
University of California at San Diego – Department of Physics – Prof. John McGreevy

General Relativity (225A) Fall 2013
Assignment 5 – Solutions

Posted October 23, 2013 Due Monday, November 4, 2013

1. A constant vector field. Consider the vector field W ≡ ∂x in the flat plane with
metric ds2 = dx2 + dy2. W = Wr∂r + Wϕ∂ϕ and compute their partial derivatives.
Then compute the (metric-compatible) covariant derivative in polar coordinates.

The point of this problem is to convince ourselves that when we say ‘a constant vector
field’ what we mean is ‘a covariantly constant vector field’, because the latter statement
is meaningful independent of our choice of coordinates. The polar coordinates are
x = r cosϕ, y = r sinϕ. Away from r = 0 where the polar coordinates r, ϕ break down,
the jacobian matrix J is given by(

dx
dy

)
=

(
cosϕ −r sinϕ
sinϕ r cosϕ

)(
dr
dϕ

)
≡ J

(
dr
dϕ

)
.

Writing this equation as dxi = J iadx̃
a, the coordinate vector fields are related by the

inverse-transpose matrix:
∂

∂xi
=
(
J−1
)a
i

∂

∂x̃a

which is (
J−1
)a
i

=

(
cosϕ − sinϕ

r

sinϕ cosϕ
r

)a
i

(J ia
(
J−1
)b
i

= δba)

– notice that i is the row index and a is the column index – you can check this by
dimensional analysis, since r and ϕ have different dimensions) so

W = ∂x =
(
J−1
)r
x

∂

∂r
+
(
J−1
)ϕ
x

∂

∂ϕ
= cosϕ

∂

∂r
− sinϕ

r

∂

∂θ
.

So the partial derivatives of the components in polar coords are certainly not constant:

∂ϕW
r = − sinϕ, ∂rW

r = 0, ∂ϕW
ϕ = −cosϕ

r
, ∂rW

ϕ = +
sinϕ

r2
.

The covariant derivative in the (flat!) plane in cartesian coordinates is just the same
as the partial derivative so ∇iW

j = ∂iW
j = 0. By construction, this must also be true

in polar coordinates. More explicitly the metric in polar coordinates is

ds2 = dr2 + r2dϕ2
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which means that the nonzero Christoffel symbols are

Γrϕϕ = −r,Γϕϕr =
1

r
= Γϕrϕ .

This means that

∇aW
b =

(
∂rW

r + 0 ∂ϕW
r + ΓrϕϕW

ϕ

∂rW
ϕ + ΓϕrϕW

ϕ ∂ϕW
ϕ + ΓϕϕrW

r

)b
a

=

(
0 − sinϕ+ (−r)− sinϕ

r
sinϕ
r2

+ 1
r
− sinϕ
r

(− cosϕ
r

) + 1
r

cosϕ

)b
a

= 0 X

(the lower index is the row index).

2. Vector fields on the 2-sphere. [from Ooguri] A two-dimensional sphere S2 of unit
radius can be embedded in the three-dimensional euclidean space IR3 by the equation

x2 + y2 + z2 = 1 .

For coordinates on the sphere we can use (θ, ϕ) defined by

x = sin θ cosϕ, y = sin θ sinϕ, z = cos θ,

except at the north and south poles θ = 0, π where the value of ϕ is ambiguous.

An infinitesimal rotation of IR3 around its origin induces a tangent vector field on S2,
which is said to generate the rotation1. Show that there are three linearly-independent
vector fields2 of this type and compute their commutators [σi,σj].

A rotation about the origin is a linear map R : IR3 → IR3 which preserves the euclidean
metric ds2 ≡ dxidxi; if it also preserves the orientation (detR = 1), then it is contin-
uously connected to the identity map. Since such an R is linear, it is defined by its
action on a(n orthonormal) basis î, i = 1, 2, 3:

R(̂i) ≡ Rij ĵ, î · ĵ = δij = R(̂i) ·R(ĵ) = RikRkj.

which gives six conditions on the nine elements Rij. This means that the space of such
R (the group SO(3)) is 3 dimensional. From the definition above, it is a closed subset
of IR9 and hence a smooth manifold. A group which is a smooth manifold is a Lie
group. A Lie group G is generated by a Lie algebra g – this is just the tangent space
to G at the identity element. It has a natural product, which is the Lie bracket – the
commutator of tangent vector fields. The tangent vector fields on S2 induced by such
infinitesimal rotations are therefore a realization of this Lie algebra (so(3)), and hence
there can only be three linearly independent such vector fields. The three independent

1 More precisely, consider the result of acting with a rotation by an infinitesimal angle θ on an arbitrary
smooth function:

f(x) 7→ f(Rx) = f(x+ θAx) = f(x) + (θAx)
i
∂if(x) + ...

– the vector field (Ax)
i
∂i generates the rotation.

2 A vector field v on M is linearly dependent on some others {vα} if there exist constants aα s.t. v = aαvα
everywhere in M .
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infinitesimal rotations, which I’ll denote ri, i = 1, 2, 3 can be represented on functions
by vector fields v:

f(R(x)) = f(x) + θv(f)|x +O(θ2)

as follows, beginning with the rotation about the z axis:

(Rz)ij ≡

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


ij

= 1 ij +

 0 θ 0
−θ 0 0
0 0 0


ij

+O(θ2)

It maps the coordinate vector xi to

Rz(x)i = (σz)ij x
j =

x+ θy
y − θx
z


i

+O(θ2)

=⇒ f(σ(x)) = f(x+ θy, y − θx, z) +O(θ2) = f(x) + θ (y∂x − x∂y) f(x) +O(θ2)

=⇒ σz = y∂x − x∂y.

Cyclically permuting x, y, z, we have

σx = z∂y − y∂z,σy = x∂z − z∂x .

Writing these in terms of θ, ϕ, we can make clear that these restrict to vector fields
tangent to S2 ⊂ IR3. This amounts to changing to polar coords and showing that these
vector fields have no components along ∂r. The Jacobian matrix (evaluated at r = 1)
is ∂xθ ∂xϕ ∂xr

∂yθ ∂yϕ ∂yr
∂zθ ∂zϕ ∂zr

 =

 zx
ρ

−y
ρ2

x
r

zy
ρ

x
ρ2

y
r

−ρ 0 z
r

 =

cos θ cosϕ − sinϕ
sin θ

sin θ cosϕ
cos θ sinϕ cosϕ

sin θ
sin θ sinϕ

− sin θ 0 cos θ


(where ρ ≡

√
x2 + y2). And so

∂x = ∂xθ∂θ + ∂xϕ∂ϕ + ∂xr∂r = cos θ cosϕ∂θ −
sinϕ

sin θ
∂ϕ + sin θ cosϕ∂r

∂y = cos θ sinϕ∂θ +
cosϕ

sin θ
∂ϕ + sin θ sinϕ∂r

∂z = − sin θ∂θ + cos θ∂r

And so

σz = x∂y − y∂x = x

(
zy

ρ

)
∂θ + x

x

ρ2
∂ϕ + xy∂r − y

(
zx

ρ
∂θ −

y

ρ2
∂ϕ

)
− yx∂r = ∂ϕ .

σx = y∂z − z∂y = y (− sin θ∂θ)− z
(

cos θ sinϕ∂ϕ +
cosϕ

sin θ
∂ϕ

)
=

(
− sin2 θ sinϕ− cos2 θ sinϕ

)
∂θ − cot θ cosϕ∂ϕ = − sinϕ∂θ − cot θ cosϕ∂ϕ.
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σy = z∂x−x∂z = z

(
cos θ cosϕ∂θ −

sinϕ

sin θ
∂ϕ

)
−x (− sin θ∂θ) = cosϕ∂θ− sinϕ cot θ∂ϕ.

To check directly that these are independent, suppose that there exist constants a, b, c
so that

aσz + bσy + cσz = 0,∀θ, ϕ
and then evaluate at various points. At θ = π/2, ϕ = 0 we learn 0 = a∂ϕ + b∂θ =⇒
a = b = 0. At θ = π/2, ϕ = π/2 we learn that 0 = −c∂θ, so c = 0 as well.
It is easiest to compute the commutators in the cartesian coordinates, e.g.

[σx,σy] = [y∂z − z∂y, z∂x − x∂z] = y(∂zz)∂x + (−1)3x(∂zz)∂y = σz

Cyclically permuting, we see that

[σi,σj] = εijkσk

which is the so(3) algebra. If we are feeling like doing some penance, we can also
compute the commutators directly on the sphere. For example

[σz,σx] = ∂ϕ (− sinϕ∂θ − cot θ cosϕ∂ϕ)− (− sinϕ∂θ − cot θ cosϕ∂ϕ) ∂ϕ
= − cosϕ∂θ + cot θ sinϕ∂ϕ = −σy

which agrees with [σx,σz] = −[σx,σz] = σy.

3. E&M in curved space. Consider EM fields Aµ(x) in a curved spacetime with a
general metric gµν(x)dxµdxν .

(a) Write an action functional S[Aµ, gµν ] which is general-coordinate invariant and
gauge invariant and which reduces to the Maxwell action if we evaluate it in
Minkowski spacetime S[Aµ, ηµν ].

S[A, g] =

∫
d4x
√
g

(
1

4
FµνFρσg

µρgνσ + Aµj
µ

)
+

θ

16π2

∫
F ∧ F .

(b) Vary this action with respect to Aµ to find the equations of motion governing
electrodynamics in curved space.

The F ∧ F term does not contribute to the equations of motion because it is a
total derivative. The Maxwell term and the source term give

0 =
δ

δAλ(y)
S[A, g] =

∫
d4x
√
g

(
4

4
∂µδ

λ
ν δ(x− y)Fρσg

µρgνσ + jλ
)

= −∂µ
(√

gFρσg
µρgλσ

)
+ jλ . (1)

The Bianchi identity is unmodified, since it didn’t depend on the metric in the first
place. Note that the above action is gauge invariant if the current j is covariantly
conserved, ∇µj

µ = 0: the variation under a gauge transformation is

δS =

∫
d4x
√
g∂µλj

µ IBP
= −

∫
d4xλ∂µ (

√
gjµ) = −

∫
d4x
√
gλ∇µj

µ.
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(Here I have used our expression for the covariant divergence which does not
involve Christoffel symbols explicitly.)
Note that if you chose to define the current as a tensor density (I don’t know why
you would do this other than if you were told to do so by someone on Wikipedia)
which means that you have absorbed the

√
g into the definition of jµ, then your

expressions would look accordingly different and ... worse. Note also that I have
chosen to normalize my Maxwell field so that I didn’t have to write factors of 4πc.

4. The badness cancels. Using the coordinate transformation property of the Christof-
fel connection Γρµν , verify that

∇µων = ∂µων − Γρµνωρ

transforms as a rank-2 covariant tensor if ω is a one-form.

Recall that under x→ x̃(x), Γ→ Γ̃ where

Γ̃ρµν = ∂̃µx
σ∂κx̃

ρ∂̃νx
δΓκσδ︸ ︷︷ ︸

tensor transf

− ∂κ∂δx̃ρ∂̃µxκ∂̃νxδ︸ ︷︷ ︸
extra badness

. (2)

This guarantees that ∇µV
ν is a tensor for any vector V . The first term of ∇µων

transforms according to

∂µων → ∂̃µω̃ν = ∂̃µx
κ∂κ

(
∂̃νx

ρωρ

)
= ∂̃µx

κ∂̃κx
ρ∂νωρ + ∂̃µx

κ(∂κ∂̃νx
ρ)ωρ

So the whole object becomes

∇̃µω̃ν = ∂̃µω̃ν − Γ̃ρµνω̃ρ = ∂̃µx
κ∂̃κx

ρ∂νωρ + ∂̃µx
κ(∂κ∂̃νx

ρ)ωρ
+ ∂̃µx

σ∂κx̃
ρ∂̃νx

δΓκσδ∂̃ρx
ξωξ + ∂κ∂δx̃

ρ∂̃µx
κ∂̃νx

δ∂̃ρx
ξωξ

= ∂̃µx
κ∂̃κx

ρ∂νωρ + ∂̃µx
κ(∂κ∂̃νx

ρ)ωρ
+ ∂̃µx

σ∂ξx̃
ρΓξσδωξ + ∂κ∂δx̃

ρ∂̃µx
κ∂̃νx

δ∂̃ρx
ξωξ (3)

– in the second step we just used the fact that the ρ index is contracted between tensors
to erase a JJ−1, i.e. ∂κx̃

ρ∂̃ρx
ξ = δξκ. The badness will cancel if

− ∂̃κ∂̃νxρωρ = (∂̃µ∂δx̃
δ)∂̃ρx

κ∂̃νx
δωδ (4)

But on any function f ,

[∂̃µ, ∂δ]f = [∂̃µ, ∂δx̃
ρ∂̃ρ]f = (∂̃µ∂βx̃

ρ)∂̃ρf

and therefore, the RHS of (4) is

(∂̃µ∂δx̃
δ)∂̃ρx

κ∂̃νx
δωδ =

(
(∂̃µ∂δx̃

ρ)∂̃ρx
ξ
)
∂̃νx

δωξ

=
(

[∂̃µ, ∂δ]x
ξ
)
∂̃νx

δωξ

=
(
∂̃µ
(
∂δx

ξ
)
− ∂β

(
∂̃µx

ξ
))

∂̃νx
δωξ
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=

∂̃µ (δξδ)︸ ︷︷ ︸
=0

−∂δ∂̃µxξ

 ∂̃νx
δωξ

= −∂̃νxδ∂δ∂̃µxξωξ
= −∂̃ν ∂̃µxξωξ
= −∂̃µ∂̃νxξωξ . (5)

Probably there is a more elegant way to show this.
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