University of California at San Diego - Department of Physics - Prof. John McGreevy

General Relativity (225A) Fall 2013 Assignment 4 - Solutions

Posted October 16, 2013
Due Monday, October 28, 2013

1. Non-relativistic limit of a perfect fluid

The stress-energy tensor for a perfect fluid in Minkowski space is

$$
T^{\mu \nu}=\left((\epsilon+p) u^{\mu} u^{\nu}+p \eta^{\mu \nu}\right) .
$$

Consider the continuity equation $\partial_{\mu} T^{\mu \nu}=0$ in the nonrelativistic limit, $\epsilon \gg p$ (recall that ϵ includes the rest mass!). Show that it implies the conservation of mass, and Euler's equation:

$$
\rho\left(\partial_{t} \vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{v}\right)=-\vec{\nabla} P .
$$

(See section 4.2 of Wald for more on this. Note that he uses ρ for ϵ and sets $c=1$.) The continuity equation says

$$
\begin{equation*}
0=\partial_{\mu} T^{\mu \nu}=\left(\partial_{\mu}(\epsilon+p)\right) u^{\mu} u^{\nu}+(\epsilon+p)\left(\left(\partial_{\mu} u^{\mu}\right) u^{\nu}+u^{\mu} \partial_{\mu} u^{\nu}\right)+\left(\partial_{\mu} p\right) \eta^{\mu \nu} \tag{1}
\end{equation*}
$$

The vector field u satisfies

$$
-1=u^{\nu} u_{\nu} \Longrightarrow 0=\partial_{\mu}\left(u_{\nu} u^{\nu}\right)=2\left(\partial_{\mu} u^{\nu}\right) u_{\nu}
$$

(in flat space). Projecting the conservation equation onto u_{ν} gives

$$
\begin{align*}
0 & =-u^{\mu} \partial_{\mu}(\epsilon+p)-(\epsilon+p) \partial_{\nu} u^{\nu}+0+\partial_{\mu} p u^{\mu} \\
& =-u^{\mu} \partial_{\mu} \epsilon-\partial_{\mu} u^{\mu}(\epsilon+p) \tag{2}
\end{align*}
$$

To find the content of the conservation law \perp to u^{ν} add u^{ν} times (2)

$$
0=u^{\nu}\left(-(\epsilon+p) \partial_{\nu} u^{\nu}+0+\partial_{\mu} p u^{\mu}\right)
$$

to both sides of (1) to get:

$$
\begin{align*}
0 & =+u^{\mu} u^{\nu} \partial_{\mu} p+(\epsilon+p) u^{\mu} \partial_{\mu} u^{\nu}+\partial_{\mu} p \eta^{\mu \nu} \\
& =(\epsilon+p) u^{\nu} \partial_{\mu} u^{\nu}+\partial_{\mu} p\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) . \tag{3}
\end{align*}
$$

Now take the nonrelativistic limit: $\epsilon \gg p, u^{\mu}=(1, \vec{v})^{\mu}$ in which case $\partial_{\mu} v^{\mu} \rightarrow-0+\vec{\nabla} \cdot \vec{v}$. Eqn (2) becomes

$$
0=u^{\mu} \partial_{\mu} \epsilon+\partial_{\mu} u^{\mu}(\epsilon+p) \simeq+\partial_{x^{0}} \epsilon+\vec{v} \cdot \vec{\nabla} \epsilon+\vec{\nabla} \cdot v \epsilon\left(1+\frac{p}{\epsilon}\right) \simeq+\frac{1}{c} \frac{\partial \epsilon}{\partial t}+\vec{\nabla} \cdot(\epsilon \vec{v})
$$

which is energy conservation. Eqn (3) becomes

$$
0=(\epsilon+p) u^{\mu} \partial_{\mu} u^{\nu}+\partial_{\mu} p\left(\eta^{\mu \nu}+u^{\mu} u^{\nu}\right) \simeq \epsilon\left(\partial_{0}+\vec{v} \cdot \vec{\nabla}\right) u^{\nu}+\left(\left(\partial_{0}+\vec{v} \cdot \vec{\nabla}\right) p\right) u^{\nu}+\partial_{\mu} p \eta^{\mu \nu}
$$

Now look at the time and space components:

$$
\begin{gathered}
\nu=0: 0=\epsilon(0)+\frac{1}{c} \partial_{t} p+\vec{v} \cdot \vec{\nabla} p-\frac{1}{c} \partial_{t} p=\vec{v} \cdot \vec{\nabla} p \\
\nu \neq 0: 0=\epsilon\left(\frac{1}{c} \partial_{t} \vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{v}\right)+\vec{v}\left(\frac{1}{c} \partial_{t} p+\vec{v} \cdot \vec{\nabla} p\right)+\vec{\nabla} p
\end{gathered}
$$

In the NR limit $v \ll c$, so the important terms are:

$$
\nu \neq 0: 0=\epsilon\left(\frac{1}{c} \partial_{t} \vec{v}+(\vec{v} \cdot \vec{\nabla}) \vec{v}\right)+\vec{\nabla} p
$$

which is the Euler equation.

2. Stress tensors for fields in Minkowski space

(a) Given a (translation-invariant) lagrangian density $\mathcal{L}\left(\phi, \partial_{\mu} \phi\right)$ for a scalar field ϕ, define the energy-momentum tensor as

$$
T_{\nu}^{\mu}=-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\nu} \phi+\delta_{\nu}^{\mu} \mathcal{L}
$$

Show that the equation of motion for ϕ implies the conservation law $\partial_{\mu} T_{\nu}^{\mu}$. The EoM for ϕ is

$$
0=\frac{\delta S}{\delta \phi(x)}=\frac{\partial \mathcal{L}}{\partial \phi}(x)-\partial_{\mu} \frac{\partial \mathcal{L}}{\partial \partial_{\mu} \phi}(x)
$$

(see the lecture notes section 3.1), so

$$
\begin{align*}
\partial_{\mu} T_{\nu}^{\mu} & =-\underbrace{\partial_{\mu} \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}}_{=-\frac{\partial \mathcal{L}}{\partial \phi}}-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\mu} \partial_{\nu} \phi+\underbrace{\partial_{\nu} \mathcal{L}}_{=\partial_{\nu} \phi \frac{\partial \mathcal{L}}{\partial \phi}+\partial_{\nu}\left(\partial_{\mu} \phi\right) \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}} \\
& =-\frac{\partial \mathcal{L}}{\partial \phi} \partial_{\nu} \phi-\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)} \partial_{\mu} \partial_{\nu} \phi+\partial_{\nu} \phi \frac{\partial \mathcal{L}}{\partial \phi}+\partial_{\mu} \partial_{\nu} \phi \frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \phi\right)}=0 . \tag{4}
\end{align*}
$$

(b) Show that the energy-momentum tensor for the Maxwell field

$$
T_{E M}^{\mu \nu}=\frac{1}{4 \pi c}\left(F^{\mu \rho} F_{\rho}^{\nu}-\frac{1}{4} \eta^{\mu \nu} F^{2}\right)
$$

is traceless, that is $\left(T_{E M}\right)_{\mu}^{\mu}=0$.

$$
T_{\mu}^{\mu}=\frac{1}{4 \pi c}(\underbrace{F^{\mu \rho} F_{\mu \rho}}_{=F^{2}}-\frac{1}{4} 4 F^{2})=0
$$

An apology: the notation F_{ρ}^{ν} in the pset statement is ambiguous: when raising and lowering indices on an object with multiply (non-symmetrized) indices, you have to keep track of which one was raised or lowered. I should have written $F^{\nu}{ }_{\rho}$ (which is harder to TeX).
(c) Show that the energy-momentum tensor for the Maxwell field

$$
T_{E M}^{\mu \nu}=\frac{1}{4 \pi c}\left(F^{\mu \rho} F_{\rho}^{\nu}-\frac{1}{4} \eta^{\mu \nu} F^{2}\right)
$$

in the presence of an electric current j^{μ} obeys

$$
\partial_{\mu} T_{E M}^{\mu \nu}=-j^{\rho} F_{\rho}^{\nu} .
$$

Explain this result in words.
I am setting $c=1$. Recall that Maxwell's equations with a source are

$$
0=\epsilon^{\mu \nu \rho \sigma} \partial_{\nu} F_{\rho \sigma}, \quad \partial^{\rho} F_{\mu \rho}=4 \pi j_{\mu} .
$$

We will need both.

$$
\begin{align*}
\partial_{\mu} T_{E M}^{\mu \nu} & =\frac{1}{4 \pi}\left(\left(\partial_{\mu} F^{\mu \rho}\right) F_{\rho}^{\nu}+F^{\mu \rho} \partial_{\mu} F_{\rho}^{\nu}-\frac{2}{4} \eta^{\mu \nu}\left(\partial_{\mu} F_{\alpha \beta} F_{\gamma \delta} \eta^{\alpha \gamma} \eta^{\beta \delta}\right)\right) \\
& =\frac{1}{4 \pi}\left(-\left(\partial^{\mu} F_{\rho \mu}\right) F^{\nu \rho}+F^{\mu \rho}\left(\partial_{\mu} F_{\rho}^{\nu}\right)-\frac{1}{2}\left(\partial^{\nu} F_{\mu \rho}\right) F^{\mu \rho}\right) \\
& =-j_{\rho} F^{\nu \rho}+\frac{1}{4 \pi} F^{\mu \rho} \eta^{\nu \sigma}\left(\partial_{\mu} F_{\sigma \rho}-\frac{1}{2} \partial_{\sigma} F_{\mu \rho}\right) \tag{5}
\end{align*}
$$

But by antisymmetry of $F: F^{\mu \rho}\left(\partial_{\mu} F_{\sigma \rho}\right)=\frac{1}{2} F^{\mu \rho}\left(\partial_{\mu} F_{\sigma \rho}-\partial_{\rho} F_{\sigma \mu}\right)$, so

$$
\partial_{\mu} T_{E M}^{\mu \nu}=-j_{\rho} F^{\nu \rho}+\frac{1}{8 \pi} F^{\mu \rho} \eta^{\nu \sigma} \underbrace{\left(\partial_{\mu} F_{\sigma \rho}+\partial_{\rho} F_{\mu \sigma}+\partial_{\sigma} F_{\rho \mu}\right)}_{\alpha \epsilon_{\mu \sigma \rho \nu} \epsilon^{\nu \alpha \beta \gamma} \partial_{\alpha} F_{\beta \gamma}=0}=-j^{\rho} F_{\rho}^{\nu} .
$$

The EM field can do work on the currents and vice versa; therefore the energy and momentum in the EM field can turn into energy of the charges and vice versa, and is therefore not conserved. The RHS of the $\nu=0$ component is minus the work done on the particles by the fields; the RHS of the $\nu=i$ component is minus the force (change in momentum per unit time) in the i direction exerted on the particles by the Maxwell field.
(d) Optional: show that tracelessness of T_{μ}^{μ} implies conservation of the dilatation current $D^{\mu}=x^{\nu} T_{\nu}^{\mu}$. Convince yourself that the associated conserved charge $\int_{\text {space }} D^{0}$ is the generator of scale transformations.

$$
\begin{gathered}
\partial_{\mu} D^{\mu}=T_{\mu}^{\mu}+x^{\nu} \partial_{\mu} T_{\nu}^{\mu}=T_{\mu}^{\mu} \\
\int_{\text {space }} D^{0}=\int_{\text {space }}\left(t T_{0}^{0}+x^{i} T_{i}^{0}\right)=t \mathcal{H}+x^{i} \mathcal{P}=-\mathbf{i}\left(t \partial_{t}+x^{i} \frac{\partial}{\partial x^{i}}\right)
\end{gathered}
$$

which actions on functions of t, x by : $\left(t \partial_{t}+x \partial_{x}\right) t^{\alpha} x^{\beta}=(\alpha+\beta) t^{\alpha} x^{\beta}$ and exponentiates to $e^{a t \partial_{t}} f(t)=f\left(e^{a} t\right.$) (it shifts $\log t$ by a).

3. Polyakov form of the worldine action

(a) Consider the following action for a particle trajectory $x^{\mu}(t)$:

$$
S_{?}[x]=-m \int \mathrm{~d} t \frac{\mathrm{~d} x^{\mu}}{\mathrm{d} t} \frac{\mathrm{~d} x^{\nu}}{\mathrm{d} t} g_{\mu \nu}(x) .
$$

(Here $g_{\mu \nu}$ is some given metric. You may set $g_{\mu \nu}=\eta_{\mu \nu}$ if you like.) Convince yourself that the parameter t is meaningful, that is: reparametrizing t changes $S_{\text {? }}$.
Reparemetrizing by $\tilde{t}=\tilde{t}(t)$ changes the measure by one factor of $J \equiv \partial_{t} \tilde{t}$, but multiplies \dot{x}^{2} by J^{-2}.

Now consider instead the following action

$$
S[x, e]=-\int \mathrm{d} \mathfrak{s}\left(\frac{1}{e(\mathfrak{s})} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \mathfrak{s}} \frac{\mathrm{~d} x^{\nu}}{\mathrm{d} \mathfrak{s}} g_{\mu \nu}(x)-m^{2} e(\mathfrak{s})\right)
$$

The dynamical variables are $x^{\mu}(\mathfrak{s})$ (positions of a particle) and $e(\mathfrak{s}) ; e$ is called an einbein ${ }^{1}$:

$$
\mathrm{d} s_{1 d}^{2}=e^{2}(\mathfrak{s}) \mathrm{d} \mathfrak{s}^{2}
$$

(b) Show that $S[x, e]$ is reparametrization invariant if we demand that $\mathrm{d} s_{1 d}^{2}$ is an invariant line element.
Notice that the second term is just $\int \sqrt{g}$ our usual way of making a coordinateinvariant integration measure. In the first term the $\frac{\partial}{\partial \mathfrak{s}} \mathrm{s}$ each transform like e, so $\frac{1}{e} \dot{x}^{2}$ transforms like e.
(c) Derive the equations of motion for e and x^{μ}. Compare with other reparametrizationinvariant actions for a particle.

$$
\begin{gathered}
0=\frac{\delta S}{\delta e(\mathfrak{s})}=-e^{-2} \dot{x}^{2}+m^{2} \Longrightarrow \underline{e}=m \sqrt{\dot{x}^{2}} \\
S[x, \underline{e}]=-m \int \mathrm{~d} \mathfrak{s} \sqrt{\dot{x}^{2}}
\end{gathered}
$$

is the reparam-invariant action we discussed before, so obviously the EoM agree. Even the values of the action agree when we set e equal to the solution of its EoM.
(d) Take the limit $m \rightarrow 0$ to find the equations of motion for a massless particle.

In this limit, e is a Lagrange multiplier which enforces that the tangent vector is lightlike:

$$
0=\frac{\delta S_{m=0}}{\delta e(\mathfrak{s})} \propto \dot{x}^{2}
$$

The EoM for x is still the geodesic equation. Now we can't choose \mathfrak{s} to be the proper time, but we have to demand that the lengths of the tangent vectors are independent of \mathfrak{s} - they are all zero. So any parametrization satisfying the lightlike-constraint is affine.

[^0]4. Show that S^{2} using stereographic projections (aka Poincaré maps)for the coordinate charts (see the figure)
$$
x_{N}: S^{2}-\{\text { north pole }\} \rightarrow \mathbb{R}^{2} \quad x_{S}: S^{2}-\{\text { south pole }\} \rightarrow \mathbb{R}^{2}
$$
is a differentiable manifold of dimension two. More precisely:
(a) Write the Poincaré maps explicitly in terms of the embedding in $\mathbb{R}^{3}\left(\left\{\left(x_{1}, x_{2}, x_{3}\right) \in\right.\right.$ $\left.\left.\mathbb{R}^{3} \mid \sum_{i} x_{i}^{2}=1\right\} \rightarrow \mathbb{R}^{2}\right)$.

If we place the center of the unit sphere at the origin, the plane in the picture is $\left\{x_{3}=-1\right\}$. The line L_{N} in the picture passes through $i(N)=(0,0,1)$ (the embedding of the north pole) and $i(p)=(x, y, z)$, the embedding of the point of interest p. The intersection of L_{N} with $z=-1$ determines $x_{N}(p)=\left(x_{1}^{N}, x_{2}^{N},-1\right)$. We can parametrize it as $\vec{L}_{N}(t)$ so $\vec{L}_{N}(0)=i(N)=(0,0,1)$ and $\vec{L}_{N}(1)=(x, y, z)$, which gives

$$
\vec{L}_{N}(t) \equiv\left(x_{1}^{N}(t), x_{2}^{N}(t), x_{3}^{N}(t)\right)=(t x, t y, 1-t+t z)
$$

The value of $t=t_{N}$ where $-1=x_{3}^{N}\left(t_{N}\right)=1-(1-z) t_{N} t_{N}$ is then $t_{N}=\frac{2}{1-z}$. Notice that this is a nice function as long as $z \neq 1$, and that's why we must exclude the north pole (where $(x, y, z)=(0,0,1))$ from this patch. The coordinates of the stereographic projection from N are then

$$
x_{N}(p)=\left(x_{1}^{N}\left(t_{N}\right), x_{2}^{N}\left(t_{N}\right)\right)=\left(t_{N} x, t_{N} y\right)=\frac{2}{1-z}(x, y) .
$$

For the south pole, the plane is at $x_{3}=+1$ and the line in question is

$$
L_{S}(t)=(t x, t y,(1-t)(-1)+t z)
$$

so the value of t where $x_{3}\left(t_{S}\right)=+1$ is $t_{S}=\frac{-2}{1+z}$ and

$$
x_{s}(p)=\left(x_{1}^{N}\left(t_{S}\right), x_{2}^{N}\left(t_{S}\right)\right)=\frac{-2}{1+z}(x, y) .
$$

(b) Show that the transition function $x_{S} \circ x_{N}^{-1}: \mathbb{R}_{N}^{2} \rightarrow \mathbb{R}_{S}^{2}$ is differentiable on the overlap of the two coordinate patches (everything but the poles).)

The overlap $\mathcal{U}_{N} \cap \mathcal{U}_{S}$ where both coord systems are defined is everywhere but the north and south poles. Notice that $\frac{x_{1}^{N}}{x_{1}^{S}}=\frac{z+1}{z-1}=\frac{x_{2}^{N}}{x_{2}^{S}}$. The transition functions are nice and diagonal

$$
\binom{x_{1}^{N}}{x_{2}^{N}}=\frac{z+1}{z-1}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\binom{x_{1}^{S}}{x_{2}^{S}} \equiv M\left(x_{1}^{S}, x_{2}^{S}\right)\binom{x_{1}^{S}}{x_{2}^{S}}
$$

- notice that we must think of z here as a function of the coordinates $x_{1,2}^{S}$. Explicitly it is findable by

$$
\begin{aligned}
r^{2} & \equiv\left(x_{1}^{S}\right)^{2}+\left(x_{2}^{S}\right)^{2}=4 \frac{x^{2}+y^{2}}{(1+z)^{2}}=4 \frac{1-z^{2}}{(1+z)^{2}} \\
\Longrightarrow z & =\frac{-2 r^{2} \pm \sqrt{4 r^{4}-4\left(r^{2}-4\right)\left(r^{2}+4\right)}}{2\left(r^{2}+4\right)}=-\frac{r^{2} \mp 4}{r^{2}+4} .
\end{aligned}
$$

The bottom root is just $z=-1$ which is not what we want $--1<z<1$ on the overlap of patches. So the top root it is:

$$
z=\frac{4-r^{2}}{4+r^{2}}=\frac{4-\left(x_{1}^{S}\right)^{2}-\left(x_{2}^{S}\right)^{2}}{4+\left(x_{1}^{S}\right)^{2}+\left(x_{2}^{S}\right)^{2}}
$$

And $\frac{z+1}{z-1}=\frac{-4}{r^{2}}=\frac{-4}{\left(x_{1}^{S}\right)^{2}+\left(x_{2}^{S}\right)^{2}}$ and therefore the transition map is

$$
\binom{x_{1}^{N}}{x_{2}^{N}}=\frac{-4}{\left(x_{1}^{S}\right)^{2}+\left(x_{2}^{S}\right)^{2}}\binom{x_{1}^{S}}{x_{2}^{S}}
$$

The inverse map is obtainable noticing that $\left(x_{1}^{N}\right)^{2}+\left(x_{2}^{N}\right)^{2}=\frac{16}{\left(x_{1}^{S}\right)^{2}+\left(x_{2}^{S}\right)^{2}}$, so it has exactly the same form, but with $N \leftrightarrow S$. The transition function

$$
\phi=x_{N} \circ x_{S}^{-1}: x_{S}\left(\mathcal{U}_{S} \cap \mathcal{U}_{N}\right) \rightarrow x_{N}\left(\mathcal{U}_{S} \cap \mathcal{U}_{N}\right)
$$

is then perfectly smooth away from the points where $0=\left(x_{1}^{N}\right)^{2}+\left(x_{2}^{N}\right)^{2}$ or $0=$ $\left(x_{1}^{S}\right)^{2}+\left(x_{2}^{S}\right)^{2}$ which are just S and N.
5. Verify explicitly that if ω_{μ} is a one-form (cotangent vector), then $\partial_{\mu} \omega_{\nu}-\partial_{\nu} \omega_{\mu}$ transforms as a rank-2 covariant tensor.
Under the coordinate change $x^{\mu} \rightarrow \tilde{x}^{a}(x), \omega_{\mu}(x) \rightarrow \tilde{\omega}_{a}(\tilde{x})=J_{a}^{\mu} \omega_{\mu}(x)$, and $\partial_{\mu} \rightarrow \tilde{\partial}_{a}=$ $J_{a}^{\mu} \partial_{\mu}$ with $J_{a}^{\mu} \equiv \frac{\partial x^{\mu}}{\partial \tilde{x}^{a}}=\tilde{\partial}_{a} x^{\mu}$.

$$
\begin{array}{rll}
(\mathrm{d} \omega)_{\mu \nu}=\partial_{\mu} \omega_{\nu}-\partial_{\nu} \omega_{\mu} & \rightarrow & \tilde{\partial}_{a} \tilde{\omega}_{b}-\tilde{\partial}_{b} \tilde{\omega}_{a} \\
& = & \tilde{\partial}_{a}\left(\tilde{\partial}_{b} x^{\mu} \omega_{\mu}\right)-(a \leftrightarrow b) \\
& = & \underbrace{\left(\tilde{\partial}_{a} \tilde{\partial}_{b} x^{\mu}-\tilde{\partial}_{b} \tilde{\partial}_{a} x^{\mu}\right)}_{\substack{\text { chain rule } \\
=}} \omega_{\mu}+\tilde{\partial}_{b} x^{\mu} \tilde{\partial}_{a} \omega_{\mu}-\tilde{\partial}_{a} x^{\mu} \tilde{\partial}_{b} \omega_{\mu} \\
& \tilde{\partial}_{b} x^{\mu} \tilde{\partial}_{a} x^{\nu} \partial_{\nu} \omega_{\mu}-\tilde{\partial}_{a} x^{\mu} \tilde{\partial}_{b} x^{\nu} \partial_{\nu} \omega_{\mu} \\
\text { relabel dummy indices } \\
& \stackrel{\tilde{\partial}_{b} x^{\nu} \tilde{\partial}_{a} x^{\mu} \partial_{\mu} \omega_{\nu}-\tilde{\partial}_{a} x^{\mu} \tilde{\partial}_{b} x^{\nu} \partial_{\nu} \omega_{\mu}}{=} & \stackrel{\tilde{\partial}_{b} x^{\mu} \tilde{\partial}_{a} x^{\nu}\left(\partial_{\mu} \omega_{\nu}-\partial_{\nu} \omega_{\mu}\right)}{=} \\
& \text { factorize } \tag{6}
\end{array}
$$

6. Lie brackets. The commutator or Lie bracket $[u, v]$ of two vector fields u, v on M is defined as follows, by its action on any function on M :

$$
[u, v](f)=u(v(f))-v(u(f)) .
$$

(a) Show that its components in a coordinate basis are given by

$$
\begin{align*}
& {[u, v]^{\mu}=u^{\nu} \partial_{\nu} v^{\mu}-v^{\nu} \partial_{\nu} u^{\mu} .} \\
& {[u, v](f) \quad \underset{\text { product rule }}{=} \quad u^{\mu} \partial_{\mu}\left(v^{\nu} \partial_{\nu}(f)\right)-v^{\mu} \partial_{\mu}\left(u^{\nu} \partial_{\nu}(f)\right)} \\
& \stackrel{\text { product rule }}{=} \quad u^{\mu}\left(\partial_{\mu} \nu^{\nu}\right) \partial_{\nu} f-v^{\mu}\left(\partial_{\mu} u^{\nu}\right) \partial_{\nu} f+u^{\mu} v^{\nu} \partial_{\mu} \partial_{\nu} f-v^{\mu} u^{\nu} \partial_{\mu} \partial_{\nu} f \\
& \text { rename dummy indices }\left(u^{\mu}\left(\partial_{\mu} v^{\nu}\right) \partial_{\nu}-v^{\mu}\left(\partial_{\mu} u^{\nu}\right) \partial_{\nu}\right) f+u^{\mu} v^{\nu} \partial_{\mu} \partial_{\nu} f-v^{\nu} u^{\mu} \partial_{\mu} \partial_{\nu} f \\
& =\quad\left(u^{\mu}\left(\partial_{\mu} v^{\nu}\right) \partial_{\nu}-v^{\mu}\left(\partial_{\mu} u^{\nu}\right) \partial_{\nu}\right) f \tag{7}
\end{align*}
$$

So the components of the bracket are as given above.
(b) Using the fact that u^{μ}, v^{μ} transform as contravariant vectors, show explicitly that $[u, v]^{\mu}$ also transforms this way.
This is very similar to the problem about the transformation of $\mathrm{d} \omega$ above. I will do this one in a more geometric way, by studying the vector itself, rather than the components :

$$
\begin{array}{rll}
u^{\mu}\left(\partial_{\mu} v^{\nu}\right) \partial_{\nu}-v^{\mu}\left(\partial_{\mu} u^{\nu}\right) \partial_{\nu} & \rightarrow & \tilde{u}^{a}\left(\tilde{\partial}_{a} \tilde{v}^{b}\right) \tilde{\partial}_{b}-(u \leftrightarrow v) \\
\left(J_{\mu}^{a} \equiv \frac{\partial \tilde{x}^{a}}{\partial x^{\mu}}\right) & = & J_{\mu}^{a} u^{\mu}\left(\left(J^{-1}\right)_{a}^{\sigma} \partial_{\sigma} J_{\nu}^{b} v^{\nu}\right)\left(J^{-1}\right)_{b}^{\rho} \partial_{\rho}-(u \leftrightarrow v) \\
\left(J_{\mu}^{a}\left(J^{-1}\right)_{a}^{\sigma}=\delta_{\mu}^{\sigma}\right) & & = \\
& u^{\sigma}\left(\partial_{\sigma} v^{\rho}\right) \partial_{\rho}-(u \leftrightarrow v) \tag{8}\\
& \text { rename dummy indices } & u^{\mu}\left(\partial_{\mu} v^{\nu}\right) \partial_{\nu}-v^{\mu}\left(\partial_{\mu} u^{\nu}\right) \partial_{\nu} .
\end{array}
$$

(c) (Optional extra bit) Convince yourself from the general definition of Lie derivative given in lecture that $\mathcal{L}_{u} v=[u, v]$.
See the footnote in section 5.3.1 of the lecture notes.

[^0]: ${ }^{1}$ that's German for 'the square root of the metric in one dimension'

