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1. Non-relativistic limit of a perfect fluid
The stress-energy tensor for a perfect fluid in Minkowski space is
T = ((e + p) u'u” + pnt) .

Consider the continuity equation 9,7"" = 0 in the nonrelativistic limit, € > p (recall
that e includes the rest mass!). Show that it implies the conservation of mass, and
Euler’s equation:

P (atm (17- 6) 17) — _VP
(See section 4.2 of Wald for more on this. Note that he uses p for € and sets ¢ = 1. )

2. Stress tensors for fields in Minkowski space

(a) Given a (translation-invariant) lagrangian density £(¢,0,¢) for a scalar field ¢,
define the energy-momentum tensor as
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Show that the equation of motion for ¢ implies the conservation law 0, T}

(b) Show that the energy-momentum tensor for the Maxwell field
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is traceless, that is (Tenm)!, = 0.
(c) Show that the energy-momentum tensor for the Maxwell field
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in the presence of an electric current j* obeys
0. Tgy = —J"F).

Explain this result in words.



(d) Optional: show that tracelessness of T/ implies conservation of the dilatation
current D* = x"T#. Convince yourself that the associated conserved charge
fs pace DY is the generator of scale transformations.

3. Polyakov form of the worldline action

(a) Consider the following action for a particle trajectory z*(t):
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ere g,, is some given metric. You may set g,, = 1, if you like. onvince
H ! i tric. Y t g, Ny if like.) Convi
yourself that the parameter ¢ is meaningful, that is: reparametrizing ¢ changes

So.

Now consider instead the following action

Slz, €] = — / ds (%%%m(m) - m2e(5)) :

The dynamical variables are z#(s) (positions of a particle) and e(s); e is called an
einbein':

ds}, = €*(s)ds>.
(b) Show that S[z,e] is reparametrization invariant if we demand that ds?; is an

invariant line element.

(c) Derive the equations of motion for e and z#. Compare with other reparametrization-
invariant actions for a particle.

(d) Take the limit m — 0 to find the equations of motion for a massless particle.

4. Show that S? using stereographic projections (aka Poincaré maps)for the coordinate
charts (see the figure)

~ 8% — {north pole} — R* x5 :S? — {south pole} — IR?

is a differentiable manifold of dimension two. More precisely:
(a) Write the Poincaré maps explicitly in terms of the embedding in IR? ({(zy, zo, 73) €
R’ Y, 22 =1} — R?).

'that’s German for ‘the square root of the metric in one dimension’



(b) Show that the transition function zg o zy' : IR3, — IR% is differentiable on the
overlap of the two coordinate patches (everything but the poles).)

5. Verify explicitly that if w,, is a one-form (cotangent vector), then d,w, —0,w, transforms
as a rank-2 covariant tensor.

6. Lie brackets. The commutator or Lie bracket [u,v] of two vector fields u,v on M is
defined as follows, by its action on any function on M:

[, 0](f) = u(v(f)) = v(u(f)) -
(a) Show that its components in a coordinate basis are given by

[u, v]* = w0, 0" — v O ut .

(b) Using the fact that u*, v* transform as contravariant vectors, show explicitly that
[u, v]* also transforms this way.

(¢) (Optional extra bit) Convince yourself from the general definition of Lie derivative
given in lecture that £,v = [u,v].



