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General Relativity (225A) Fall 2013
Assignment 4 — Solutions

Posted October 16, 2013 Due Monday, October 28, 2013

1. Non-relativistic limit of a perfect fluid

The stress-energy tensor for a perfect fluid in Minkowski space is
" = ((e+p) u'u” +pn™).

Consider the continuity equation d,7"" = 0 in the nonrelativistic limit, € > p (recall
that € includes the rest mass!). Show that it implies the conservation of mass, and
Euler’s equation:

P (atm (U- 6) U) — _VP
(See section 4.2 of Wald for more on this. Note that he uses p for € and sets ¢ = 1. )
The continuity equation says
0=20,1" = (Ou(e +p)) u'v” + (e + p) (Ou") v’ +u"Ou”) + (Oup) ™. (1)
The vector field u satisfies
—1=v"v, = 0=20,(uw,u") =2(0,u")u,
(in flat space). Projecting the conservation equation onto u, gives

0 = —u"d,(e+p)— (e+p)ou”+0+09,pu"
= —u"0,e — 0u" (e +p) (2)

To find the content of the conservation law L to u” add u” times (2)
0=u"(—(e+p)ou”+0+0,pu")
to both sides of (1) to get:

0 = +u'u"0,p+ (e +p)u"d,u” + 0,pn""
= (e+p)u”0u” + Oup (" + uu”). (3)

Now take the nonrelativistic limit: € > p, u* = (1, v)* in which case 9,v"* — —0+V-7.
Eqn (2) becomes
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which is energy conservation. Eqn (3) becomes
0= (e+p)udu’+0,p (" +u'u") ~e (80 + - 6) u”+ ((80 +7- 6)]9) u” 40, pn™”

Now look at the time and space components:

]- = 1 —
:Oze(O)—i—E@tp—HT'Vp—Eatp:U-Vp
1 — — = — — 1 = = =
:Oze(;@tv+<v-v>v)+v(28tp+v-Vp)+Vp

In the NR limit v < ¢, so the important terms are:

:ozeGatm (ﬁ-ﬁ)ﬁ) +Vp

which is the Euler equation.
2. Stress tensors for fields in Minkowski space

(a) Given a (translation-invariant) lagrangian density L£(¢,0,¢) for a scalar field ¢,
define the energy-momentum tensor as

T oL
9 (9u0)
Show that the equation of motion for ¢ implies the conservation law 0,T}.

The EoM for ¢ is

0y + 6" L.
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(see the lecture notes section 3.1), SO
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(b) Show that the energy-momentum tensor for the Maxwell field
1 1
TH = — | FMPFY, — —pv 2
EM " 4re ( vy >
is traceless, that is (Tenm)!, = 0.

1 1,
T = | F"F,—4F" | =0.



An apology: the notation F} in the pset statement is ambiguous: when raising
and lowering indices on an object with multiply (non-symmetrized) indices, you
have to keep track of which one was raised or lowered. I should have written F",
(which is harder to TeX).

Show that the energy-momentum tensor for the Maxwell field

v ]' v 1 v
T = o (FWF o= 7" F2>

in the presence of an electric current j* obeys
0TS = —"F"

Explain this result in words.
I am setting ¢ = 1. Recall that Maxwell’s equations with a source are

0= ¥70,F,,, O°F,,=4mj,.

poy

We will need both.

v 1 v y 2 y N
OuTpy = I ((Q;F“p)ﬁ p+ F"PO,F) — Zn“ (@tFa,BFwS?? vn65)>
1 ) N
T 4r (_ (0" Fp) F¥P + FH (8qu) 9 (0" Flup) Fﬂp)
R 1 o 1
= —j, "+ —47TF“’)77 <8“ng ~3

But by antisymmetry of F: F*(0,F,,) = %F“p(auFap — 0,F,,), so

0.5y 5)

v . v 1 vo y v
0, Thyy = —J,F"° + 8—7TF’“’77 EauFoﬂ + 0,F,» +aUFPHZ: —j°F", .

asuapl,s”"‘ﬁwaa Fgy=0

The EM field can do work on the currents and vice versa; therefore the energy
and momentum in the EM field can turn into energy of the charges and vice versa,
and is therefore not conserved. The RHS of the v = 0 component is minus the
work done on the particles by the fields; the RHS of the v = ¢ component is minus
the force (change in momentum per unit time) in the ¢ direction exerted on the
particles by the Maxwell field.

Optional: show that tracelessness of T implies conservation of the dilatation
current D* = x¥TF#. Convince yourself that the associated conserved charge
fS pace DY is the generator of scale transformations.

0, D" =Tl 4 279, T} = T}
. . 9

D’ = / (tT9 + 2'T)) =tH + 2'P = —i (tat + x—)
space space ay

which actions on functions of t,x by : (td; + 20,) t*z” = (a + B)t*z? and expo-
nentiates to e®? f(t) = f(e%) (it shifts logt by a).
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3. Polyakov form of the worldline action

(a) Consider the following action for a particle trajectory z*(¢):

dat dx”

(Here g, is some given metric. You may set g,, = 1, if you like.) Convince
yourself that the parameter ¢ is meaningful, that is: reparametrizing ¢ changes
So.

Reparemetrizing by ¢ = £(t) changes the measure by one factor of J = d,t, but
multiplies 42 by J 2.

Now consider instead the following action

Slz, €] = — / ds (%%%gmfc) - er(s)) :

The dynamical variables are z*(s) (positions of a particle) and e(s); e is called an
einbein’:
ds?; = €*(s)ds>.

(b) Show that S[z,e] is reparametrization invariant if we demand that ds?; is an
invariant line element.
Notice that the second term is just [ /g our usual way of making a coordinate-
invariant integration measure. In the first term the %s each transform like e, so
1#? transforms like e.

(c) Derive the equations of motion for e and z*. Compare with other reparametrization-
invariant actions for a particle.

0= 05 = %’ +m® = Q:m\/ﬁ
de(s)

Sz, e] = —m/ow?

is the reparam-invariant action we discussed before, so obviously the EoM agree.
Even the values of the action agree when we set e equal to the solution of its EoM.

(d) Take the limit m — 0 to find the equations of motion for a massless particle.

In this limit, e is a Lagrange multiplier which enforces that the tangent vector is

lightlike:
0= om0 42
de(s)
The EoM for z is still the geodesic equation. Now we can’t choose s to be the
proper time, but we have to demand that the lengths of the tangent vectors
are independent of § — they are all zero. So any parametrization satisfying the

lightlike-constraint is affine.

'that’s German for ‘the square root of the metric in one dimension’
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4. Show that S? using stereographic projections (aka Poincaré maps)for the coordinate
charts (see the figure)

wy 1 S? — {north pole} = R* g :S5% — {south pole} — IR?

is a differentiable manifold of dimension two. More precisely:
(a) Write the Poincaré maps explicitly in terms of the embedding in IR? ({(zy, za, z3) €
R?|>, 22 =1} — R?).

If we place the center of the unit sphere at the origin, the plane in the picture is
{z3 = —1}. The line Ly in the picture passes through i(N) = (0,0, 1) (the embedding
of the north pole) and i(p) = (x,y, z), the embedding of the point of interest p. The
intersection of Ly with 2 = —1 determines zy(p) = (2, 2}, —1). We can parametrize
it as Ly(t) so Ly(0) = i(N) = (0,0,1) and Ly (1) = (x,y, z), which gives

—

Ly(t) = (27 (8), 23 (t), 25 () = (tw,ty, 1 — t + t2).
The value of ¢ =ty where —1 = z}'(ty) =1 — (1 — 2)tnty is then ¢ty = ;2. Notice
that this is a nice function as long as z # 1, and that’s why we must exclude the north

pole (where (z,y,2) = (0,0, 1)) from this patch. The coordinates of the stereographic
projection from N are then

2
1—2

wn(p) = (27 (tn), 23 (tn)) = (tnw, tyy) = (z,y).

For the south pole, the plane is at 3 = +1 and the line in question is

Ls(t) = (to, ty, (1 —t)(—1) + t2)

—2

1+z and

so the value of ¢t where x3(tg) = +1 is tg =

1+ 2

zs(p) = (27 (ts), 73 (ts)) = (z,9).

(b) Show that the transition function x5 o z' : R3, — IR} is differentiable on the
overlap of the two coordinate patches (everything but the poles).)



The overlap Uy NUs where both coord systems are defined is everywhere but the north

a4l _ 7
z—1 sc§

N s 5
z\ 2+ 1 (1 0) [z _ s 8
<x§v>_z—1(0 1) \a§ = Mz, 23) xg

— notice that we must think of z here as a function of the coordinates xi 5. Explicitly

it is findable by

N
and south poles. Notice that Z—ls = . The transition functions are nice and
1

diagonal

B 2 9 2?2 + 1 1—22
r*= () (a3) R TES PR e

—2r? £\ /At —4(r2 —4)(r2+4)  r?F4

2(r2 + 4) R
The bottom root is just z = —1 which is not what we want — —1 < z < 1 on the
overlap of patches. So the top root it is:

B 4 — p? B 4 — (xf)z— (:vg)z
A 4 @) ()

And jﬂ =2 = +§ and therefore the transition map is

)
()= ew ()

The inverse map is obtainable noticing that (3:11\7 )2 + (ajév )2 = %, so it has
x Ty

— =

exactly the same form, but with N <> S. The transition function

¢ =2xN Oxgl : ZES(Z/{S ﬂuN) — .I‘N(US ﬂLlN)

is then perfectly smooth away from the points where 0 = (21’ )2 + (zf )2 or 0 =

(mf)g + (x§)2 which are just S and N.

. Verify explicitly that if w,, is a one-form (cotangent vector), then d,w, —0,w, transforms
as a rank-2 covariant tensor.

Under the coordinate change z# — #%(z), w,(z) — ©a(Z) = JFw,(z), and 9, — 0, =

JHO, WlthJ“:ggf”—(()x“

(:} 8bwa
a (5 x“wu) (a <> b)
= ( 0,0y — Oy0,x ) wy + &,x“éawu — alm“ébwu

(dw)uu = 0w, — Oywy — 5

| =0
cha1grule éb.muéaxyayw# - 5{11‘“36,1'”8,/0&)“
relabel dummy indices ébxuéax#auwy — 5ax“5bxyaywu
factorize Dyt Doz’ (Ouwy — Opwy) (6)



6. Lie brackets. The commutator or Lie bracket [u,v] of two vector fields u,v on M is

defined as follows, by its action on any function on M:

[u, v](f) = u(v(f)) = v(u(f)) .
(a) Show that its components in a coordinate basis are given by

[u, v = w9 " — v ut .

[u, v](f) = u0,(v" 0, (f)) — v"0u(u" 0, (f))
ORIt (0,00, f — v (O )0y f + w0 0,0, f — vMu* 0,0, f
rename dugmy indices (u“(@uv”)a,, . v“(aﬂu”)&,) f + uuvyau&l/f . Uyu,u,a'uayf
= (u" (O ")0, — v*(0,u")0,) f (7)

So the components of the bracket are as given above.

(b) Using the fact that u*, v* transform as contravariant vectors, show explicitly that
[u, v]* also transforms this way.
This is very similar to the problem about the transformation of dw above. I will
do this one in a more geometric way, by studying the vector itself, rather than
the components :

u'(0,v")0, — v"(0,u")0, — U4(0,0°)0y — (u > v)
oz o Ny T—
(i = 5) - T (0, T ) (T4, — (5 )
(Je (I =) = W09, (we)
rename dugmy indices uﬂ(@ﬂ@y)@y . U”(@uu”)&,. (8)

(c¢) (Optional extra bit) Convince yourself from the general definition of Lie derivative
given in lecture that £,v = [u,v].
See the footnote in section 5.3.1 of the lecture notes.



