transformation x* — z# + ¢*(z), the
action changes as

1
5.8 = — / d*z (5\/§TW (Vuen + Voe,) + %e"é‘m) .

(b) By using the invariance of the action under coordinate transformations, show that
the equation of motion for ¢ implies

v, T" =0,

"Why is this relation true? The invariant distance between two nearby points doesn’t care about what
coordinates you use:
ds? = g (x)dztda” = §po (7)dTPdi”.

(This equation is on page 70 of Zee’s book, by the way.) Using the chain rule then gives exactly the relation
above.



3. Not so much GR in D=1+1.

Show that in two spacetime dimensions, the left hand side of the Einstein equation

1
R, — §gWR = 81GT,,

vanishes identically. This means that the metric does not have any dynamics in D =
1+ 1, and the Einstein equations impose the constraint 7}, = 0 on the matter fields.



