University of California at San Diego - Department of Physics - Prof. John McGreevy

General Relativity (225A) Fall 2013 Assignment 4

Posted October 16, 2013
Due Monday, October 28, 2013

1. Non-relativistic limit of a perfect fluid

The stress-energy tensor for a perfect fluid in Minkowski space is

$$
T^{\mu \nu}=\left((\epsilon+p) u^{\mu} u^{\nu}+p \eta^{\mu \nu}\right) .
$$

Consider the continuity equation $\partial_{\mu} T^{\mu \nu}=0$ in the nonrelativistic limit, $\epsilon \gg p$ (recall that ϵ includes the rest mass!). Show that it implies the conservation of mass, and Euler's equation:

$$
\rho\left(\partial_{t} \vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{v}\right)=-\vec{\nabla} P .
$$

(See section 4.2 of Wald for more on this. Note that he uses ρ for ϵ and sets $c=1$.)

2. Stress tensors for fields in Minkowski space

(a) Given a (translation-invariant) lagrangian density $\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)$ for a scalar field ϕ, define the energy-momentum tensor as

$$
T_{\nu}^{\mu}=-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\nu} \phi+\delta_{\nu}^{\mu} \mathcal{L} .
$$

Show that the equation of motion for ϕ implies the conservation law $\partial_{\mu} T_{\nu}^{\mu}$.
(b) Show that the energy-momentum tensor for the Maxwell field

$$
T_{E M}^{\mu \nu}=\frac{1}{4 \pi c}\left(F^{\mu \rho} F_{\rho}^{\nu}-\frac{1}{4} \eta^{\mu \nu} F^{2}\right)
$$

is traceless, that is $\left(T_{E M}\right)_{\mu}^{\mu}=0$.
(c) Show that the energy-momentum tensor for the Maxwell field

$$
T_{E M}^{\mu \nu}=\frac{1}{4 \pi c}\left(F^{\mu \rho} F_{\rho}^{\nu}-\frac{1}{4} \eta^{\mu \nu} F^{2}\right)
$$

in the presence of an electric current j^{μ} obeys

$$
\partial_{\mu} T_{E M}^{\mu \nu}=-j^{\rho} F_{\rho}^{\nu} .
$$

Explain this result in words.
(d) Optional: show that tracelessness of T_{μ}^{μ} implies conservation of the dilatation current $D^{\mu}=x^{\nu} T_{\nu}^{\mu}$. Convince yourself that the associated conserved charge $\int_{\text {space }} D^{0}$ is the generator of scale transformations.

3. Polyakov form of the worldine action

(a) Consider the following action for a particle trajectory $x^{\mu}(t)$:

$$
S_{?}[x]=-m \int \mathrm{~d} t \frac{\mathrm{~d} x^{\mu}}{\mathrm{d} t} \frac{\mathrm{~d} x^{\nu}}{\mathrm{d} t} g_{\mu \nu}(x)
$$

(Here $g_{\mu \nu}$ is some given metric. You may set $g_{\mu \nu}=\eta_{\mu \nu}$ if you like.) Convince yourself that the parameter t is meaningful, that is: reparametrizing t changes $S_{?}$.

Now consider instead the following action

$$
S[x, e]=-\int \mathrm{d} \mathfrak{s}\left(\frac{1}{e(\mathfrak{s})} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \mathfrak{s}} \frac{\mathrm{~d} x^{\nu}}{\mathrm{d} \mathfrak{s}} g_{\mu \nu}(x)-m^{2} e(\mathfrak{s})\right) .
$$

The dynamical variables are $x^{\mu}(\mathfrak{s})$ (positions of a particle) and $e(\mathfrak{s}) ; e$ is called an einbein ${ }^{1}$:

$$
\mathrm{d} s_{1 d}^{2}=e^{2}(\mathfrak{s}) \mathrm{d} \mathfrak{s}^{2}
$$

(b) Show that $S[x, e]$ is reparametrization invariant if we demand that $\mathrm{d} s_{1 d}^{2}$ is an invariant line element.
(c) Derive the equations of motion for e and x^{μ}. Compare with other reparametrizationinvariant actions for a particle.
(d) Take the limit $m \rightarrow 0$ to find the equations of motion for a massless particle.
4. Show that S^{2} using stereographic projections (aka Poincaré maps)for the coordinate charts (see the figure)

$$
x_{N}: S^{2}-\{\text { north pole }\} \rightarrow \mathbb{R}^{2} \quad x_{S}: S^{2}-\{\text { south pole }\} \rightarrow \mathbb{R}^{2}
$$

is a differentiable manifold of dimension two. More precisely:
(a) Write the Poincaré maps explicitly in terms of the embedding in $\mathbb{R}^{3}\left(\left\{\left(x_{1}, x_{2}, x_{3}\right) \in\right.\right.$ $\left.\mathbb{R}^{3} \mid \sum_{i} x_{i}^{2}=1\right\} \rightarrow \mathbb{R}^{2}$.

[^0](b) Show that the transition function $x_{S} \circ x_{N}^{-1}: \mathbb{R}_{N}^{2} \rightarrow \mathbb{R}_{S}^{2}$ is differentiable on the overlap of the two coordinate patches (everything but the poles).)
5. Verify explicitly that if ω_{μ} is a one-form (cotangent vector), then $\partial_{\mu} \omega_{\nu}-\partial_{\nu} \omega_{\mu}$ transforms as a rank-2 covariant tensor.
6. Lie brackets. The commutator or Lie bracket $[u, v]$ of two vector fields u, v on M is defined as follows, by its action on any function on M :
$$
[u, v](f)=u(v(f))-v(u(f)) .
$$
(a) Show that its components in a coordinate basis are given by
$$
[u, v]^{\mu}=u^{\nu} \partial_{\nu} v^{\mu}-v^{\nu} \partial_{\nu} u^{\mu}
$$
(b) Using the fact that u^{μ}, v^{μ} transform as contravariant vectors, show explicitly that $[u, v]^{\mu}$ also transforms this way.
(c) (Optional extra bit) Convince yourself from the general definition of Lie derivative given in lecture that $\mathcal{L}_{u} v=[u, v]$.

[^0]: ${ }^{1}$ that's German for 'the square root of the metric in one dimension'

