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1. Non-relativistic limit of a perfect fluid

The stress-energy tensor for a perfect fluid in Minkowski space is

T µν = ((ε+ p)uµuν + pηµν) .

Consider the continuity equation ∂µT
µν = 0 in the nonrelativistic limit, ε � p (recall

that ε includes the rest mass!). Show that it implies the conservation of mass, and
Euler’s equation:

ρ
(
∂t~v +

(
~v · ~∇

)
~v
)

= −~∇P.

(See section 4.2 of Wald for more on this. Note that he uses ρ for ε and sets c = 1. )

2. Stress tensors for fields in Minkowski space

(a) Given a (translation-invariant) lagrangian density L(φ, ∂µφ) for a scalar field φ,
define the energy-momentum tensor as

T µν = − ∂L
∂ (∂µφ)

∂νφ+ δµνL.

Show that the equation of motion for φ implies the conservation law ∂µT
µ
ν .

(b) Show that the energy-momentum tensor for the Maxwell field

T µνEM =
1

4πc

(
F µρF ν

ρ −
1

4
ηµνF 2

)
is traceless, that is (TEM)µµ = 0.

(c) Show that the energy-momentum tensor for the Maxwell field

T µνEM =
1

4πc

(
F µρF ν

ρ −
1

4
ηµνF 2

)
in the presence of an electric current jµ obeys

∂µT
µν
EM = −jρF ν

ρ .

Explain this result in words.

1



(d) Optional: show that tracelessness of T µµ implies conservation of the dilatation
current Dµ = xνT µν . Convince yourself that the associated conserved charge∫
space

D0 is the generator of scale transformations.

3. Polyakov form of the worldline action

(a) Consider the following action for a particle trajectory xµ(t):

S?[x] = −m
∫

dt
dxµ

dt

dxν

dt
gµν(x) .

(Here gµν is some given metric. You may set gµν = ηµν if you like.) Convince
yourself that the parameter t is meaningful, that is: reparametrizing t changes
S?.

Now consider instead the following action

S[x, e] = −
∫

ds

(
1

e(s)

dxµ

ds

dxν

ds
gµν(x)−m2e(s)

)
.

The dynamical variables are xµ(s) (positions of a particle) and e(s); e is called an
einbein1:

ds21d = e2(s)ds2.

(b) Show that S[x, e] is reparametrization invariant if we demand that ds21d is an
invariant line element.

(c) Derive the equations of motion for e and xµ. Compare with other reparametrization-
invariant actions for a particle.

(d) Take the limit m→ 0 to find the equations of motion for a massless particle.

4. Show that S2 using stereographic projections (aka Poincaré maps)for the coordinate
charts (see the figure)

xN : S2 − {north pole} → IR2 xS : S2 − {south pole} → IR2

is a differentiable manifold of dimension two. More precisely:
(a) Write the Poincaré maps explicitly in terms of the embedding in IR3 ({(x1, x2, x3) ∈
IR3|

∑
i x

2
i = 1} → IR2).

1that’s German for ‘the square root of the metric in one dimension’
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(b) Show that the transition function xS ◦ x−1
N : IR2

N → IR2
S is differentiable on the

overlap of the two coordinate patches (everything but the poles).)

5. Verify explicitly that if ωµ is a one-form (cotangent vector), then ∂µων−∂νωµ transforms
as a rank-2 covariant tensor.

6. Lie brackets. The commutator or Lie bracket [u, v] of two vector fields u, v on M is
defined as follows, by its action on any function on M :

[u, v](f) = u(v(f))− v(u(f)) .

(a) Show that its components in a coordinate basis are given by

[u, v]µ = uν∂νv
µ − vν∂νuµ .

(b) Using the fact that uµ, vµ transform as contravariant vectors, show explicitly that
[u, v]µ also transforms this way.

(c) (Optional extra bit) Convince yourself from the general definition of Lie derivative
given in lecture that Luv = [u, v].
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