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1. Show that
εlmnRliRmjRnk = detRεijk

for any 3× 3 matrix R.

(Recall that the determinant is a scalar function of square matrices which is odd
under interchange of rows and columns and has det 1 = 1. And εijk is the completely
antisymmetric collection of numbers with ε123 = 1.)

Since ε is completely antisymmetric, this is only one independent equation, which we
may take to be ijk = 123:

εlmnRl1Rm2Rn3 = detRε123 = detR. (1)

This is often taken as the definition of the det. In terms of the definition in terms of
minors, the RHS is

detR = R11(R22R33 −R23R32)−R12(R21R33 −R31R23) +R13(R21R32 −R22R31)

=
∑
ijk

Ri1Rj2Rk3

{
+1 if ijk is an even perm. of 123

−1 if ijk is an odd perm. of 123

= εijkRi1Rm2Rn3 (2)

This sort of unpacking is a good exercise but gets tedious in higher dimensions. It’s
useful to notice that given (1), and summing over the 3! = 6 nonzero terms, the
requested equation is equivalent to

1

3!
εlmnεijkRliRmjRnk = detR .

The LHS of this equation satisfies all of the defining properties of the determinant.

2. Show that the Maxwell equations (in Minkowski space)

εijk∂jEk +
1

c
∂tBi = 0, ∂iHi = 0

εijk∂jBk −
1

c
∂tEi =

4π

c
Ji, ∂iEi = 4πρ.

are invariant under the following set of transformations:

xi 7→ x̃i ≡ Rijx
j, R ∈ O(3)
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Ei(x) 7→ Ẽi(x̃) = RijEj(x)
Bi(x) 7→ B̃i(x̃) = detRRijBj(x)
ρ(x) 7→ ρ̃(x̃) = ρ(x), Ji(x) 7→ J̃i(x̃) = RijJj(x). (3)

That is, ~E is a polar vector and ~B is an axial vector. Recall that an O(3) matrix
satisfies RTR = 1.

Under the given transformation, the chain rule implies that

∂

∂xi
7→ ∂

∂x̃i
= (R−1)ji∂j = Rij∂j .

The LHS of Faraday maps according to

εijk∂jEk +
1

c
∂tBi 7→ εijkRjl∂lRkmEm +

1

c
∂tRijBj detR

Multiply the BHS by Rin (it’s invertible so this is WLOG) to get

0 = εijkRinRjl∂lRkmEm +
1

c
∂tRinRijBj detR

= εijkRinRjlRkm∂lEm +
1

c
∂t
(
RT
)
ni
RijBj detR

= detRεnlm∂lEm +
1

c
∂tδnjBj detR

⇔ 0 = εnlm∂lEm +
1

c
∂tBj (4)

(in the second step we used the fact that the rotation matrices are constant in space,
and in the third step we used the result of the first problem) which is the original
equation. The LHS of Ampere maps according to

εijk∂jBk −
1

c
∂tEi 7→ detRεijkRjl∂lRkmBm −

1

c
∂tRijEj .

Now the RHS is a nonzero vector ji 7→ Rj
i jj. Again multiply the BHS by Rin to get

4π

c
jn = detRεijkRinRjl∂lRkmBm −

1

c
∂tRinRijEj

= detRεijkRinRjlRkm∂lBm −
1

c
∂t
(
RT
)
ni
RijEj

= (detR)2 εnlm∂lEm −
1

c
∂tδnjEj

= εnlm∂lBm −
1

c
∂tEj (5)

which is the original equation. At the last step we used the fact that RTR = 1 =⇒
detR2 = 1. The equations involving the divergence are simpler:

4πρ = ~∂ · ~E 7→ 4πρ = ~̃∂ · ~̃E = ∂kRikRijEj = ∂kδkjEj = ∂kEk

The LHS is a scalar under a rotation (though not a boost). The no-monopoles equation
becomes

0 = ~∂ · ~B 7→ 0 = ~̃∂ · ~̃E = detR∂kRikRijBj = detR∂kδkjẼj = detR∂kBk

The magnetic charge density would have to be a pseudoscalar.
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3. Prove the identity

εijkεlmn = det

δil δim δin
δjl δjm δjn
δkl δkm δkn

 . (6)

Use this identity to show that

εijkεlmk = δilδjm − δimδjl.

(6) is really only one equation: unless ijk are all different the LHS vanishes, and any
such ijk can be obtained from ijk = 123 by antisymmetry. The same holds for lmn.
By the defining properties of the det, the RHS has the same properties: if any of ijk
are the same, the matrix on the RHS has linearly-dependent rows and therefore has
zero det; if any of lmn are the same, the columns are linearly dependent. So we can
set ijk = 123, lmn = 123, and the equation says

ε123ε123 = 1 = det 1

which is the other defining property of the det.
Here is a neat trick which I learned from Elizabeth Wicks: Use the identity detA detB =
detAB with

A =

δi1 δj1 δk1
δi2 δj2 δk2
δi3 δj3 δk3

 , B =

δ`1 δm1 δn1
δ`2 δm2 δn2
δ`3 δm3 δn3

 ,

for which we know from problem 1 that

εijkε`mn = detA detB = det

δi1 δj1 δk1
δi2 δj2 δk2
δi3 δj3 δk3

δ`1 δm1 δn1
δ`2 δm2 δn2
δ`3 δm3 δn3

 =

δiaδal δiaδam δiaδan
δjaδal δjaδam δjaδan
δkaδal δkaδam δkaδan


which is the RHS of (6).
To get the other relation, set k = n and sum. This gives

εijkεlmk = δil (δjmδkk − δjkδkm)− δim (δjlδkk − δjkδkl) + δik (δjlδkm − δjmδkl)
= δil ((3− 1)δjm)− δim ((3− 1)δlj) + δimδjl − δilδjm
= (3− 1− 1) (δilδjm − δimδjl) = δilδjm − δimδjl . (7)

I guess there is a less explicit route using the the symmetries and evaluating special
cases, but sometimes it’s good to just unpack the damn thing.

4. Lorentz contraction exercise [from Brandenberger]

In retrospect, this problem should be called: ”What do you see when you look out the
windows of a fast-moving spaceship?”

(a) Suppose frame S ′ moves with velocity v relative to frame S. A projectile in frame
S ′ is fired with velocity v′ at an angle θ′ with respect to the forward direction
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of motion (~v). What is this angle θ measured in S? What if the projectile is a
photon?

An (un-normalized) velocity 4-vector for the projectile in frame S ′ is

v′ ∝


dt′

dx′1
dx′2
dx′3

 ∝


1
v′ cos θ′

v′ sin θ′

0


(The normalization doesn’t matter because we can determine angles by taking
ratios of components.) This is related to the velocity 4-vector for the projectile
seen in frame S by the Lorentz boost :

v =


γ vγ 0 0
vγ γ 0 0
0 0 1 0
0 0 0 1

 v′ =


γ (1 + v′ cos θ′v)
γ (v + v′ cos θ′)

v′ sin θ′

0


γ = 1√

1−v2 .

tan θ =
dx2/dt

dx1/dt
=

dx2
dx1

=
v′ sin θ′

γ(v + v′ cos θ′)
.

If the projectile is a photon, v′ = 1. In this case

tan θ =
sin θ′

γ (v + cos θ′)
.

This formula leads to the notion of the apparent velocity of an object, which
can actually be larger than c and which is observed in the study of high-energy
astrophysical objects like active galactic nuclei.

(b) An observer A at rest relative to the fixed distant stars sees an isotropic distri-
bution of stars in a galaxy which occupies some region of her sky. The number of
stars seen within an element of solid angle dΩ is

PdΩ =
N

4π
dΩ

where N is the total number of stars that A can see. Another observer B moves
uniformly along the z axis relative to A with velocity v. Letting θ′ and ϕ′ be
respectively the polar (with respect to ẑ) and azimuthal angle in the inertial
frame of B, what is the distribution function P ′(θ′, ϕ′) such that P ′(θ′, ϕ′)dΩ′ is
the number of stars seen by B in the solid angle dΩ′ = sin θ′dθ′dϕ′.

ϕ′ = ϕ, since the z axes are aligned. From the previous part of the problem, the
relevant projectiles are photons, so the angles are related by

tan θ =
sin θ′

γ (v + cos θ′)
. (8)
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Since the total number of stars is the same, and the limits of integration are the
same (θ = 0 =⇒ θ′ = 0, θ = π =⇒ θ′ = π), we have

N =

∫ 2π

0

dϕ′
∫ π

0

dθ′ sin θ′ · P ′(θ′, ϕ′) =

∫ 2π

0

dϕ

∫ π

0

dθ sin θ · P (θ, ϕ).

A more refined and also true statement is that the number of stars in any solid
angle is the same in the two frames:

P ′(θ′, ϕ′) sin θ′dθ′ = P (θ, ϕ) sin θdθ =
N

4π
sin θdθ.

Here we used the fact that the azimuthal angles are the same, and in the last step
we used the ‘isotropic’ datum. Now we have to have a little chain rule party to
find

P ′(θ′, ϕ′) =
N

4π

dθ

dθ′
sin θ

sin θ′

as a function of θ′. One way to do this is to solve (8) for cos θ and differentiate
with respect to θ. Notice that we need to take a square root at some point and
continuity and correctness demands that we choose cos θ = ± 1√

1+tan2 θ
with the −

for π/2 < θ < π and the + for 0 < θ < π/2. But, remarkably, this relation can
be simplified to

cos θ =
v + cos θ′

1 + v cos θ′
.

Now this is a relation of the form y = v+x
1+vx

and we want

sin θdθ

sin θ′dθ′
=

d cos θ

d cos θ′
=

dy

dx
=

1− v2

(1 + v cos θ′)2

This leads to

P ′(θ′, ϕ′) =
N

4π

1

γ2
1

(1 + v cos θ′)2

An uglier but also correct expression is:

P ′(θ′, ϕ′) =
N

4π

∣∣∣∣∣
(

1 +

(
sin2 θ′

γ2(v + cos θ′)2

))−3/2
v cos θ′ + 1

γ2(v + cos θ′)3

∣∣∣∣∣ .
The results for v = .5, .6, .7, .8, .9, .99 are shown in the figure:

Some comments:
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(1) We can’t just transform the spatial bits using Lorentz contraction (like dz =
γdz′) for the following reason: unless we also account for the transformation in
the time coordinates, observers in the two frames won’t both see the light rays
moving at the speed of light!
The light that the observer at rest sees at a given moment was at a spherical shell
of radius ct a time t ago:

{x, y, z|x2 + y2 + z2 = c2t2}.

The light seen simultaneously by the moving observer was not at the same set
of points. (2) Note that the light is also Doppler shifted, so that the light at
θ ∈ (0, π/2) is blueshifted and at θ ∈ (π/2, π) is redshifted.

(c) Check that when integrating the distribution function over the sphere in the
coordinates of B you obtain N ! Discuss the behavior of the distribution P ′ in the
limiting cases when the velocity v goes to 0 or to 1.

When v → 0, P ′ → N
4π

.
When v → 1,

P ′ → N

4π
lim
γ→∞

(
1

γ2 (1 + cos θ′)2

)
which is zero if cos θ′ 6= −1, that is: the stars all bunch up at θ′ = π!
But there’s one more thing to be said here: which direction is this? The following
picture

6



(that is: the angle between the photon’s velocity and the forward direction of the
observer is actually π − θ) and the identity cos(π − θ) = − cos(θ) shows that the
stars all look like they are in the forward direction. The fact that the light all
smushes down to the forward axis can be rationalized as follows: if we’re moving
at speed c, only if we’re heading right at a photon will we run into it – and no
matter how fast we go we’ll for sure run into the photons that we’re going to
collide with head-on.

5. Show that the half of the Maxwell equations

0 = εµνρσ∂νFρσ (9)

is invariant under the general coordinate transformation,

xµ 7→ x̃µ = fµ(x), Fµν(x) 7→ F̃µν(x̃) =
∂xρ

∂x̃µ
∂xσ

∂x̃ν
Fρσ(x)

for an arbitrary fµ(x) with non-zero Jacobian.

Let Jµν ≡ ∂xµ

∂x̃ν
. By the chain rule, the derivative transforms as

∂ν = Jµν ∂̃µ.
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Notice that this is just like our discussion of Lorentz invariance of Maxwell’s equations
– for the half with the ε tensor (the ones which would involve magnetic charge on the
LHS were it present), we didn’t need any condition on Λ, and only to make the other
half (which involve the metric ηµν) Lorentz invariant did we need a constraint on Λν

µ.
So (9) is

0 = εµνρσJν
′

ν ∂̃ν′
(
Jρ

′

ρ J
σ′

σ F̃ρ′σ′

)
where Jµν = ∂xµ

∂x̃ν
. We should worry about the terms where the derivative hits the J

matrices, which depend on x. It is tempting to claim that

∂

∂x̃ν
Jρσ =

∂xα

∂x̃ν
∂

∂xα
∂xρ

∂x̃σ
?
=
∂xα

∂x̃ν
∂

∂x̃σ
δρα = 0 .

However1 : it is not true in general that partial derivatives in different coordinate
systems commute with each other. For example, in polar coordinates in the plane,

∂y

(
∂x

∂r

)
= ∂ycos θ = ∂y

x√
x2 + y2

6= 0.

The issue is that when we take a partial derivative ∂µ, we are holding fixed the other
coordinates in the same coordinate system. However, it is true that the resulting terms
are symmetric in ρ↔ σ, and cancel when contracted with εµνρσ, so we can ignore them
and we have

0 = εµνρσJν
′

ν J
ρ′

ρ J
σ′

σ ∂̃ν′F̃ρ′σ′ (10)

The Jacobian of the transformation x→ x̃(x) is the determinant of the matrix Jµν . So
we can use the 4d version of the relation you showed in problem 1, which is

εµνρσJµ
′

µ J
ν′

ν J
ρ′

ρ J
ρ′

ρ = det Jεµ
′ν′ρ′σ′

So multiply the BHS of (10) by Jµ
′

µ (it’s invertible by the assumption that the Jacobian
is nonzero, so this is without loss of generality (WLOG)) to get:

0 = εµνρσJν
′

µ J
ν′

ν J
ρ′

ρ J
σ′

σ ∂̃ν′F̃ρ′σ′ = det Jεµ
′ν′ρ′σ′

∂̃ν′F̃ρ′σ′

which up to the nonzero factor det J and the erasure of primes on the dummy variables
is the original form of the equation.

The following problems are optional.

6. Eötvös

What is the optimal latitude at which to perform the Eötvös experiment?

π/4. The biggest effect happens when the centrifugal force (proportional to sin θ in
the horizontal direction, where θ is the polar angle) has the largest component normal

1Thanks to Shenglong Xu for helping me clarify this point.
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to the gravitational force (towards the center of the earth). The projection onto the
surface of the earth of this force is then cos θ sin θ ∝ sin 2θ which is maximal at θ = π/4.

7. Poincaré group

Show that the Poincaré group satisfies all the properties of a group. (That is: it has
an identity, it is closed under the group law, it is associative, and every element has
an inverse in the group.)

An element of the Poincare group xµ 7→ Λµ
νx

ν + aµ is labelled by (Λ, a), with

Λρ
µηρσΛσ

ν = ηµν , (11)

and no constraint on a. The group law is composition:

xµ 7→ Λµ
νx

ν + aµ 7→ Λ̂µ
ρ (Λρ

νx
ν + aρ)

The RHS here is another group element because Λ̂µ
ρa

ρ = âρ is a new translation, and

Λ̂µ
ρΛρ

ν

also satisfies the defining relation (11) for a Lorentz transformation. The identity is
(Λ, a) = (1, 0) – do nothing. The inverse is (Λ, a)−1 = (Λ−1,Λ−1(−a)); notice that Λ−1

exists by the derivation on page 21-22 of the lecture notes, from the defining relation
(11). Also, these rules are associative because they come from matrix multiplication
and addition.
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