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1. Non-relativistic limit of a perfect fluid

The stress-energy tensor for a perfect fluid in Minkowski space is

T µν = ((ε+ p)uµuν + pηµν) .

Consider the continuity equation ∂µT
µν = 0 in the nonrelativistic limit, ε � p (recall

that ε includes the rest mass!). Show that it implies the conservation of mass, and
Euler’s equation:

ρ
(
∂t~v +

(
~v · ~∇

)
~v
)

= −~∇P.

(See section 4.2 of Wald for more on this. Note that he uses ρ for ε and sets c = 1. )

The continuity equation says

0 = ∂µT
µν = (∂µ(ε+ p))uµuν + (ε+ p) ((∂µu

µ)uν + uµ∂µu
ν) + (∂µp) η

µν . (1)

The vector field u satisfies

−1 = uνuν =⇒ 0 = ∂µ(uνu
ν) = 2 (∂µu

ν)uν

(in flat space). Projecting the conservation equation onto uν gives

0 = −uµ∂µ (ε+ p)− (ε+ p)∂νu
ν + 0 + ∂µpu

µ

= −uµ∂µε− ∂µuµ (ε+ p) (2)

To find the content of the conservation law ⊥ to uν add uν times (2)

0 = uν (−(ε+ p)∂νu
ν + 0 + ∂µpu

µ)

to both sides of (1) to get:

0 = +uµuν∂µp+ (ε+ p)uµ∂µu
ν + ∂µpη

µν

= (ε+ p)uν∂µu
ν + ∂µp (ηµν + uµuν) . (3)

Now take the nonrelativistic limit: ε� p, uµ = (1, ~v)µ in which case ∂µv
µ → −0+ ~∇·~v.

Eqn (2) becomes

0 = uµ∂µε+ ∂µu
µ (ε+ p) ' +∂x0ε+ ~v · ~∇ε+ ~∇ · vε

(
1 +

p

ε

)
' +

1

c

∂ε

∂t
+ ~∇ · (ε~v)
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which is energy conservation. Eqn (3) becomes

0 = (ε+ p)uµ∂µu
ν+∂µp (ηµν + uµuν) ' ε

(
∂0 + ~v · ~∇

)
uν+

(
(∂0 + ~v · ~∇)p

)
uν+∂µpη

µν

Now look at the time and space components:

ν = 0 : 0 = ε(0) +
1

c
∂tp+ ~v · ~∇p− 1

c
∂tp = ~v · ~∇p

ν 6= 0 : 0 = ε

(
1

c
∂t~v +

(
~v · ~∇

)
~v

)
+ ~v

(
1

c
∂tp+ ~v · ~∇p

)
+ ~∇p

In the NR limit v � c, so the important terms are:

ν 6= 0 : 0 = ε

(
1

c
∂t~v +

(
~v · ~∇

)
~v

)
+ ~∇p

which is the Euler equation.

2. Stress tensors for fields in Minkowski space

(a) Given a (translation-invariant) lagrangian density L(φ, ∂µφ) for a scalar field φ,
define the energy-momentum tensor as

T µν = − ∂L
∂ (∂µφ)

∂νφ+ δµνL.

Show that the equation of motion for φ implies the conservation law ∂µT
µ
ν .

The EoM for φ is

0 =
δS

δφ(x)
=
∂L
∂φ

(x)− ∂µ
∂L
∂∂µφ

(x)

(see the lecture notes section 3.1), so

∂µT
µ
ν = − ∂µ

∂L
∂ (∂µφ)︸ ︷︷ ︸
=− ∂L

∂φ

− ∂L
∂ (∂µφ)

∂µ∂νφ+ ∂νL︸︷︷︸
=∂νφ

∂L
∂φ

+∂ν(∂µφ)
∂L

∂(∂µφ)

= −∂L
∂φ

∂νφ−
∂L

∂ (∂µφ)
∂µ∂νφ+ ∂νφ

∂L
∂φ

+ ∂µ∂νφ
∂L

∂ (∂µφ)
= 0. (4)

(b) Show that the energy-momentum tensor for the Maxwell field

T µνEM =
1

4πc

(
F µρF ν

ρ −
1

4
ηµνF 2

)
is traceless, that is (TEM)µµ = 0.

T µµ =
1

4πc

F µρFµρ︸ ︷︷ ︸
=F 2

−1

4
4F 2

 = 0.
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An apology: the notation F ν
ρ in the pset statement is ambiguous: when raising

and lowering indices on an object with multiply (non-symmetrized) indices, you
have to keep track of which one was raised or lowered. I should have written F ν

ρ

(which is harder to TeX).

(c) Show that the energy-momentum tensor for the Maxwell field

T µνEM =
1

4πc

(
F µρF ν

ρ −
1

4
ηµνF 2

)
in the presence of an electric current jµ obeys

∂µT
µν
EM = −jρF ν

ρ.

Explain this result in words.

I am setting c = 1. Recall that Maxwell’s equations with a source are

0 = εµνρσ∂νFρσ, ∂ρFµρ = 4πjµ.

We will need both.

∂µT
µν
EM =

1

4π

(
(∂µF

µρ)F ν
ρ + F µρ∂µF

ν
ρ −

2

4
ηµν
(
∂µFαβFγδη

αγηβδ
))

=
1

4π

(
− (∂µFρµ)F νρ + F µρ

(
∂µF

ν
ρ

)
− 1

2
(∂νFµρ)F

µρ

)
= −jρF νρ +

1

4π
F µρηνσ

(
∂µFσρ −

1

2
∂σFµρ

)
(5)

But by antisymmetry of F : F µρ(∂µFσρ) = 1
2
F µρ(∂µFσρ − ∂ρFσµ), so

∂µT
µν
EM = −jρF νρ +

1

8π
F µρηνσ (∂µFσρ + ∂ρFµσ + ∂σFρµ)︸ ︷︷ ︸

∝εµσρνεναβγ∂αFβγ=0

= −jρF ν
ρ .

The EM field can do work on the currents and vice versa; therefore the energy
and momentum in the EM field can turn into energy of the charges and vice versa,
and is therefore not conserved. The RHS of the ν = 0 component is minus the
work done on the particles by the fields; the RHS of the ν = i component is minus
the force (change in momentum per unit time) in the i direction exerted on the
particles by the Maxwell field.

(d) Optional: show that tracelessness of T µµ implies conservation of the dilatation
current Dµ = xνT µν . Convince yourself that the associated conserved charge∫
space

D0 is the generator of scale transformations.

∂µD
µ = T µµ + xν∂µT

µ
ν = T µµ .∫

space

D0 =

∫
space

(
tT 0

0 + xiT 0
i

)
= tH + xiP = −i

(
t∂t + xi

∂

∂xi

)
which actions on functions of t, x by : (t∂t + x∂x) t

αxβ = (α + β)tαxβ and expo-
nentiates to eat∂tf(t) = f(eat) (it shifts log t by a).
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3. Polyakov form of the worldline action

(a) Consider the following action for a particle trajectory xµ(t):

S?[x] = −m
∫

dt
dxµ

dt

dxν

dt
gµν(x) .

(Here gµν is some given metric. You may set gµν = ηµν if you like.) Convince
yourself that the parameter t is meaningful, that is: reparametrizing t changes
S?.

Reparemetrizing by t̃ = t̃(t) changes the measure by one factor of J ≡ ∂tt̃, but
multiplies ẋ2 by J−2.

Now consider instead the following action

S[x, e] = −
∫

ds

(
1

e(s)

dxµ

ds

dxν

ds
gµν(x)−m2e(s)

)
.

The dynamical variables are xµ(s) (positions of a particle) and e(s); e is called an
einbein1:

ds21d = e2(s)ds2.

(b) Show that S[x, e] is reparametrization invariant if we demand that ds21d is an
invariant line element.

Notice that the second term is just
∫ √

g our usual way of making a coordinate-
invariant integration measure. In the first term the ∂

∂s
s each transform like e, so

1
e
ẋ2 transforms like e.

(c) Derive the equations of motion for e and xµ. Compare with other reparametrization-
invariant actions for a particle.

0 =
δS

δe(s)
= −e−2ẋ2 +m2 =⇒ e = m

√
ẋ2

S[x, e] = −m
∫

ds
√
ẋ2

is the reparam-invariant action we discussed before, so obviously the EoM agree.
Even the values of the action agree when we set e equal to the solution of its EoM.

(d) Take the limit m→ 0 to find the equations of motion for a massless particle.

In this limit, e is a Lagrange multiplier which enforces that the tangent vector is
lightlike:

0 =
δSm=0

δe(s)
∝ ẋ2 .

The EoM for x is still the geodesic equation. Now we can’t choose s to be the
proper time, but we have to demand that the lengths of the tangent vectors
are independent of s – they are all zero. So any parametrization satisfying the
lightlike-constraint is affine.

1that’s German for ‘the square root of the metric in one dimension’
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4. Show that S2 using stereographic projections (aka Poincaré maps)for the coordinate
charts (see the figure)

xN : S2 − {north pole} → IR2 xS : S2 − {south pole} → IR2

is a differentiable manifold of dimension two. More precisely:
(a) Write the Poincaré maps explicitly in terms of the embedding in IR3 ({(x1, x2, x3) ∈
IR3|

∑
i x

2
i = 1} → IR2).

If we place the center of the unit sphere at the origin, the plane in the picture is
{x3 = −1}. The line LN in the picture passes through i(N) = (0, 0, 1) (the embedding
of the north pole) and i(p) = (x, y, z), the embedding of the point of interest p. The
intersection of LN with z = −1 determines xN(p) = (xN1 , x

N
2 ,−1). We can parametrize

it as ~LN(t) so ~LN(0) = i(N) = (0, 0, 1) and ~LN(1) = (x, y, z), which gives

~LN(t) ≡ (xN1 (t), xN2 (t), xN3 (t)) = (tx, ty, 1− t+ tz).

The value of t = tN where −1 = xN3 (tN) = 1 − (1 − z)tN tN is then tN = 2
1−z . Notice

that this is a nice function as long as z 6= 1, and that’s why we must exclude the north
pole (where (x, y, z) = (0, 0, 1)) from this patch. The coordinates of the stereographic
projection from N are then

xN(p) = (xN1 (tN), xN2 (tN)) = (tNx, tNy) =
2

1− z
(x, y).

For the south pole, the plane is at x3 = +1 and the line in question is

LS(t) = (tx, ty, (1− t)(−1) + tz)

so the value of t where x3(tS) = +1 is tS = −2
1+z

and

xs(p) = (xN1 (tS), xN2 (tS)) =
−2

1 + z
(x, y).

(b) Show that the transition function xS ◦ x−1N : IR2
N → IR2

S is differentiable on the
overlap of the two coordinate patches (everything but the poles).)
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The overlap UN ∩US where both coord systems are defined is everywhere but the north

and south poles. Notice that
xN1
xS1

= z+1
z−1 =

xN2
xS2

. The transition functions are nice and

diagonal (
xN1
xN2

)
=
z + 1

z − 1

(
1 0
0 1

)(
xS1
xS2

)
≡M(xS1 , x

S
2 )

(
xS1
xS2

)
– notice that we must think of z here as a function of the coordinates xS1,2. Explicitly
it is findable by

r2 ≡
(
xS1
)2

+
(
xS2
)2

= 4
x2 + y2

(1 + z)2
= 4

1− z2

(1 + z)2

=⇒ z =
−2r2 ±

√
4r4 − 4(r2 − 4)(r2 + 4)

2(r2 + 4)
= −r

2 ∓ 4

r2 + 4
.

The bottom root is just z = −1 which is not what we want – −1 < z < 1 on the
overlap of patches. So the top root it is:

z =
4− r2

4 + r2
=

4−
(
xS1
)2 − (xS2 )2

4 + (xS1 )
2

+ (xS2 )
2 .

And z+1
z−1 = −4

r2
= −4

(xS1 )
2
+(xS2 )

2 and therefore the transition map is(
xN1
xN2

)
=

−4

(xS1 )
2

+ (xS2 )
2

(
xS1
xS2

)
The inverse map is obtainable noticing that

(
xN1
)2

+
(
xN2
)2

= 16

(xS1 )
2
+(xS2 )

2 , so it has

exactly the same form, but with N ↔ S. The transition function

φ = xN ◦ x−1S : xS(US ∩ UN)→ xN(US ∩ UN)

is then perfectly smooth away from the points where 0 =
(
xN1
)2

+
(
xN2
)2

or 0 =(
xS1
)2

+
(
xS2
)2

which are just S and N .

5. Verify explicitly that if ωµ is a one-form (cotangent vector), then ∂µων−∂νωµ transforms
as a rank-2 covariant tensor.

Under the coordinate change xµ → x̃a(x), ωµ(x) → ω̃a(x̃) = Jµa ωµ(x), and ∂µ → ∂̃a =
Jµa ∂µ with Jµa ≡ ∂xµ

∂x̃a
= ∂̃ax

µ.

(dω)µν = ∂µων − ∂νωµ → ∂̃aω̃b − ∂̃bω̃a
= ∂̃a

(
∂̃bx

µωµ

)
− (a↔ b)

=
(
∂̃a∂̃bx

µ − ∂̃b∂̃axµ
)

︸ ︷︷ ︸
=0

ωµ + ∂̃bx
µ∂̃aωµ − ∂̃axµ∂̃bωµ

chain rule
= ∂̃bx

µ∂̃ax
ν∂νωµ − ∂̃axµ∂̃bxν∂νωµ

relabel dummy indices
= ∂̃bx

ν ∂̃ax
µ∂µων − ∂̃axµ∂̃bxν∂νωµ

factorize
= ∂̃bx

µ∂̃ax
ν (∂µων − ∂νωµ) (6)
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6. Lie brackets. The commutator or Lie bracket [u, v] of two vector fields u, v on M is
defined as follows, by its action on any function on M :

[u, v](f) = u(v(f))− v(u(f)) .

(a) Show that its components in a coordinate basis are given by

[u, v]µ = uν∂νv
µ − vν∂νuµ .

[u, v](f) = uµ∂µ(vν∂ν(f))− vµ∂µ(uν∂ν(f))
product rule

= uµ(∂µv
ν)∂νf − vµ(∂µu

ν)∂νf + uµvν∂µ∂νf − vµuν∂µ∂νf
rename dummy indices

= (uµ(∂µv
ν)∂ν − vµ(∂µu

ν)∂ν) f + uµvν∂µ∂νf − vνuµ∂µ∂νf
= (uµ(∂µv

ν)∂ν − vµ(∂µu
ν)∂ν) f (7)

So the components of the bracket are as given above.

(b) Using the fact that uµ, vµ transform as contravariant vectors, show explicitly that
[u, v]µ also transforms this way.

This is very similar to the problem about the transformation of dω above. I will
do this one in a more geometric way, by studying the vector itself, rather than
the components :

uµ(∂µv
ν)∂ν − vµ(∂µu

ν)∂ν → ũa(∂̃aṽ
b)∂̃b − (u↔ v)

(Jaµ ≡
∂x̃a

∂xµ
) = Jaµu

µ((J−1)σa∂σJ
b
νv

ν)(J−1)ρb∂ρ − (u↔ v)

(Jaµ(J−1)σa = δσµ) = uσ(∂σv
ρ)∂ρ − (u↔ v)

rename dummy indices
= uµ(∂µv

ν)∂ν − vµ(∂µu
ν)∂ν . (8)

(c) (Optional extra bit) Convince yourself from the general definition of Lie derivative
given in lecture that Luv = [u, v].

See the footnote in section 5.3.1 of the lecture notes.
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