University of California at San Diego - Department of Physics - Prof. John McGreevy

General Relativity (225A) Fall 2013 Assignment 7 - Solutions

Posted November 4, 2013
Due Wednesday, November 20, 2013

1. Infinitesimal coordinate transformations. Under a coordinate transformation, $x^{\mu} \rightarrow \tilde{x}^{\mu}(x)$, the metric tensor transforms as ${ }^{1}$

$$
g_{\mu \nu}(x) \mapsto \tilde{g}_{\mu \nu}(\tilde{x})=\tilde{\partial}_{\mu} x^{\rho} \tilde{\partial}_{\nu} x^{\sigma} g_{\rho \sigma}(x) .
$$

Show that for an infinitesimal transformation $\tilde{x}^{\mu}=x^{\mu}+\epsilon^{\mu}(x)$, this takes the form

$$
\delta g_{\mu \nu} \equiv \tilde{g}_{\mu \nu}(x)-g_{\mu \nu}(x)=-\left(\nabla_{\mu} \epsilon_{\nu}+\nabla_{\nu} \epsilon_{\mu}\right)
$$

(This will be useful for the following problem.)

$$
\tilde{x}^{\mu}=x^{\mu}+\epsilon^{\mu}(x), \quad \tilde{\partial}_{\mu} x^{\rho}=\delta_{\mu}^{\rho}-\tilde{\partial}_{\mu} \epsilon^{\rho}=\delta_{\mu}^{\rho}-\tilde{\partial}_{\mu} x^{\alpha} \partial_{\alpha} \epsilon^{\rho}=\delta_{\mu}^{\rho}-\partial_{\mu} \epsilon^{\rho}+\mathcal{O}\left(\epsilon^{2}\right)
$$

In the following the $+\mathcal{O}\left(\epsilon^{2}\right)$ is understood, that is, we treat ϵ^{2} as zero.

$$
\begin{align*}
\delta g_{\mu \nu} & \equiv \tilde{g}_{\mu \nu}(x)-g_{\mu \nu}(x)=\left.\left.\tilde{\partial}_{\mu} x^{\rho}\right|_{x-\epsilon} \tilde{\partial}_{\nu} x^{\sigma}\right|_{x-\epsilon} g_{\rho \sigma}(x-\epsilon)-g_{\mu \nu}(x) \\
& =\left(\delta_{\mu}^{\rho}-\partial_{\mu} \epsilon^{\rho}\right)\left(\delta_{\nu}^{\sigma}-\partial_{\nu} \epsilon^{\sigma}\right)\left(g_{\rho \sigma}(x)-\epsilon^{\alpha} \partial_{\alpha} g_{\rho \sigma}(x)\right)-g_{\mu \nu}(x) \\
& \left.=-\left(\partial_{\mu} \epsilon^{\rho}\right)\right)_{\rho \nu}-\left(\partial_{\nu} \epsilon^{\sigma}\right) g_{\mu \sigma}-\epsilon^{\alpha} \partial_{\alpha} g_{\mu \nu} \\
& =-\left(\partial_{\mu}\left(\epsilon^{\rho} g_{\rho \nu}\right)-\epsilon^{\rho}\left(\partial_{\mu} g_{\rho \nu}\right)+\partial_{\nu}\left(\epsilon^{\sigma} g_{\mu \sigma}\right)-\epsilon^{\sigma}\left(\partial_{\nu} g_{\mu \sigma}\right)+\epsilon^{\alpha} \partial_{\alpha} g_{\mu \nu}\right) \\
& =-\left(\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}-\epsilon_{\alpha} g^{\rho \alpha}\left(\partial_{\mu} g_{\rho \nu}+\partial_{\nu} g_{\mu \rho}-\partial_{\rho} g_{\mu \nu}\right)\right) \\
& =-\left(\partial_{\mu} \epsilon_{\nu}+\partial_{\nu} \epsilon_{\mu}-2 \epsilon_{\alpha} \Gamma_{\mu \nu}^{\alpha}\right) \\
& =-\left(\partial_{\mu} \epsilon_{\nu}-\epsilon_{\alpha} \Gamma_{\mu \nu}^{\alpha}+\partial_{\nu} \epsilon_{\mu}-\epsilon_{\alpha} \Gamma_{\nu \mu}^{\alpha}\right) \\
& =-\left(\nabla_{\mu} \epsilon_{\nu}+\nabla_{\nu} \epsilon_{\mu}\right) . \tag{1}
\end{align*}
$$

2. Conservation of the improved stress tensor. Our improved stress tensor is defined as

$$
T^{\mu \nu} \equiv \frac{2}{\sqrt{g}} \frac{\delta S}{\delta g_{\mu \nu}}
$$

where S is an action for a matter field (such as a scalar field ϕ or a Maxwell field A_{μ}, or a particle trajectory). We would like to show that $T^{\mu \nu}$ defined this way is covariantly conserved when evaluated on solutions of the equations of motion of the matter fields. For simplicity consider a scalar field ϕ. Its EoM is $0=\frac{\delta S}{\delta \phi}$.

[^0](a) Show that under an infinitesimal coordinate transformation $x^{\mu} \rightarrow x^{\mu}+\epsilon^{\mu}(x)$, the action changes as
$$
\delta_{\epsilon} S=-\int \mathrm{d}^{4} x\left(\frac{1}{2} \sqrt{g} T^{\mu \nu}\left(\nabla_{\mu} \epsilon_{\nu}+\nabla_{\nu} \epsilon_{\mu}\right)+\frac{\delta S}{\delta \phi} \epsilon^{\mu} \partial_{\mu} \phi\right) .
$$

Using the chain rule,

$$
\delta_{\epsilon} S=\int \mathrm{d}^{4} x(\underbrace{\frac{\delta S}{\delta g_{\mu \nu}(x)}}_{=\frac{\sqrt{g}}{2} T^{\mu \nu}} \underbrace{\delta g_{\mu \nu}(x)}_{=-\nabla_{\mu} \epsilon_{\nu}-\nabla_{\nu} \epsilon_{\mu}}+\frac{\delta S}{\delta \phi(x)} \underbrace{\delta \phi(x)}_{=-\epsilon^{\mu} \partial_{\mu} \phi})
$$

Note the sign in the second term: a scalar field transforms as $\tilde{\phi}(\tilde{x})=\phi(x)$, which means

$$
\delta \phi(x)=\tilde{\phi}(x)-\phi(x)=\phi(x-\epsilon)-\phi(x)=-\epsilon^{\mu} \partial_{\mu} \phi(x) .
$$

(b) By using the invariance of the action under coordinate transformations, show that the equation of motion for ϕ implies

$$
\nabla_{\mu} T^{\mu \nu}=0
$$

Coordinate invariance of the action implies that the preceding expression is zero; the scalar EoM imply that $0=\frac{\delta S}{\delta \phi(x)}$ on its own, so

$$
0=\delta_{\epsilon} S=-\int \mathrm{d}^{4} x \frac{1}{2} \sqrt{g} T^{\mu \nu}\left(\nabla_{\mu} \epsilon_{\nu}+\nabla_{\nu} \epsilon_{\mu}\right) \stackrel{I B P}{=}+\int \mathrm{d}^{4} x \sqrt{g} \nabla_{\mu} T^{\mu \nu} \epsilon_{\nu}(x)
$$

for all ϵ means that $0=\nabla_{\mu} T^{\mu \nu}$.

3. Not so much GR in $D=1+1$.

Show that in two spacetime dimensions, the left hand side of the Einstein equation

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=8 \pi G T_{\mu \nu}
$$

vanishes identically. This means that the metric does not have any dynamics in $D=$ $1+1$, and the Einstein equations impose the constraint $T_{\mu \nu}=0$ on the matter fields. Recall from the previous problem set that in two dimensions, the Riemann tensor is

$$
R_{i j k l}=\frac{1}{2} R\left(g_{i k} g_{j l}-g_{i l} g_{j k}\right)
$$

which means the Ricci tensor is

$$
R_{i k}=g^{j l} R_{i j k l}=\frac{1}{2} R(g_{i j} \underbrace{\delta_{l}^{l}}_{=n=2}-g_{i j})=\frac{1}{2} R g_{i k}
$$

and the Ricci scalar is

$$
R=g^{i k} R_{i k}=\frac{1}{2} R 2=R
$$

So the einstein tensor is

$$
G_{i k}=R_{i k}-\frac{1}{2} R g_{i k}=\frac{1}{2} R g_{i k}-\frac{1}{2} R g_{i k}=0 .
$$

[^0]: ${ }^{1}$ Why is this relation true? The invariant distance between two nearby points doesn't care about what coordinates you use:

 $$
 d s^{2}=g_{\mu \nu}(x) d x^{\mu} d x^{\nu}=\tilde{g}_{\rho \sigma}(\tilde{x}) d \tilde{x}^{\rho} d \tilde{x}^{\sigma}
 $$

 (This equation is on page 70 of Zee's book, by the way.) Using the chain rule then gives exactly the relation above.

