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1. It’s not a tensor! [from Brandenberger]

This problem is a simple game. Identify which of the following equations could be
valid tensor equations; for the ones that can’t be, say why not. Here I mean tensors
e.g. under the Lorentz group (or maybe some more general transformations) where we
must distinguish between covariant (lower) and contravariant (upper) indices.

(a) Ra
man = Tmn

(b) ,aωbc = Xab

(c) ♦aℵℵ = da

(d) �ab +☼ac = Υbc

(e) \a(]b + [b) = -ab

(f) /aFb = %ab

a, c, e, f could be OK. All the rest have uncontracted indices which don’t match between
terms or between the two sides of the putative equation. This has the consequence
that the equation will turn into a completely different equation after a transformation.
c is questionable in that the repeated indices are both lower; this is OK if the group
in question preserves a trivial quadratic form (δij), otherwise no.

2. Relativistic charged particle

Consider the action of a (relativistic) charged particle coupled to a background gauge
field, Aµ, living in Minkowski space. It is governed by the action

S[xµ] =

∫
ds
(
−mc

√
−ηµν ẋµẋν −

e

c
Aµ(x(s))ẋµ(s).

)
where ẋµ ≡ dxµ

ds
.

(a) General covariance in one dimension.

Suppose we reparametrize the worldline according to

s 7→ s̃(s).

Use the chain rule to show that this change of coordinates preserves S.
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Under the worldline reparametrization, the time-derivative transforms as

ẋµ ≡ dxµ

ds
7→ dxµ

ds̃
=

ds

d̃s

dxµ

ds
≡ J

dxµ

ds
.

(Notice that the coordinates xµ transform as scalars under this transformation.)
So the two terms in the Lagrangian each pick up a factor of J :

√
−ηµν ẋµẋν 7→

√
−ηµν

dxµ

ds̃

dxν

ds̃
= |J |

√
−ηµν

dxµ

ds

dxν

ds

and

Aµ(x(s))ẋµ(s) 7→ Aµ(x(s̃))
dxµ

ds̃
= JAµ(x)

dxµ

ds
.

This factor of J is cancelled by the transformation of the worldline measure

ds 7→ ds̃ =
1

|J |
ds.

(Notice that if J is negative, so that the new parameter goes backwards in time,
the reversal of the order of integration accounts for the extra sign.)

(b) Vary with respect to xµ(s) and find the Lorentz force law.

The variation of the kinetic term (the one with
√
ẋ2) is as before – it gives d

ds
pµ.

Varying the minimal-coupling term gives

δ

δxµ(s)

∫
ds′ ẋνAν (x(s′)) =

∫
ds′
(
Aν

d

ds′

(
δxν(s′)

δxµ(s)

)
+ ẋν(s′)

δAν(x(s′))

δxµ(s)

)
Using the chain rule

δAν =
∂Aν
∂xρ

δxρ

we end up with the promised Lorentz force:

δ
∫
A

δxµ0(s)
= −e

c
Fµν

dxν0
ds

It looks more familiar if we choose s = t, i.e. use time as the worldline parameter:
xµ0 = (cs, ~x(s))µ. Then (for any v) the µ = i component of the previous expression
reduces to

e ~E +
e

c
~v × ~B ,

the Lorentz force.

(c) Vary with respect to Aµ(x) and find the source for Maxwell’s equations produced
by a trajectory of this particle.

The variation of the action the charges with respect to A produces the RHS of
Maxwell’s equations 1

4πc
∂νF

µν = jµ, the source term. In this case, this is:

jµ(x) =
δScharges

δAµ(x)
=

δ

δAµ(x)

∫
d4y

∫
dsδ4(y − x0(s))e

dxµ

ds
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In the second equation here, we rewrote the
∫
A term as an integral over all space

with a delta function in it; we also observed that the particle kinetic term doesn’t
depend on A and so doesn’t contribute here.

jµ(x) = e

∫ ∞
−∞

dsδ(4)(x− x0(s))
dxµ0
ds

(s). (1)

3. Show that the current obtained from jµ = δS
δA

is conserved as long as the worldlines do
not end.

jµ(x) =
e

c

∫
wl

ds
dxµ0(s)

ds
δ4(x− x0(s))

∂µjµ =
e

c

∫
wl

ds
dxµ0(s)

ds
∂µδ4(x− x0(s))︸ ︷︷ ︸
=− ∂

∂x0(s)
δ4(x−x0(s))

Notice that this is a partial derivative, not a functional derivative. So, by the chain
rule (what else do we do around here?)

∂µjµ =
e

c

∫
wl

ds
d

ds
δ4(x− x0(s))

Now we use Stokes’ theorem:∫
wl

ds
d

ds
X = X|boundaries of the worldline

which is nothing if the worldlines don’t end.

4. Non-inertial frames

(a) Using the chain rule, rewrite the D = 2 + 1 Minkowski line element

ds2M = −dt2 + dx2 + dy2

in polar coordinates:
x = r cos θ, y = r sin θ, t̃ = t.

Using dt̃ = dt, dx = dr cos θ − r sin θdθ, dy = dr sin θ + r cos θdθ, we find

ds2M = −dt̃2 + dr2 + r2dθ2.

(b) Rewrite ds2M in a rotating frame, where the new coordinates are

x̃ =

(
cosωt sinωt
− sinωt cosωt

)
x ≡ Rx, t̃ = t.
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The new differentials are :

dx̃ = Rdx+ ∂θRxωdt.

ds2M = −dt2
(
1− ω2 (∂θR~x) · (∂θR~x)

)
dx̃2 + 2ωdt~xRT∂θR~x

= −dt2
(
1− ω2

(
x̃2 + ỹ2

))
d~̃x2 + dx̃2 + 2ω (ỹdx̃− x̃dỹ) dt. (2)

(c) Redo the previous part in polar coordinates; that is, let the new coordinates be
(t̃, r, θ) with the relations from part 4a but with θ = ωt + θ0 where θ0 is the old
azimuthal coordinate.

ds2M = −dt̃2 + dr2 + r2 (dθ − ωdt)2 .

(d) Consider the action for a relativistic massive particle in (D = 2 + 1) Minkowski
space

S = mc

∫
dτ

where τ is the proper time along the worldline, ds2 = −c2dτ 2. Using the action
principle, derive the centripetal force experienced by a particle using uniformly
rotating coordinates, θ = ωt.

We can demonstrate the centripetal force easily by considering orbits where θ is
constant; because θ0 → θ0 + ε is a symmetry, we can make this choice consistently
with the time evolution. The action for such configurations is

S = mc

∫
dt
√

1− ṙ2 − ω2r2

and its variation with respect to r is

0 =
δS

δr(s)
= mc

∫
dt
−ṙ d

dt
δ(t− s)− ω2rδ(t− s)
√

1− ṙ2 − ω2r2
= mc

(
d

ds

ṙ√
1− ṙ2 − ω2r2

− ω2r(s)√
1− ṙ2 − ω2r2

)
In the non-relativistic limit, we can approximate

√
1− ṙ2 − ω2r2 ' 1+ small, and

this says
r̈ = +ω2r,

an acceleration away from the origin of rotation.

5. Is it flat?

Show that the two dimensional space whose metric is

ds2 = dv2 − v2du2
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(it is called ‘Rindler space’) is just two-dimensional Minkowski space

ds2 = −dt2 + dx2

in disguise. Do this by finding the appropriate change of coordinates x(u, v), t(u, v).

Notice the similarity to polar coordinates in the plane: x = r cos θ, y = r sin θ (r2 =
x2 + y2). The extra minus sign for the time direction is formally accomplished by
replacing θ = iu, which gives

x = v coshu, t = v sinhu ; (3)

notice that these satisfy v2 = x2 − t2. This gives the differentials dx = dv coshu +
v sinhudu, dt = dv sinhu+ v coshudu which implies

dv2 − v2du2 = −dt2 + dx2.

Above we kind of guessed; to do this more systematically, we demand

dt =
∂t

∂u
du+

∂t

∂v
dv, dx =

∂x

∂u
du+

∂x

∂v
dv

plug this in to ds2 and equate the coefficients of each term du2, dv2, dudv to get

−
(
∂t

∂u

)2

+

(
∂x

∂u

)2

= −v2, −
(
∂t

∂v

)2

+

(
∂x

∂v

)2

= 1, − ∂t

∂u

∂t

∂v
+
∂x

∂u

∂x

∂v
= 0

The fact that the middle equation has no v dependence on the RHS suggests the
separation of variables (ansatz) t = vT (u), x = vX(u), in which case the middle
equation becomes

−T ′2 +X ′2 = 1

which we recognize as demanding to be solved by the hyperbolic trig functions above.
Notice that the change of coordinates in (3) actually only covers half of the Minkowski
space. As u, v each run from −∞ to ∞, x is always less than t. More directly, for
v > 0 and u ∈ (−∞,∞), we cover just the region to the right of the lightcone of the
origin (shaded in the plot below – {x > 0, t ∈ (−x, x)}).
Notice also that curves of constant v (with x > 0) are the trajectories of particles expe-
riencing uniform acceleration; their worldlines are parametrized by the boost parameter
u (I previously called it Υ, the rapidity). The coordinate v is itself a Lorentz-invariant
distance, just like the radial coordinate r in polar coordinates is a rotation-invariant
distance.
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The shaded region is the region which is causally accessible to the uniformly acceler-
ating observer.

6


