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“What is most important in studying a physical problem is to grasp it as a problem in 

physics.  ... Training in mathematical methods should not be ignored, but it would be a 

serious mistake if one was to be dazzled by the mathematics and forget the physics.”   

-Ryogo Kubo, Statistical Mechanics, p vii. 
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2006 values from NIST (now superseded by updates).  For more physical constants, see  

http://physics.nist.gov/cuu/Constants/ . 

 

Speed of light in vacuum  c ≡ 299 792 458 m s–1  (exact) 

Boltzmann constant   k = 1.380 6504(24) x 10–23 J K–1 = 8.61734 x 10–5 eV/K 

Stefan-Boltzmann constant   σ = 5.670 400(40) x 10–8 W m–2 K–4  

 Relative standard uncertainty ±7.0 x 10–6  

Avogadro constant    NA, L = 6.022 141 79(30) x 1023 mol–1  

 Relative standard uncertainty  ±5.0 x 10–8 

Molar gas constant   R = 8.314 472(15) J mol–1 K–1 = 0.0820575 L-atm/(mol-K) 

calorie    4.184 J (exact) 

Electron mass   me = 9.109 382 15(45) x 10–31 kg 

Proton mass    mp = 1.672 621 637(83) x 10–27 kg 

Proton/electron mass ratio  mp/me = 1836.152 672 47(80) 

Atomic mass unit (amu)  1.660 538 86  10–27 kg 

Elementary charge   e = 1.602 176 487(40) x 10–19 C 

Electron g-factor   ge = –2.002 319 304 3622(15) 

Proton g-factor   gp = 5.585 694 713(46) 

Neutron g-factor   gN = –3.826 085 45(90) 

Muon mass    mμ = 1.883 531 30(11) x 10–28 kg 

Inverse fine structure constant  α–1 = 137.035 999 679(94) 

Planck constant   h = 6.626 068 96(33) x 10–34 J s 

Planck constant over 2π  ħ = 1.054 571 628(53) x 10–34 J s 

Bohr radius    a0 = 0.529 177 208 59(36) x 10–10 m 

Bohr magneton   μB = 927.400 915(23) x 10–26 J T–1 

 

Other values and conversions: 

1 eV/particle = 96.485 kJ/mole ≈ 100 kJ/mole 

kiloton (of TNT) ≡ 4.184 x 1012 J = 1 Teracalorie 

bar ≡ 100,000 N/m2 

atm ≡ 101,325 N/m2 = 1.013 25 bar 

torr ≡ 1/760 atm ≈ 133.322 N/m2  

Typical chemical bond energy:  1-10 eV 
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1 Introduction 

Why Funky? 

The purpose of the “Funky” series of documents is to help develop an accurate physical, conceptual, 

geometric, and pictorial understanding of important physics topics.  We focus on areas that don’t seem to be 

covered well in most texts.  The Funky series attempts to clarify those neglected concepts, and others that 

seem likely to be challenging and unexpected (funky?).  The Funky documents are intended for serious 

students of physics; they are not “popularizations” or oversimplifications.  

Physics includes math, and we’re not shy about it, but we also don’t hide behind it.   

Without a conceptual understanding, math is gibberish. 

This work is one of several aimed at graduate and advanced-undergraduate physics students.  Go to 

http://physics.ucsd.edu/~emichels for the latest versions of the Funky Series, and for contact information.  

We’re looking for feedback, so please let us know what you think. 

How to Use This Document 

 This work is not a text book. 

There are plenty of those, and they cover most of the topics quite well.  This work is meant to be used 

with a standard text, to help emphasize those things that are most confusing for new students.  When standard 

presentations don’t make sense, come here.   

You should read all of this introduction to familiarize yourself with the notation and contents.  After that, 

this work is meant to be read in the order that most suits you.  Each section stands largely alone, though the 

sections are ordered logically.  Simpler material generally appears before more advanced topics.  You may 

read it from beginning to end, or skip around to whatever topic is most interesting.  The “Shorts” chapter is 

a diverse set of very short topics, meant for quick reading. 

If you don’t understand something, read it again once, then keep reading.   

Don’t get stuck on one thing.  Often, the following discussion will clarify things. 

The index is not yet developed, so go to the web page on the front cover, and text-search in this document. 

What’s wrong with existing SM expositions? 

In an effort to relate to something familiar, many of SM texts jump headlong into complicated 

thermodynamics before sufficient groundwork has been laid.  This leads to lots of logarithms and partial 

differential equations which obscure the underlying simplicity of SM.  They frequently use the same words 

for different things (e.g. “density of states”) and expect you to instantly understand the distinctions.  Also, as 

in almost all subjects, there are usually just too few simple examples early on to nail down the basics.  Finally, 

there seems to be some kind of exclusion principle disallowing any two books from using the same notation; 

there’s not much we can do about that, except use the clearest, and then most common, notation we can find. 

Also, many expositions expect you to fully understand thermodynamics, and resort to thermodynamic 

definitions to “derive” mathematical relationships.  But that is circular: thermodynamics is empirical; SM is 

supposed to derive thermodynamics from basic physics.  Therefore, in this work, we never resort to empirical 

thermodynamic relationships, and derive everything from the fundamentals of SM. 

Finally, most works discuss only two specific instances of free energy, rather than the general concept.  

Here, we described what free energy is, so that you understand there are a potenitally infinite variety of free 

energies (on for each variety of system), you can derive for yourself the appropriate free energy for any given 

system. 

Note that thermodynamics is backwards: thermodynamics usually starts with cycles and engines, which 

are non-equilibrium systems.  It is much easier to start with equilibrium systems, as in statistical mechanics.  

http://elmichelsen.physics.ucsd.edu/
http://physics.ucsd.edu/~emichels
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Also, because thermodynamics was developed empirically, temperature is fundamental, and entropy is 

derived from it.  In SM, entropy is fundamental and temperature is derived from it.  The fundamental nature 

of entropy is why lots of theoretical work is done at constant entropy, instead of constant temperature.   

Therefore, temporarily put aside all your thermodynamics before learning SM.   

My Story 

The Funky series of notes is the result of my going to graduate school in physics after 20 years out of 

school.  Although I had been an engineer all that time, most of my work involved software and design 

architectures that are far removed from fundamental science and mathematics.  I expected to be a little rusty, 

but I found that the rust ran deeper than I realized.   

There are many things I wish I had understood better while taking my classes (first at San Diego State 

University, then getting my PhD at University of California, San Diego).  The Funky series is my attempt to 

help other students acquire a deeper understanding of physics.    

Thank You 

Thanks to Daniel Arovas for many helpful discussions (arguments).  I owe a big thank you to many 

professors at both SDSU and UCSD, for their generosity, even when I wasn’t a real student:  Herbert Shore, 

Peter Salamon, Arlette Baljon, Andrew Cooksy, George Fuller, Tom O’Neil, Terry Hwa, and others. 

Scope 

What This Text Covers 

This text covers some of the unusual or challenging concepts in a one-quarter graduate course in 

Statistical Mechanics (SM).  It is also very suitable for undergraduate SM, as well.  We expect that you are 

taking or have taken such a SM course, and have a good text book.  Funky Statistical Mechanics Concepts 

supplements those other sources. 

What This Text Doesn’t Cover 

This text is not a SM course in itself, nor a review of such a course.  We do not cover all basic SM 

concepts; only those that are very important, unusual, or especially challenging (funky?).   

What You Already Know 

This text assumes you understand basic integral and differential calculus, partial differential equations,  

and have some familiarity with probability.  You must have a working knowledge of graduate kinematic 

physics: Hamiltonian mechanics, etc, and especially phase-space.  Further, it assumes you have a Statistical 

Mechanics text for the bulk of your studies, and are using Funky Statistical Mechanics Concepts to 

supplement it. 

Statistical Mechanics would simply fall apart without quantum mechanics [Hil p1], but surprisingly, the 

quantum statistics sections require only a basic understanding of some early quantum mechanics concepts, 

such as particle in a box, and Pauli exclusion for fermions [Hil p2].  For the most part, if you don’t understand 

the quantum mechanics, you can just take our word for a few simple rules, and run with them. 

Notation 

[Brackets indicate an aside, which may be interesting, but also may be omitted without loss of 

continuity.] 

Common misconceptions are sometimes written in dark red dashed-line boxes. 

We write the probability of an event as “Pr(event).”  We write the relative probability as 

“RelPr(event).” 

http://elmichelsen.physics.ucsd.edu/
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In thermodynamics, upper case variables usually refer to extensive quantities (with the notable historical 

exception of T); lower case variables usually refer to intensive quantities, which are often quantities per unit 

mass, per mole, per unit volume, or per particle. 

Quantity Extensive symbol Intensive symbol 

Temperature  T 

Pressure  p 

Entropy S s 

Energy E or U u 

Enthalpy H h 

Volume V v 

Mass M m (= M/N)  

ρ (= N/V  or  M/V) 

Number of particles N ρ (= N/V  or  M/V) 

Number of moles n  

Helmholtz free energy A or F  

Gibbs free energy G μ 

TBS stands for “To Be Supplied,” i.e., I’m working on it. 

?? For this work in progress, double question marks indicates areas that I hope to further expand in the 

final work.  Reviewers please comment on these areas, and others that may need more expansion. 

Keywords are listed in bold near their definitions.  All keywords also appear in the glossary. 

Formulas:  Evaluation between limits: we use the notation [function]a
b to denote the evaluation of the 

function between a and b, i.e.,  

[f(x)]a
b = f(b) –  f(a). For example,  ∫  01 3x2 dx = [x3]0

1 = 13 - 03 = 1. 

We write the probability of an event as “Pr(event).” 

Open and closed intervals: An open interval between c and d is written (c, d).  It means the range of 

numbers from c to d exclusive of c and d.  A closed interval between c and d is written [c, d].  It means the 

range of numbers from c to d including c and d.  A half-open interval [c, d) has the expected meaning of c to 

d including c but not d, and (c, d] means c to d excluding c but including d. 

Vector variables:  In some cases, to emphasize that a variable is a vector, it is written in bold; e.g., V(r) 

is a scalar function of the vector, r.  E(r) is a vector function of the vector, r. 

In my word processor, I can’t easily make fractions for derivatives, so I sometimes use the notation d/dx 

and ∂/∂x. 

I’ve never understood the bother about distinguishing between d/dx and ∂/∂x.  When the function 

arguments are independent, both forms of derivative are obviously the same thing; I don’t know why there’s 

even two ways to write it.  Nonetheless, only as a matter of convention, I use d/dx when a function is clearly 

a total derivative, and ∂/∂x when it is clearly a partial derivative.  However, in some cases, it’s not clear what 

arguments a function has, and it’s not important.  In that case, I tend to use ∂/∂x for generality, but don’t 

worry about it. 

And for the record, derivatives are fractions, despite what you might have been told in calculus.  They 

are a special case of fraction: the limiting case of differentially small changes.  But they are still fractions, 

with all the rights and privileges thereof.  Everyone treats them like fractions, multiplies and divides them 

like fractions, etc., because they are fractions.  This is especially relevant to Statistical Mechanics. 

http://elmichelsen.physics.ucsd.edu/
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2 Foundations 

Meet Mr. Mole 

We’ve all heard a lot about Mr. Gaseous Mole, and how “ideal” he is.  But what do we really know 

about him?  How big is he?  How much does he weigh?  Is he dense, or an airhead?  How energetic is he?  

How stable is he?  How does he respond to pressure?  How energetic is he?  What about his turbulent past?  

Here we examine the legend, molecule by molecule, to see how he stacks up to common sense.  In the process, 

we gain a familiarity with the magnitudes of gaseous physical properties.  We express several of the 

macroscopic results also in imperial units, for those civilizations not yet advanced to the metric system. 

We use simple formulas for ideal gasses to compute a whole bunch of physical properties, starting with 

fairly precise measures, and proceeding to more obscure, and approximate, numbers.  All you need to know 

is the ideal gas law, and some physical constants: 

231 mole 6.022  10 moleculespV nRT where n= = =  . 

NB: “≈” means “approximately equals”, and “~” means “is of the order of”. 

Imagine the archetypal mole of diatomic ideal gas, in a box, sitting on your desk.  How big is it?  First, 

we express R in units of L-atm/K, which is a form of energy per unit temperature, and also a form of size, 

pressure, and temperature: 

3

3 1/3

J 1atm 1000 L-atm
8.314 .0821 24.6 L at 300 K for 1 mole

K 101,325 Pa Km

1 mole 24.6 L .0246 m . Cubic box edge 0.291 m

L
R

V

  
= = →    

  

→  = = =

 

Note that scientific (IUPAC) STP is freezing: 0 C = 273 K.  We’re more comfortable at room temperature, 

so we use 300 K, though on the absolute temperature scale, there isn’t much difference.  The box is a cube a 

little less than 1 foot on a side, about the size of a portable microwave oven, or a small dog. 

How much does it weigh?  Let’s say Mr. Mole is nitrogen, N2, since that is pretty close to air: 

2 2atomic-weight( ) 28 amu 1 mole weighs 28 g 0.028 kgN N=  = . 

This is about an ounce avoirdupois. 

Density: 
3 3

3

28 g
.0011g/cm 1.1 kg/m

24,600 cm

m

V


 
= = = =

 
. 

What is the specific volume, i.e. volume per particle, and approximate particle spacing? 

3
26 3 1/3 9

23

.0246
4.1 10 m particle spacing ~ 3.4 10 m or 3.4 nm

6.02 10

V m
v v

N

− − = =     = 


. 

That’s pretty tight!  Note that a nitrogen atom is ~0.1 nm across, a N2 molecule ~0.2 nm, so the molecular 

spacing is only about 15 - 30 the molecular size.  The molecular volume is about: 

( ) ( )
2

10 10 30 3
2( ) ~ 1 10 2 10 2 10 mVolume N − − −  =  . 

The specific volume is about 20,000 the molecular volume, which means that at pressures of ~200 atm, 

the molecular volume is about 1% of the ideal gas specific volume, so the gas starts to become noticeably 

non-ideal from finite volume.  (In reality, inter-molecular forces make it non-ideal at much lower pressures.) 

How much energy does it have?  At room temperature, the rotational modes are excited, so: 

( )
5 5

8.314 / 300 6,236 J
2 2

E nRT J K K= = = . 

http://elmichelsen.physics.ucsd.edu/
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Mr. Mole is no couch potato.  He has the energy of a 100 W light bulb burning for a minute.  If you’ve ever 

touched a lit 100 W light bulb (which I don’t recommend), you can imagine what doing it for a minute means 

in terms of energy.  The kinetic energy per particle (molecule) is: 

( )23 20

19

5 5 1
1.38 10 J/K 300 1.04 10 J .0647 eV

2 2 1.60 10

E eV
kT K

N J

− −

−
= =  =  =


. 

Compared to typical chemical bond energies of ~1 eV, Mr. Mole is a pretty stable guy. 

??Express in kJ/mol. 

We can also see this from per-particle values: at 300 K, kT = .026 eV = 4.210-21 J, which is small 

compared to the bond energy of ~ 1 eV. 

What is the molecular RMS (root mean square) speed?  The molecular mass of N2 is 28, so: 

21
2

27

1 2 2 6.21 10
515 m/s

2 28 1.67 10
rms rms

E J
E mv v

m kg

−

−

 
=  = = =

 
. 

Roughly, what is the mean free path?  How far can a molecule go, on average, before it sweeps out a 

volume equal to that containing one particle (on average)?  We approximate the cross sectional area as if the 

particle were a cube: 

2/3 20 2

26 3
6 6

20 2

~ 1.6 10 m ~

4.1 10 m
~ 2.6 10 m ~ 3 10 m 3 m

1.6 10 m

A v A mfp v

v
mfp or

A


−

−
− −

−

=   


= =    



 

Roughly, the mean time to collision?  This is just the mean free path divide by the RMS speed: 

6
92.6 10

~ ~ ~ 5 10 s 5 ns
515 /rms

mfp m
mttc or

v m s

−
−

 . 

Our insightful investigation has gleaned the following personal information about the mysterious Mr. 

Mole: 

Property Value 

size 24.6 L, or a box 29.1 cm (~1 foot) on a side 

weight 28g, or ~1 ounce avoirdupois 

density .0011 g/cm3 = 1.1 kg/m3 

specific volume 4.1  10–26 

particle spacing ~3.4 nm 

N2 molecule volume ~2  10–30 m3 

energy 6,236 J 

kinetic energy per molecule 

(including rotation) 

0.0647 eV 

RMS speed 515 m/s 

mean free path ~3 μm 

mean time to collision ~5 ns 

What Is Everything? 

You hear the phrase, “All the thermodynamics follows from ...”.  What is all the thermodynamics?  Is it 

only the equation of state, which relates externally visible parameters such as p, V, and T?  No, it’s more.  

Two counter examples:  

(1) a block of iron and a block of aluminum sitting on a table.  They both have the same equation of state 

(approximately):  

http://elmichelsen.physics.ucsd.edu/
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(block of metal)V const= . 

But they differ in their thermodynamics, because they have different heat capacities.  The equation of state 

tells us nothing about internal energy, which is related to heat capacity.  These quantities (internal energy 

and heat capacity), too, are part of the thermodynamics of the system. 

(2)  A more realistic example of the above: a monatomic ideal gas vs. a diatomic ideal gas.  They both 

have the same equation of state:  pV = nRT.  But they have different internal energies, and different heat 

capacities. 

The “thermodynamics” of a system includes the equation of state,  

and the heat capacity (as a function of the state). 

Other properties of a system that can be included are magnetization, and less commonly, polarization.  

Phase changes are also part of the system thermodynamics. 

The Fundamental Postulate of Statistical Mechanics 

Thermodynamics began as a study of systems, heat, and energy.  Every system has a macrostate, which 

comprises observable properties of the system, that could conceivably be measured in a lab.  The macrostate 

includes temperature, pressure, volume, magnetization, etc.  For thermodynamics, that’s all there is. 

Statistical Mechanics (SM) derives the laws of thermodynamics from (1) fundamental 

principles of physics (such as mechanics and magnetics), and (2) principles of statistics.   

Statistical Mechanics (SM) argues that hidden inside every system’s macrostate are billions of 

microstates which all appear identical from any realistic laboratory viewpoint.  For example, suppose we 

have a liter of gas at some known temperature, pressure, and volume.  These properties are related by the 

well-known gas laws.  However, a liter of gas contains ~1020 molecules.  Suppose we speed up one of those 

molecules by transferring a little energy to it from another molecule, thus slowing down the second molecule 

.  In the sense of microstates, the modified system is different than the original.  However, in the sense of 

macrostates, the difference is imperceptible, and the system is in the same macrostate as the original.  Basic 

mechanics tells us that the extremely numerous molecules are constantly colliding and exchanging energy in 

unknowable ways.  A tiny perturbation in the energies of two particles is insignificant compared to natural 

energy exchange processes. 

A microstate is a single state of a system, including the exact states of all of the system’s constituent 

particles.  Classically, a microstate includes each particle’s position and momentum.  Quantum mechanically, 

a microstate is an N-particle quantum state that describes the state of every particle in the system.  In either 

case, a microstate cannot be observed or determined in a laboratory.  However, a knowledge of microstates 

from physical theories is essential to applying Statistical Mechanics to predict observable phenomena. 

Note that a system is always constrained in some way: an isolated system has fixed energy;  a system in 

a fixed container has fixed volume, and does no work;  the gas under a heavy piston is at fixed pressure;  a 

system in thermal contact with a heat bath is at fixed temperature.  Any microstate of a system must satisfy 

that system’s macroscopic constraints.  As noted earlier, besides constraints, a macrostate also includes a set 

of observables.  However, knowledge of the system and its macroscopic constraints alone allows us to 

compute all the microstates (or all those that matter), and then predict the equilibrium macrostate of the 

system. 

The fundamental postulate of Statistical Mechanics is that  

“All microstates of an isolated system are equally likely.”  [Sch p57m] 

Many people have a hard time with that, because we’ve been (wrongly) trained for so long that systems 

“seek” certain “preferred” states.  The sad truth is that systems don’t have “preferences,” and don’t “seek” 

anything.  Instead, “Probability Rules!”1  Systems fluctuate randomly, mindlessly, and are usually observed 

to be in the most likely macrostates (that’s really the definition of probability).  As we will see, having all 

 

1 Thanks to Laura Tucker for this insightful aphorism. 
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microstates equally likely does not mean that all macrostates are equally likely.  Far from it.  Macrostates 

are summarizations of microstates, and hence lose a lot of information.  This is what makes “most-likely” 

macrostates from equally-likely microstates. 

As an example of a “most-likely” macrostate arising from equally likely microstates, consider a roll of 

two standard dice.  All 36 permutations are equally likely, however the chance of rolling a sum of 7 is 6X 

higher than the chance of rolling 2.  Tossing 100 coins is even sharper.  All 2100 possible outcomes are equally 

likely, but if we just count the number of heads, getting 50 heads is astronomically more likely than getting 

1 head or 100 heads. 

We said systems are “usually” observed to be in the most likely macrostates; for macroscopic systems, 

“usually” essentially means “always.”  The probability of observing anything else is so fantastically small 

that it would be unlikely to happen in a billion billion lifetimes of the universe. 

The Four Concepts of Statistical Mechanics 

In its simplest form, there are only 4 concepts in statistical mechanics.  They are critically important, and 

underlie all other results.  In order of dependence: 

1. Conservation of energy (i.e., the first law).  Explicitly note where all the energy 

comes from, and where it all goes. 

2. Equilibrium, temperature, and entropy.  These are all defined by the same model, 

so I consider them a single concept. 

3. The Boltzmann distribution: the (relative) likelihood that a subsystem of any size 

or composition has a given energy. 

4. Multiplicity defies energy (or, entropy attracts heat). 

The fundamental thermodynamic results are applications of these concepts.  We’ll talk about all of them.  

Much of thermodynamics is an accounting of how the (conserved) energy is most likely to be distributed 

throughout the parts of a system (“energy, energy, who’s got the energy?”). 

A more advanced concept is phase changes, and their critical exponents. 

What Is ...? 

That’s Intense-ive 

Each measurable property of a system is either “intensive” or “extensive.”  Crudely, “intensive” means 

the property does not scale with the system size (e.g., T or p), and “extensive” means it is proportional to 

system size (e.g., mass).  More precisely, consider a system, with measurable (macroscopic) parameters such 

as p, V, T, M (mass).  Now consider a subset of the system (a subsystem).  Those properties of the subsystem 

which are the same as the whole-system are intensive properties: e.g., p, T.  Those properties of the subsystem 

which are proportional to the subsystem size are extensive properties: e.g., mass (M), V. 

I don’t know of any subsystem properties which are neither the same as the whole-system, nor 

proportional to the subsystem size, but if there are any, they would be neither intensive nor extensive. 

What is a System? 

A system is a thing or bunch of things which has, at any instant in time, a definite energy (though you 

might not know that energy).  A system must allow at least 2 different energies (e.g., spin-1/2 particles in a 

magnetic field).  Many systems have an infinite number of allowed energies.  Examples of systems: 

1. A box of N atoms could be a system.   

2. Alternatively, we could consider each atom in the box a system (with excited states, or its kinetic 

energy, being the multiple energy levels).  (Then, a box of N atoms is an “ensemble” of 1-atom 

systems.) 
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3. A single-particle quantum state can be a system.  Such a state may cover the volume of a larger 

system, but have a definite momentum. 

Choosing a microscopic thing as your system makes some important things very easy.  We will see, for 

example, that such a choice quickly shows that the Maxwell-Boltzmann distribution has essentially the same 

form as the Boltzmann distribution.  Similarly, the Fermi-Dirac and Bose-Einstein distributions are simple 

with the right choice of “system.” 

Tiny systems: Note that if you choose a single particle as your “system”, then the system’s microstates 

are the single-particle quantum states for that particle: a “single-particle state” is also a “microstate,” and 

vice-versa.  More later. 

What is an Ensemble? 

An ensemble is a large (possibly hypothetical, possibly real) collection of “systems.”  Following the 

examples above:  

1. If our system is a box of atoms, we might consider a hypothetical collection of such boxes to be an 

imaginary ensemble.   

2. If each atom in the box is a system, then the box of N atoms is a real ensemble of such systems. 

What is a State? 

There are 3 kinds of “state” in common use in statistical mechanics: a macrostate, a microstate, and a 

single-particle state. 

(1) In general, a macrostate, or “system state”, is a condition of a system with definite observables.  

What we mean by “condition” depends on the details of the system.   

(2) A microstate is a multi-particle quantum energy eigenstate of a system (definite energy).  Almost 

always, a macrostate has many microstates that are consistent with it.  This number of microstates is called 

the multiplicity of the macrostate. 

(3) A single-particle state is an quantum energy eigenstate for a single particle of a system; it is a 

solution to the 1-particle Schrodinger equation.  For example, the allowed states of the electron in a hydrogen 

atom are single-particle states.  In a large system, such as a big box of gas, a single-particle state is an energy 

eigenstate for a gas atom.  We define the term wave-function to be the spatial part of a quantum state; the 

term spin-state specifies, well, the quantum spin-state of the particle, which is a finite dimensional state 

vector (of dimension 2s + 1).   

A particle’s full quantum state is the combination  

of the particle’s wave-function and its spin-state. 

Tiny systems (again): Note that if you choose a single particle as your “system”, then its microstates 

are the single-particle quantum states for that particle.  There is then no distinction between a “single-particle 

state” and a “microstate,” and g(E) = ω(E). 

Tiny systems, of just one or a few particles, may have noticeably discrete energies.  E.g., an atom has 

discrete excitations.  In this case, we describe the energies with a discrete set of gj and Ej, which are the 

microstates. 

Later, we’ll see that tiny systems do not have a well-defined temperature, but they can be in dynamic 

equilibrium with a temperature reservoir, which does have a well-defined temperature. 

Semi-classical systems: Sometimes we use a semi-classical mechanics definition of an energy 

“(micro)state”, but many calculations still must use the energy density of (micro)states (as a function of 

momenta), derived from quantum mechanics.  In the case of a gas, a microstate is an idealized N-particle 

quantum energy eigenstate, but the quantum nature of the gas is usually too small to measure.  Therefore, for 

a box of N particles: we sometimes say a state is a classical 6N dimensional phase-space state, i.e. a single 

point in the 6N dimensional phase space of every particle’s (x, y, z, px, py, pz).  For large energies, we 

approximate the possible states as continuous in position, momentum, and energy. 
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Be careful to distinguish an energy state from an energy level (defined below).  This applies to both 

single-particle states and levels, and to microstates and their energy-levels. 

What is an Energy Level? 

In contrast to a single-particle state, which has a definite energy, there are energy levels, which are the 

set of energies of the single-particle states.  “Energy levels” are also called allowed energies.  Note that there 

are often many (quantum) states of the same energy (called multiplicity [Wan p84b] in statistical mechanics, 

and “degeneracy” in quantum mechanics);  therefore, there are often many more energy states than energy 

levels.  If we label each allowed energy as Ei, then we label its multiplicity gi.  These definitions imply that 

many sums can be written two ways: in terms of single-particle energy states, or in terms of energy levels: 

# energy
# states levels

1 1

( ) ( ) multiplicity of energys j j j j

s j

f E g f E where g E

= =

=   . 

gj is dimensionless.  We will see that having more states of the same energy matters a lot. 

Distinguish carefully between energy (eigen)states, and energy levels:  

a single energy level may comprise many (degenerate) energy states. 

What is Heat? 

Heat is random energy which can be transferred between different elements of the system.  Commonly, 

heat is random kinetic energy of particles transferred by collisions.  However, thermal photons, which are 

emitted and absorbed, can also be heat.   

Even some respectable authorities sometimes say that  

“heat is infrared radiation.”  This is wrong . 

Thermally generated infrared radiation is a form of heat, but heat also comes in other forms, and in other 

wavelengths, as well.  IR is in no way what heat “is.” 

What is the Thermodynamic Limit? 

We frequently speak of the “thermodynamic limit.”   

The thermodynamic limit refers to a system which is large enough and hot enough  

that its state variables can be taken as continuous.   

Therefore, a reasonable definition of the “thermodynamic limit” is that the particle number N is large enough 

to be taken as continuous, and the energy is high enough that the energy density of states may be taken as 

continuous.  Therefore, we can do things like take derivatives with respect to N: 

dA

dN
  , 

and things like integrating a density of states, g(E) or ω(E), taken as a continuous function: 

/ /
1( ) ( ) ( ) ( )

E kT E kTZ T g E e dE Z T E e dE− −

 
      . 

Don’t Be Dense 

In SM, the ambiguous phrase “density of states” is often tossed about with inadequate definition.  Here, 

we try to clear up some of the confusion.  There are actually several kinds of “density of states,” and they are 

quite different: there are at least three kinds of energy-density of states, and a classical phase space (position-

momentum space) density of states: 

• Single-particle density of states per unit energy; each particle is in exactly one such state. 
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• Energy density of states for the system, each single-particle state possibly being occupied by  one 

or more particles (recall that multiple bosons can occupy a single-particle state). 

• Energy density of states per unit volume for the system, each single-particle state possibly being 

occupied by one or more particles. 

• Phase-space density of states. 

• k-space density of states (equivalent to momentum density of states). 

We now describe each in turn.  We then follow with a derivation of some common densities of state from 

first principles. 

Notation Summary 

The most common densities are these: 

Ej, gj Energy level, and its multiplicity, for a single-particle. 

g(E) Energy density of single-particle states, in the continuous approximation.  This is 

sometimes per unit volume of the system. 

ωm Multiplicity of microstates in system energy level m. 

ω(E) Energy density of system microstates, in the exceedingly good continuous approximation. 

Φ(E) Number of (system) microstates with energy < E, so ω(E) = ∂Φ/∂E. 

Ω(E) Provisional: Multiplicity of system microstates within a small range ΔE of E: 

 ( ) ( ) is (for now) small but arbitraryE E E where E              . (2.1) 

 We will refine this definition later in eq. (3.5). 

Energy Density of States Per Particle 

Energy density of states can be the number of single-particle stationary quantum states (energy 

eigenstates) per unit energy.  As a simple example, consider a hypothetical “harmonic oscillator molecule,” 

one which oscillates in some way within a harmonic oscillator potential V(x) = kx2.  Then from elementary 

quantum mechanics, the energy states are uniformly spaced at ħω.  Therefore, the single-particle density of 

states is: 

1
states per unit energy, per particle (for harmonic oscillator)particleg


=    . 

The units of [gparticle] are [E]–1, or sometimes per unit volume [E]–1[L]–3.  Single-particle energy density of 

states is usually a function of energy, so we write it g(E), dropping the subscript.  We explore all the densities 

of various states further in a later section. 

Energy Density of (Micro)states For a System 

The system energy density of microstates is generally complicated.  It depends on whether the particles 

are fermions, bosons, or distinguishable particles, and how dense they are.  We discuss this more later. 

Energy density of microstates is usually a function of the energy of the system, so we write it ω(E).  We 

define Φ(E) is the number of states with energy < E (following [Rei]).  Then: 

( ) ( )
d

E E
dE

   . 

Φ is dimensionless, and [ω] = [E]–1.  ω(E) usually increases with E, but there are some important exceptions 

to this (e.g., negative temperature spin systems).  Strictly speaking, n(E) is a sequence of discontinuous steps, 

at the allowed quantized energies.  The energy spacing is incredibly tiny, so we usually use the continuum 

approximation for n(E), so we can treat it as a smooth, differentiable function. 
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Many references use Ω to mean different things, so carefully check the definitions in each reference. 

For an ideal gas, the density of states per unit volume is not a function of temperature.  Therefore, for an 

ideal gas at constant volume, the density of states is independent of temperature.  However, in general, the 

density of states may depend on temperature.  For a gas at constant pressure, its volume varies with 

temperature.  The density of states per unit volume (see below) is constant, so the density of states for the 

system is proportional to volume, and hence a function of temperature.  Another example: solid-state systems 

such as semiconductor crystals have a density of states that depends on the lattice spacing.  The lattice spacing 

is weakly dependent on temperature, and so the density of states is also weakly dependent on temperature.  

Such a small temperature dependence may often be ignored [Wan p85t]. 

Energy Density of Microstates Per Unit Volume For a System 

The energy density of microstates per unit volume for a system is a minor variant on the above energy 

density of states for a system.  This is typically used for a system which is arbitrary in size, and therefore 

could be made an arbitrary volume.  An example is the classical energy density of states for a gas, or the 

electron density of states near the top of a crystal valence band (or near the bottom of the conduction band).  

This density of states is determined by the nature of the system (gas of particles, or atomic structure of the 

crystal).  If the particles are non-interacting, the density of states is independent of the number of those states 

that are occupied by particles (“non-interacting” is often a good approximation).  Because this density of 

states is per unit volume, it is independent of the size of the system.   

Phase-Space Density of States 

In classical SM, you sometimes use phase-space density of states, which is often called (ambiguously) 

just “density of states.”  We assume you are familiar with phase-space from classical mechanics.  (We’ll 

quantize this shortly.) 

Phase space for a system of N particles in 3D is a 6N-dimensional space of the positions and  momenta 

of all N particles:  (x1, y1, z1, px1, py1, pz1,   x2, y2, z2, px2, py2, pz2, ...   xN, yN, zN, pxN, pyN, pzN).  We save lots of 

writing by defining a point in phase space as: 

1 1 1 1 1 1 2 2 2 2 2 2( ,  ,  ,  ,  ,  ,    ,  ,  ,  ,  ,  ,  ...   ,  ,  ,  ,  ,  )x y z x y z N N N xN yN zNx y z p p p x y z p p p x y z p p p  . 

Analogous to the position vector in real space, r, you may think of Γ as a 6N-dimensional position vector 

in phase space (but it is not usually written in bold).  Just as real space has a differential volume element 

which may be written in a coordinate independent way as d3r, phase space has a differential hyper-volume 

element which we can write as: 

6 3 3 3 3
1 1 1 1 1 1 1 1... ... ,

( , , ), ( , , )

N
x y z N N N xN yN zN N N

i i i i i xi yi zi

d d dx dy dz dp dp dp dx dy dz dp dp dp d d d d

where x y z p p p

   = =

= =

x p x p

x p
   

Each point in phase space specifies the positions and momenta (i.e., the classical “state”) of all N particles of 

a system, at some instant of time.   

But quantum mechanics says that only some regions in phase space are allowed energy eigenstates: a 

quantum state is actually spread-out over a region of phase space.  An energy eigenstate usually has a narrow 

momentum uncertainty, and a wide position uncertainty.  Therefore, each eigenstate can be represented as a 

small-volume region in phase space, but in practice, we think of the eigenstate as a phase-space point “in the 

middle” of the allowed region.  (We call these allowed states microstates.)  The set of all allowed quantum 

states is a collection of such points in phase space.  Then the phase space density of states is the number of 

quantum states per unit (hyper-)volume of phase space: 

( )( ) phase space density of states
dn

d
  


. 

It turns out that for large gas systems (i.e., in the thermodynamic limit), the phase-space density of states 

approaches the constant h3N.  [Some references use hand-waving about the uncertainty principle to guess this 

result, but the logic is not valid.  We do a better job later.] 
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Combining Systems 

How do phase space densities of states combine when we combine two subsystems?  For an N-particle 

system, the dimension of phase space (= 6N) depends on N (the number of particles); therefore ρ(Γ), the N-

particle phase-space density of states, must also depend on N.  If we combine two subsystems into a single 

system, each subsystem has its own phase-space density of states, and the combined system has a 3rd phase-

space density of states.  The total number of particles is: 

1 2sN N N= + . 

The combination of all the dynamic variables of subsystem 1 and subsystem 2 are the dynamic variables of 

the combined system: 

1 26 6 6sN N N= + . 

We can find ρs(Γs) from ρ1(Γ1) and ρ2(Γ2).  First note that, from the definition of differential hyper-

volume above, the differential hyper-volume of the combined-system phase-space is the product of the 

differential hyper-volumes of the subsystem phase-spaces: 

1 2sd d d =   . 

For each volume element dΓs in the combined system, there are ρ1(Γ1)dΓ1 states in subsystem 1, and 

ρ2(Γ2)dΓ2 states in subsystem 2.  Every combination of these subsystem states is a state in the combined 

system.  Therefore, 

1 1 1 2 2 2 1 2

1 1 2 2

( ) ( ) ( ) , and

( ) ( ) ( )

s s s s

s s

d d d d d d  

  

  =          =  

  =  
 

That is: 

When combining two systems, phase-space densities of states multiply. 

A word about temperature dependence of density of states:  In many systems, the energy levels of 

the states, and therefore the density of states, are fairly insensitive to temperature (e.g., constant-volume 

gases, crystals).  In most problems, we treat the energies and densities of the system as fixed with temperature.  

However, the distribution of systems among the states is highly temperature dependent. 

Aside:  Each point in phase space specifies the positions and momenta (i.e., the classical “state”) of all N 

particles of a system, at some instant of time.  An ensemble of systems, each in a different state, can be represented 

as a collection of points in phase space, each point representing all the particles of a system in the ensemble.  This 

set of ensemble points is a subset of the allowed states, since each system of the ensemble must always be in an 

allowed state.  If you now forget quantum mechanics, and allow the systems to evolve classically in time, their 

phase-space points evolve continuously through phase space.  Hamilton’s equations show that the density of these 

points (points per unit volume of phase space), seen by an observer “moving” with the points, cannot change through 

time evolution (Liouville’s theorem) [Pat p33].  It is this flow of points (“phase space flow”) that is said to be 

“incompressible.” 

k-space Density of States 

All of our density of states derive from a single quantum principle: the wave-function has to fit an integer 

number of half-waves into the system “box”.  Equivalently, the wave-function must go to zero at the edges 

of the system.  This means that all systems have quantized momentum: nonrelativistic, relativistic, or any 

other dispersion (energy-momentum) relation.  Since p = ħk, we treat p and k as essentially equivalent. 

μ-Space Particle Density 

μ-space particle density is not a density of states, it’s a density of particles, but we describe it here for 

completeness.  (This μ has nothing to do with chemical potential.)  μ-space is the phase-space for a single 

particle.  Imagine a gas of particles (in a container).  Each particle has a position (x, y, z) and momentum (px, 

py, pz).  For each particle, we could plot a point in this 6D space representing its position and momentum.  

For the gas, we would have N points in the 6D space.  This 6D space is μ-space.  In any small region of space 
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and momentum, i.e. small region of μ-space, (dx dy dz dpx dpy dpz) around a point (x, y, z, px, py, pz), we would 

find some number of particles.  The μ-space particle density is the number of particles per unit of μ-space 

“volume:” 

( )# particles in the region
( , , , , , )

x y z

x y z
x y z

dx dy dz dp dp dp
x y z p p p

dx dy dz dp dp dp
 = . 

Each point in μ-space represents the position and momentum of a single particle of the system.  The collection 

of N points in μ-space represents the positions and momenta of all particles of the system. 

The Maxwell distribution of momenta for particles in an ideal gas is a μ-space particle density such that 

the density is uniform over all x, y, z positions (in the absence of an external potential).  Therefore, we could 

also call it a momentum-space particle density, since it is only a function of (px, py, pz), and not a function of 

position.  In contrast, for a gas in a container with significant gravity, the μ-space particle density would be 

a function of height z, and of  (px, py, pz). 

Declaration of Independence: What Makes a Macrostate? 

We often write state functions as functions of 3 independent variables, e.g. entropy is S(N, V, T).  

However, we get to choose which 3 variables are our independent variables.  Typically, for idealized isolated 

systems, we would specify (1) one of E, T, or S to indicate how hot something is, and (2) V for its volume or 

else p for its pressure, and (3) N for number of particles, or n for moles, or M for mass.  So we could write: 

( , , ), ( , , ), and ( , , ) or

( , , ), ( , , ), and ( , , ) or

( , , ), ( , , ), and ( , , ), etc.

A N V T E N V T S N V T

A n V S E n V S T n V S

A N V E T N V E S N V E

  

  

   

 

[The volume of an isolated system is usually fixed, because expanding or contracting involves work that 

exchanges energy with the environment.]  There may also be other external parameters, such as electric-field, 

or magnetic H- or B- fields. 

To fully specify the state of a system, you must specify at least one extensive variable.  To specify only 

the intensive properties of a simple system, you must specify two independent intensive variables. 

Non-equilibrium systems:  The energy of a system is exactly defined only in an idealized system that 

is not in contact with another system.  For a system that is in thermal equilibrium with another, we can only 

specify the average energy, and still call it E.  But this is also true of other state variables: S, p, etc.  Many 

things can fluctuate in a system in thermal equilibrium with another system (some things, like particle 

number, may be fixed).  Also, we will sometimes consider systems that are not in equilibrium, and consider 

how they change as they approach equilibrium, when in contact with a heat bath at fixed T.  In such cases, 

the energy, entropy, etc. of the system changes during the approach to equilibrium.  Mathematically then, T 

(of the bath) is fixed, but one of E or S is still a non-equilibrium state parameter of the system, so we might 

have: 

( , , ), and ( , , ) or
non-equilibrium at fixed :

( , , ), and ( , , ) .

A N V S E N V S
T

A N V E S N V E

  


   
 

When considering parameters of non-equilibrium systems, such as free energy, A, we sometimes call the 

non-equilibrium parameters “variational,” such as “variational free energy.”  This means it is a temporary, 

or hypothetical, value of free energy at a single instant when the system has not yet reached equilibrium. 

Computing Single-Particle Densities of States 

Density of states is a crucial concept for statistical mechanics.  The term “density of states” is much 

abused; densities of states come in many forms, but in quantum and statistical mechanics, “density of states” 

always refers to number density of stationary quantum states per unit of some parameter space.  Recall that 
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stationary quantum states are energy eigenstates.  We consider these common single-particle densities of 

states: 

• 1D harmonic oscillator 

• 1D particle in a box 

• 1D free particle 

• 2D free particle 

• 3D free particle 

See Quirky Quantum Concepts for a similar, but more detailed, discussion of densities of states.  We consider 

N-particle density of states (i.e., density of microstates) in the next section. 

We consider only the density of spatial states (wave-functions).  Fermions, e.g. electrons, would have 

twice as many states, because each spatial state has 2 spin-states.  Similarly, photon states are twice as dense, 

because each spatial state has 2 polarization states. 

Our analysis refers to 3 different “spaces”: real physical space (1D, 2D, or 3D), k-space, and phase-

space.  Since p = ħk, we take momentum-space to be essentially equivalent to k-space.  Phase-space is a 

“tensor product” of real-space and momentum-space:  

3 3
phase-space momentum-space phase-space( )( )  V Vol V dV d r d p=  = . 

Bad Example (because of unbound states, and ρ(E = 0) → ∞: For a hydrogen atom, we can find ρ(E) 

from knowledge of En, the quantized energy levels.  When n is large, the energy levels are very closely 

spaced, and we can approximate them as continuous: 

2

2

, is the Rydberg constant 13.6 eV, and all 0

( ) , is now considered a continuous variable .

n n

Ry
E where Ry E

n

Ry
E n where n

n

= − 

  −  

 

Inverting the equation gives n(E), and then differentiating gives ρ(E): 

( )

( )

1/2

3/2

( )

( )
2

n E Ry E

Rydn
E E

dE


−

−

= −

 = −

 

[This is a somewhat tricky example, because E < 0, and E approaches zero from below.  That means ρ(E) → 

∞ as E → 0, which is true for the bound electron states of hydrogen.] 

Another bad example:  For a quantum particle in a 1D box (which some long, straight molecules 

approximate for their outer electrons), the energy of successive quantum states, labeled with quantum number 

n, increases as n2.  For small ground-state energy  and large n, we try to approximate the energies as a 

continuous function E(n); hence,  

1/2
2 1/2 1/21 1 1

( ) ( ) ( )
2 2

E dn
E n n n E E E E

dE E
 

   

− 
=  = =  = = = 

 
. 

The energy density of states decreases as E–1/2, i.e. the energy gaps increase with energy.  In this case, the 

continuum approximation fails because the energy states do not approach a continuum with increasing 

energy.  We don’t discuss such systems in this work. 

Some references define the density of states (either single-particle or microstates) as 
states

( ) ( )s

s

E E E  − .  This is not a useful form, because to perform a calculation, we need to integrate 
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some function times ρ(E): ( ) ( )x f E E dE=   .  To evaluate the integral, we need ρ(E) as an analytic 

function (at least piecewise).  (Also, the δ-functions are still approximations, because all systems have some 

uncertainty in their energy levels.) 

1D harmonic oscillator:  Perhaps the simplest density of states is that for a 1D harmonic oscillator.  We 

write the number of states per unit energy as ρ(E).  Since the energy spacing is constant, ħω, the number of 

states per unit energy is (Figure 2.1a): 

1
( ) (1D harmonic oscillator)E


= . 

The units are [E]–1, i.e. inverse energy, equivalent to “quantum states per unit energy”.  The momentum (and 

therefore wave vector, k) of the particle in any stationary state is uncertain, and does not figure into this 

density of states. 

Multidimensional and multiparticle harmonic oscillators are essential to the study of solids.  Their 

density of microstates behaves quite differently than this 1D case, but we do not address them in this section. 

k
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1D Particle In a Box
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E ~ n+1/2

kz

n = 0
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(a) (b) (c)

k ≡ |k|E ~ k2

 
Figure 2.1  Densities of states. 

1D particle in a box 

Another simple density of states is 1D particle in a box.  We will see that the result per unit energy is 

the same as for a free particle, and use this as a warm up for 3D.  Each state has a purely real wave-function, 

which must be 0 at the boundaries.  This leads to quantized wave-functions (ignoring normalization): 

( )1
( ) sin( ) / , length of box, quantum number

2

ikx ikxx kx e e where k n L L n
i

 −= = − = = = . 

Each energy eigenstate is a superposition of + and – momentum eigenstates.  Because k is easily quantized 

(an integer number of ½ wavelengths: kL = nπ; Figure 2.2a), we first write the density of states parameterized 

by k.  At first, we let k take only positive values, knowing that each positive value of k describes a state which 

is a standing-wave superposition of both +k and –k momenta.  We wrote k as a function of n above, but for a 

density of states, we must invert this relation to get number density per unit of positive k: 

1( ) ( ) , in units of [rad/m]  = [m]
kL dn L

n k k
dk


 

−
++ =  = = . (2.2) 

But taking into account that each state consumes a +k and –k value, the final (two-sided) density per unit k 

(of either sign) is only half the above: 

1
( )    (1D particle in box)

2 2

dn L
k

dk



= = . (2.3) 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

6/6/2023  18:41 Copyright 2002 - 2023 Eric L. Michelsen.  All rights reserved. Page 22 of 116 

Thus, for a given size box, the density of energy eigenstates per unit k is constant.  Note that there is no upper 

bound to k (or E).   

L

small box

L

big box

n = 1

n = 2

n = 3

n = 4

n = 5

n = 6

k = nπ/L

n = 3

n = 1

n = 2

 
Figure 2.2  Quantum states for a for particle-in-a-box, showing that the density of states, ρ(k), is 

proportional to the box size.  In 3D, ρ(k) is proportional to the volume, where k ≡ |k|. 

Rewriting our two-sided formula for n(k) in terms of momentum introduces a general principle:  

phase-space-volume
( )

2 2 2

kL pL
n k

  
= = = . 

For large systems, the number of quantum states enclosed by boundaries of p and the 

real-space volume is closely given by the “volume” of the phase-space , divided by 2πħ 

(= h).   

It’s as if each quantum state takes up h units of phase space volume [Gos p177].  In this case, phase space 

extends over positions 0 to L, and momenta –ħk to ħk.  The number of states in this phase-space volume is: 

( )( )phase-space 2
# ( ) ( 0)

2 2

V L k Lk
states n k L k k

  
 = = − − − = = , 

in agreement with n(k) = kL/π, equation (2.2) above, since the quantum number n counts the total number of 

states up to k.  

We also notice that a bigger box allows for more states per unit k, since more k values are allowed (Figure 

2.2b).  Equation (2.3) shows that the density of states per unit k is proportional to the size of the box.  So 

sometimes we say, generally, that the density of states per unit k, per unit size L, is a constant 1/2π (still in 

1D): 

1 1 1 1( ) 1
in units of [ ] [ ]   [rad/m] [m]  = dimensionless

2

k
k L

L





− − − −= = . 

It is usually convenient to have the density of states as a function of energy, ρ(E), rather than ρ(k).  This 

allows for easily integrating things like ( )... ( )dE E , which appears in many SM formulas.  We can find 

ρ(E) from ρ(k) by a change of variables: 

( ) ( ) ( ) ( )
dk

E dE k dk E k
dE

   =  = . 

Then: 
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( ) ( ) /

/(

2 1/2
1 2

1 2

)

/

2 1 2
( ) , .

2 2

1 2
( ) (1D).

2 2 2
dk dEk

k mE dk m
E k E E

m dE

L m L m
E E

h E





−

−

 
=  = =  

 

= =    

 (2.4) 

We see (Figure 2.1b) that in 1D, while ρ(k) is constant), ρ(E) is large at low E, and decreases with E (opposite 

of the 3D case, below).  As for all energy densities of states, the units are [E]–1, equivalent to “quantum states 

per unit energy”.   

For a massless particle, e.g. a photon, ρ(k) is the same, but the E-k relation (dispersion relation) is now: 

1 1
( ) ( ) , ( ) ( )

dk dk L
E k ck k E E E k

c dE c dE c
  


= =  = =  = = . 

Notice that since E is always positive (kinetic energy), we used the 1-sided ρ(k) to find ρ(E).  Equivalently, 

we could have used the 2-sided ρ(k), and then doubled the result since E(k) = E(–k) are two states of the same 

energy. 

1D Free Particle 

The particle is essentially free, but we consider it to be in a large box, and take the limit as L → ∞.  Since 

it has well-defined momentum (k is known), its position is therefore spread widely (uncertainty principle).  

Since there is no potential, the energy eigenstates are also momentum eigenstates.  We simply use the density 

of states for a particle in a box of length L, but at the end of any calculation, we take the limit as L → ∞.  For 

any realistic calculation, this limit must be well-defined, and be proportional to L.  Thus from (2.3) and (2.4): 

( ) lim   ( ) lim (1D particle in large box)
2 2 2L L

L L m
k E

E
 

 → →
= = . (2.5) 

We take the two-sided view of k (+k and –k are separate states), since left-going and right-going free particles 

are separate states. 

Many references [Bay p264t; Sak p339m; P&C p4m, p406m; Tow p406m] find the density of states by 

considering a box of size L, and imposing periodic boundary conditions: the complex wave-function at the 

right and left edges must be the same.  We are unaware of any physical justification for this requirement, but 

it leads to the same result.  Periodic boundary conditions means an integer number of cycles fits in the box.  

This yields a different quantization condition for k: 

2 ( ) , ( )
2 2

kL dn L
kL n n k k

dk
 

 
=  = = = , units = [m]    (periodic BC). 

Notice that now both +k and –k are separate states, so the number of states up to a given magnitude of k is 

the same as a particle in a box.  Therefore, the (phase-space volume)/(2πħ) is again the number of quantum 

states enclosed by a given magnitude of k.  Then ρ(E) is also the same as for a particle in a box.  For massless 

particles, ρ(E) is also the same: ρ(E) = L/πħc. 

2D free massive particle 

Each of kx, and ky are quantized separately as in the 1D free particle.  The 2D wave-vector k then must 

sit on a lattice point in 2D k space (Figure 2.1c, without kz).  The k-space 2D volumetric (really area) density 

of these points, i.e. points per unit k-volume, is: 

2 2

2
( ) ( ) ( ) in units of [rad/m]  = [m]

2 2 (2 )

yx
x y

LL Area
  

  

 −= = =k k k . 

where Area is the “volume” of the box in real 2D space (not k-space).  Much like the 1D case, we usually 

quote the density of states per unit k-volume per unit (real-space) “volume”: 
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2 2

2

( ) 1
in units of [rad/m] [m]  = dimensionless

(2 )Vol





− −=
k

. 

Though derived for a rectangular area,  

this result is quite general for any shape large area [P&C p4m].   

In 2D space (x, y), phase space is 4-dimensional, (x, px, y, py).  Define k ≡ |k|.  The phase space, up to some 

maximum kmax, goes over Area, and over the 2D k-space disc up to radius kmax.   

In 2D, for large k (enclosing many lattice points), we closely approximate the number of states by the k-

space “volume” times the k-space density of states: 

( ) ( )
2

thin an

2

nulus

2

20
area

0
# ( ) ' ( ') ' 2 '

2 2

k k Area Area
states n k d k k dk k k  

   

 = = =  . 

(For small k, this approximation for number of states is less accurate.)  To prepare for finding ρ(E), we switch 

from k to momentum p: 

( )

( ) ( )2
momentum-space phase-space

2 2 2
#

2

V Area Vp
states Area where p

h h



= = =  k . 

To find the energy density of states, ρ(E), for free (spinless) particles (or particles in a 2D box), we 

change variables as before, but now there are many k vectors with the same energy (all the k on a circle of 

radius k ≡ |k|): 

( )
( ) ( )

( )

( ) ( )

( )

1/2 1/2

1/2

1/2 1/2

1/2

2

1

2

2 2
( ) 2 , , .

2

2 2
( ) 2

22

2
in units of [ ] .

2

mE mdk dk
E k k where k E

dE dE

mE mArea
E E

Area m E

  

 






−

−

−

= = =

=

=    

 

In 2D we see that ρ(E) is constant with E, unlike the 1D case (Figure 2.1b).   

3D massive particle, free or in a box 

Each of kx, ky, and kz are quantized separately as in the 1D free particle.  The 3D wave-vector k then must 

sit on a lattice point in 3D k space (Figure 2.1c).  The k-space volumetric density of these points, i.e. points 

per unit k-volume, is: 

3 3

3
( ) ( ) ( ) ( ) in units of [rad/m]  = [m]

2 2 2 (2 )

yx z
x y z

LL L Vol
   

   

−= = =k k k k . 

where Vol is the volume of the box in real 3D space (not k-space).  Much like the 1D case, we usually quote 

the density of states per unit k-volume per unit (real-space) volume: 

3 3

3

( ) 1
in units of [rad/m] [m]  = dimensionless

(2 )Vol





− −=
k

. (2.6) 

Though derived for a rectangular volume,  

this result is quite general for any shape large volume [P&C p4m].   

The “volume of phase-space” relation extends to higher dimensions as: 
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phase-space

# of generalized coordinates of the system, dim(phase-space) 2

# .
N

N N

V
states

h

 =

=  
. 

In 3D space (x, y, z), phase space is 6-dimensional, (x, px, y, py, z, pz).  Define k ≡ |k|.  The phase space, up 

to some maximum kmax, goes over Vol, and over the 3D k-space ball up to radius kmax.   

For large k (enclosing many lattice points), we closely approximate the number of enclosed states by the 

k-space volume times the k-space density of states: 

( ) ( )
3

thin s

2

hel l

3 3

30 0
l vo ume

4
# ( ) ' ( ') ' 4 '

32 2

k k Vol Vol
states n k d k k dk k k  

   

 = = =  . 

(For small k, this approximation for number of states is less accurate.)  To prepare for finding ρ(E), we switch 

from k to momentum p: 

( )

( )( )3
momentum-space phase-space

3 3 3

4
#

3 2

V Vol Vp
states Vol where p

h h



= = =  k . 

To find the energy density of states, ρ(E), for spinless particles (free or in a 3D box), we change variables 

as before, but now there are many k vectors with the same energy (all the k on a sphere of radius k ≡ |k|): 

( )
( ) ( )

( )

( )

 

1/2 1/2
2 1/2

1/2
1/2

3 2

3/2 1/2 1

3

2 2
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22
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mE mdk dk
E k k where k E

dE dE
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E E

Vol m E E
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−

−

−

= = =

 
=  

 

=      

 (2.7) 

The units are equivalent to “quantum states per unit energy”.  In 3D we see that ρ(E) increases with E, 

opposite to the 1D case (Figure 2.1b).   

3D massless particle, free or in a box:  As always, the k-space density is the same, but the massless E-

k relation is E = cħk: 

( )

( )

( )

2

2

3 2 2

2 1

3 3

1
( ) 4 , , .

1
( ) 4

2

4
in units of [E] .

2

dk E dk
E k k where k

dE c dE c

Vol E
E

cc

Vol E
c

  

 






−

= = =

 
=   

 

=

. 

This is very different behavior than the massive density of states, increasing much more rapidly with E. 

It can be proved that: 

 For large volumes or high energies,  

the density of states per unit k per unit volume is essentially ρ(k)/Vol = 1/(2π)3,  

regardless of the shape of the volume or the boundary conditions applied. 

This shape-independence follows from short-wavelength considerations similar to the WKB approximation 

(and historically, led to the “old” (now abandoned) Wilson-Sommerfeld quantization rule). 
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Note The k-volume density of states per unit Vol (real-space volume) is a constant 1/(2π)3, leading to 

integrals of the form d3k/(2π)3.  Another related situation looks similar: the inverse Fourier transform 

(from k basis to x basis) also leads to integrals of the form d3k/(2π)3 (depending on the normalization 

choice).  However, the integrands and limits are usually different, and you should be careful to 

understand the distinction. 

Ideal Gas Density of (Micro)states 

The concept of entropy requires an understanding of the ideal gas density of microstates, as a function 

of energy, to validate the approximations needed to define entropy.  We develop that background here. 

Consider a system of N identical, non-quantum ideal gas particles.  In other words, the particle density 

is small enough that quantum statistical effects are negligible.  We can derive its density of microstates ω(E) 

generalizing the method for single-particle density of states.  Consider a system state of constant energy KE; 

it satisfies: 

( )
3

2 2 2 2 2 2 2 2
1, 1, 1, 2, 3 , 3 , 2 ,

1

1 1
...

2 2

N

x y z x N x N y N z i

i

KE p p p p p p p p
m m

=

= + + + + + + + =  . 

In 3N-dimensional momentum space, this describes a hypersphere of constant KE.  For example, when N = 

1, we have an ordinary sphere (called a 2-sphere), with surface area 4πR2.  For any N, the number of 

microstates in a small interval dE is the (hyper)surface area of the hypersphere times dE, much like Figure 

2.1, but in 3N-dimensional momentum space.  In general, the hypersphere surface area is given by SdRd (d ≡ 

3N – 1), and [from Wikipedia 2023-02-11]: 

( )

( )( )

( )
( )

1 /2

3/2 3/2
1/2

2 1/2

2
3 1.

1 / 2

2 2
E.g., 4 , using ( ) 1 ( 1), and (1 / 2) .

(3 / 2) 1 / 2

d

dS where d N
d

S x x x



 
 



+

=  −  
 +

= = =   = −  −    =


 

[Since Γ(d) = (d – 1)!, for large N (and d), we can use Stirling’s factorial approximation also for Γ(large x), but 

we won’t need that here.] 

We find the N-particle ω(E) by continuing the generalization to higher dimensions that led from the 1D 

single-particle density (2.5) to the 3D single-particle density (2.7), and at first ignoring quantum 

indistinguishability.  Here, k is a vector in 3N-dimensional k-space, and the k-space density of states is (cf. 

(2.6)): 

3

( )
( ) real-space D volume

(2 )

N

N

Vol
where Vol


=     k . (2.8) 

For k ≡ |k|, the number of states between k and k + dk is: 

3
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. (2.9) 

Then in terms of energy E = (ħk)2/2m: 
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 (2.10) 
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For N = 1, we get d = 2, Sd = 4π, and this reduces to our single-particle result (2.7). 

To account for the indistinguishability of the particles, we must reduce this result by a factor of N!. 

Ideal Gas Multiplicity 

In our final definition of macroscopic entropy (3.6), we will approximate the multiplicity Ω(E) as the 

total number of microstates of all energies up to E, called Φ(E).  This multiplicity is in-turn well-

approximated from the volume inside a k-space hypersphere of dimension 3N [Wikipedia 2023-06-05]: 

( )

3 /2
3

3 ( )
3 / 2 1

N
N

NV R R
N


=

 +
. 

The k-space density of states is still (2.8), so the number of enclosed microstates in a ball of radius k is: 

( )

3 /2
3

3
( ) real-space D volume

3 / 2 1(2 )

N N
N

N

V
k k where V

N




 =     

 +
. 

Then in terms of total system energy E = (ħk)2/2m ~ NkT: 

( )
( )

( )
1/2 3 /23 /2

3

2 2
( )

3 / 2 1

NN
N

N

mE mE
k E V

N h


=   =

 +
. (2.11) 

To account for the indistinguishability of the particles, we must reduce this result by a factor of N!. 

The Energy Continuum Approximation 

The energy continuum approximation is so good,  

that it almost doesn’t count as an approximation.   

It is a subtle point about system microstates.  It follows from the calculations above, and it’s very important.  

The calculations above counted discrete energy states.  Therefore, it seems like we must avoid constraining 

our system energy too tightly, or we run into the “granularity” of allowed quantum energies.  The standard 

“trick” is to (at first) allow each system some small constant latitude in energy, ΔE  [Hua p176b, Kub p7b, 

Rei p??].  ΔE must be large compared to quantum energy spacings (Figure 2.3), i.e. must include a large 

number of quantum microstates so they look like a continuum.  It may be comparable to our differential 

energy changes:   

microstate quantum spacing << dE ~ ΔE << observable energy changes. (2.12) 

mesoscopic
dE or ΔE

microstate quantum 
energy levels

macroscopic energies

(not to scale)  
Figure 2.3  Qualitative view of the three scales of energy: quantum, mesoscopic, macroscopic. 

This allows us to use the energy continuum approximation (ΔE >> quantum spacing), while still constraining 

the system to almost fixed energy, at least far below measurement accuracy.  In practice, this is a very realistic 

requirement.  However, for a proper definition of entropy in a system at a fixed temperature (canonical 

ensemble), we will later remove any need for (or reference to) ΔE. 

As numerical examples of energy densities, we preview some results derived later, starting with (2.13).  

For a single electron in a 1 cm3 box, at room temperature (300 K): 

g(E) ~ 1021 states per eV.  We could take dE ~ 10–10 eV.  Macroscopic energy ~ kT ~ 10–3 eV. 
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For a tiny system of only N = 10 electrons in a 1 cm3 box, at 300 K, we use (2.10).  The total system 

energy is (3/2)NkT.  The numbers are so large, they exceed the capability of most handheld calculators: 

 

ω(E) ~ 10198 states per eV.  We could take dE ~ 10–10 eV.  Macroscopic energy ~ NkT ~ 10–3 eV. 

With 10198 states per eV, the continuum “approximation” is more than justified.  Most systems have N >> 10, 

often N > ~1020.  Then the density of microstates ω(E) is incomprehensibly large. 

Despite these fantastic numbers, statistical mechanical theory  

agrees extremely well with experiment. 

Impartial Derivatives and the Constants of Nature 

In SM, we often write partial derivatives with a qualifier specifying which variables to hold constant: 

V
V

E
C

T

 
  

 
. 

A common question is “Why do we have to specify which variables to hold constant when we take partial 

derivatives?  Doesn’t the definition of a partial derivative require holding all the other variables constant?” 

Good question.  The problem is that, as shown above, a given thermodynamic function can often be 

written several ways, with different independent variables.  If the thermodynamic function is given as a 

function of the derivative variable, and the variables to hold constant, then the qualified partial derivative is 

an ordinary partial derivative: 

( , )
If ( , ) then V

V

E E T V
E E T V C

T T

  
   =  = 

  
. 

However:  

( , )
If ( , ) then V

V

E E T p
E E T p C

T T

  
   =   

  
. 

In principle, we can write E as a function of either (T, V) or (T, p) because there is an equation of state 

which relates T, V, and p.  Therefore, we can always eliminate any one of (T, V, p) in favor of the other two. 

As a simple abstract example, we do problem 1.45 in [Sch p31], with clarified notation:   

2

Let ( , ) with an equation of state .

Then ( , ) /

2
Thus , but 2

So

y z

y z

w x y xy x yz

w x z x z

w w x
y y

x x z

w w

x x

= =

=

    
= = =   

    

    
   

    

 

Similarly, w(y, z) = y2z.  So: 

2 2 2 2 2

but 2 2

but .

x z

x y

w w
x yz x

y y

w w
x z y x z

z z

− −

    
= = =   

    

    
= − = = +     
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Statistics Refresher 

Few topics in science are more counter-intuitive than statistics.  As should be obvious from the name 

“Statistical Mechanics,” it is essential to have a basic understanding of probability.  Surprisingly, though: 

For introductory Statistical Mechanics, it is not necessary to know advanced statistics.   

We quickly outline here the basic concepts needed.  See Funky Mathematical Physics Concepts [FMPC] for 

more information on statistics. 

The probability, or absolute probability, of an event is a number in [0,1] (inclusive) that quantifies 

how likely an event is to occur.  Given a large sample of trials, the fraction of occurrences of the event 

approaches its absolute probability.  Zero means the event will never happen; one means the event happens 

with certainty.  We write the probability of an event as “Pr(event).”  If an experiment must produce one of N 

mutually exclusive results, each with probability Pr(result i), then: 

1

Pr(result ) 1

N

i

i

=

= , since it is certain that one of the results is produced. 

The relative probability of an event is a number that quantifies how likely an event is to occur, out of 

a pool of say, M trials.  Therefore, the relative probability of an event is proportional to its probability.  Given 

M, absolute probability = (relative probability) / M.  Given a complete set of relative probabilities, that cover 

all possible outcomes of an experiment, we can find M, and therefore all the absolute probabilities: 

all results
RelPr(result )

RelPr(result ), and Pr(result )

i

i
M i i

M
= = . 

M (or sometimes 1/M) is called the normalization factor for the relative probabilities.  Even without M, you 

can compare the relative probabilities of two events, to determine the ratio of their absolute probabilities.   

The average of some random variable (or some probability distribution) is simply the limit as M → ∞ 

of the average of M trials.  The term expected value is often used for “average”, but it’s a terrible misnomer.  

In many cases, the so-called “expected” value is very unlikely, or even impossible, to occur.  For example, 

the “expected” value of a roll of a standard 6-sided die is 3.5, but you would never expect to actually roll a 

3.5.  Therefore, we do not use the term “expected value” in this work. 

The Nature of Nature: What Do You Seek? 

Early in our studies of physics, we learn (incorrectly) that systems seek a state of “minimum energy.”  

This is obviously wrong: if I put a glass of cold water on the table, it warms up, and its internal energy 

increases.  The truth is that systems stumble into a state of equilibrium.  “Exactly what macroscopic state is 

equilibrium?” is one of the questions answered by SM. 

Of course, systems don’t actually “seek” states with given properties.  Particles don’t have preferences, 

and nature doesn’t favor disorder or shun neatness.  Systems fluctuate essentially randomly between states.  

After a change in external constraints, these fluctuations wander aimlessly among the new set of allowed 

microstates of the system.   

The equilibrium macroscopic state is the most likely macrostate for the system.   

It has the largest probability-weighted sum of microstates. 

More precisely, SM says that (given enough time) large systems are essentially certain to be found in an 

equilibrium state, with insignificant probability of deviation from that state.   

There’s really no physics in this; it’s just probabilities.  If you flip a coin 100 times, it’s almost certain 

to produce close to 50 heads, even though 100 tosses is a small number.  In SM, you may deal with systems 

of  >>1020 states.  If you flip a coin 1020 times, you will almost certainly get 50% heads, to nine decimal 

places. 
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Other Numerical Guideposts 

It is important to have a numerical sense for common thermodynamic quantities.  Following the idea of 

Mr. Mole, we compute here some other numerical reference points.  We routinely use the conversions: 

19eV J /1.602 10 , K 11,606 eV−=  =  . 

Thermal energy 

1. What is kT at room temperature (300 K): 

( )23 211.38 10 J/K 300 K 4.14 10 J = 0.0258 eV = 300 KkT − −=    =          

Single-Particle 

2. What is the ground-state energy of an electron in a 1 cm3 box, and a 1 m3 box?  The minimum 1D wave-

number k fits π radians in the box, so in 3D: 

31

2
32 13 9

/ .01 314 rad/m, 2.08 10 kg-m/s

3 7.1 10 J 4.5 10 eV 5.2 10 K (electron).
2

x x

x

k p k

p
E

m

 −

− − −

= =  = =   

= =   =   =    
 (2.13) 

Note that in a 1 m3 box, the momenta are 100 smaller, so the energies are 104 smaller.  The energy scales 

inversely with the mass, so for a proton (m = 1.6710–27 kg): 

35 16 123.9 10 J 2.4 10 eV 2.8 10 K (hydrogen)E − − −=   =   =   . 

These are extremely small energies. 

For a photon, E = c|p|.  If the box is conducting, the photon goes to zero at the faces, just like the other 

particles, so: 

22 43 1.1 10 J 6.7 10 eV 7.8 K (photon)xE cp − −=  =   =   =  . 

3. What is the single-particle energy density of states for an electron at room temperature (300 K) in a 1 

cm3 box?  We’ll use (2.7) in SI units to start: 

( )

( )
( )

( )

( )

23 21

3/23 31 1/2

3
34

39 1 20 1 16 1

3 3
1.38 10 J/K (300 K) 6.21 10 J .

2 2

4 2
.01 9.11 10 kg

6.63 10 J-s

4.2 10 J 6.7 10 eV 5.8 10 K electron .

E kT

E




− −

−

−

− − −

= =    =    

=   

  

=   =   =    

 (2.14) 

This is already a very high density of states.  Furthermore: 

• Since ρ  Vol, a 1-liter container has 1,000x higher density of states.   

• Since ρ  m3/2, a hydrogen atom has 7.8104 times higher density of states. 

• Since ρ  T1/2, at 1 K, the density of states is only √300 = 17x smaller. 

4. What is a typical k value for an electron in a 1 cm3 box, at room temperature?  We compute the 1D value 

for kx (or ky or kz), which is quantized as nπ/L:   

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

6/6/2023  18:41 Copyright 2002 - 2023 Eric L. Michelsen.  All rights reserved. Page 31 of 116 

( )
1/2

31

7
9.11 102 (1 / 2)2

9.26 10 rad/mx

kTm kTmE
k

− 
= = = =    

k ≡ |k| is √3 times bigger, and is not be quantized as nπ/L. 

Multiparticle System 

5. What is the density of microstates for 10-electrons in a 1 cm3 box, at room temperature?  The numbers 

are so large, they exceed the capability of most handheld calculators: 

( )
( )

( ) ( ) ( ) ( ) ( )

10
156 3

15 31 14
21

2

15 14
4 61 36 20 21 195

216 1 198 1 193 1

10, 29

10 m2 2 9.11 10 kg
( ) 10 6.21 10

14! 2

6.6 10 5 10 4.1 10 6.21 10 6.5 10 10

6.5 10 J 1.04 10 eV 9.0 10 K

N d

E
h




−
−

−

− − −

− − −

=   =

     
=   

 
 

=     =  

=   =   =   

 (2.15) 

6. What is a typical k value for this 10-electron system, at room temperature?  Note that k here is the 

magnitude of the 30-dimensional system k vector. 

( )
1/2

31

8
3 9.11 10 102 3

1.6 10 rad/m
kTmE mNkT

k

−  
= = = =   . 

While k is quantized to k-space lattice points, k ≡ |k| is not quantized to nπ/L, and for large values such as 

that above, is nearly a continuum. 
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3 Equilibrium, the One True Entropy, and Temperature 

Entropy is almost surely the most misunderstood concept in statistical mechanics and thermodynamics.  We 

introduce it here in stages: starting with the big picture, and continuing to more detailed definitions, and 

consequences.  Recall eq. (2.1): multiplicity Ω is the number of ways (microstates) that a given system can 

meet a given macrostate (i.e., observable conditions, or “observables”), such as energy, volume, temperature, 

magnetization, pressure, etc.  In other words, we speak of the multiplicity of a set of constraints (a 

macrostate), which is the number of microstates that satisfy those constraints.  Different constraints have 

different multiplicities (and therefore different entropies). 

Dealing directly with multiplicity often proves inconvenient, so we often work with its logarithm instead.  

We define entropy as simply a measure of multiplicity on a log scale: 

ln Boltzmann's constantS k where k   . 

Thus the entropy of a set of constraints (or of a macrostate) is well-defined.  It is up to the analyst to choose 

appropriate constraints for the task at hand. 

We usually do not find the imagery of entropy as “chaos” or “disorder” useful.   

Multiplicity is what matters, and nothing else. 

Chaos and disorder are human aesthetic values, and therefore may mislead a scientist.   

A better macroscopic visualization of entropy is uniformity throughout a system.   

More on uniformity later. 

Note: The entropy of a single, given microstate of a system is zero: by definition, there is only one such 

microstate (multiplicity = 1), and its entropy is therefore zero. 

Other Kinds of Constraints 

There are many other properties of a system that one might constrain.  For example, a box of gas of spin-

1/2 particles with a magnetic dipole moment.  We impose an external magnetic field, and the system responds 

with a net magnetization M.  We can now ask, “What is the entropy of a system with N particles, energy E, 

volume V, and net magnetization M?”  Then: 

( , , , ) ( , , , )N V E M S S N V E M =   = . 

This entropy is smaller than the entropy of the same system when M is unconstrained.  (This is the basis of 

some real-world magnetic cooling processes [ref??].) 

Equilibrium, Entropy, and Temperature In a Nutshell 

We briefly introduce equilibrium, entropy, and temperature here.  A later section gives more insight.  

Figure 3.1 shows an isolated system, comprising two subsystems, A and B.  The subsystems may be 

dissimilar, and their details are not important.  They are in thermal contact, and therefore can exchange 

energy.  By definition of “isolated”, the energy E of the total system is fixed.  The question is: in equilibrium, 

how will the energy be divided between subsystems A and B?  Note that thermal equilibrium is a dynamic 

equilibrium, with small random fluctuations of energy wandering throughout a system.  Over time, though, 

there is no net change in macroscopic properties. 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

6/6/2023  18:41 Copyright 2002 - 2023 Eric L. Michelsen.  All rights reserved. Page 33 of 116 

A B

BA

EA
EB

dE

ΩA(EA) ΩB(EB)

Total Energy E = EA + EB

Ωt(EA) = ΩA(EA)ΩB(E − EA)

isolated system

 
Figure 3.1  Two subsystems (A and B) brought into thermal contact.  

Recall the equal likelihood postulate (p12): all microstates consistent with a given macrostate are equally 

likely.  This implies the system will evolve to the equilibrium macrostate with the most number of 

microstates, i.e. with the highest multiplicity Ωt = ΩAΩB.  From the definition of entropy: 

ln : ln ln ln Boltzmann's constant

A BS S

t t A BS k S k k k where k  =  =  +    . (3.1) 

The macrostate of highest multiplicity is also the macrostate of highest entropy.  This is why isolated systems 

evolve toward the macrostate of maximum entropy. 

Note that the multiplicities of A and B depend on how much energy each has: 

( )( ), ( )A A A B B B B AS S E S S E S E E= = = − . 

Pursuing our question: in equilibrium, how much energy is in A?  In equilibrium, the total entropy St is 

maximum, so it is stationary with respect to small exchanges of EA.  As shown in Figure 3.1, imagine that at 

equilibrium, a small amount of energy randomly moves from A to B.  There will be no first-order change in 

entropy St (multiplicity Ωt), because it is at a maximum.  Therefore, SA will decrease a small amount, and SB 

will increase by the same amount, so the sum is constant.  For A the energy change is –dE, and: 

,A B A B
A B

S S S S
S dE S dE

E E E E

   
 = −     =  =

   
. 

This defines a temperature parameter: β  ∂S/∂E.  In thermal equilibrium, the temperature parameter of A 

must equal that of B.  For consistency with our common notion of temperature (e.g., from ideal gas laws), 

we define the temperature parameter T inversely to β: 

V

E
T

S

 
  

 
.   (3.2) 

Then the total system is in equilibrium when the component subsystems have the same temperature: 

In equilibrium: or equivalentlyA B A BT T   =     = . 

Summary: We define entropy as simply multiplicity measured on a log scale.  Equilibrium occurs at 

maximum total multiplicity (maximum total entropy), which implies that at equilibrium, ∂SA/∂E = ∂SB/∂E. 

This defines temperature parameters β ≡ (∂S/∂E)/k, and T ≡ ∂E/∂S.  Therefore, at equilibrium, TA = TB. 

Equilibrium, Entropy, and Temperature: More Insight 

[?? This section needs big overhaul.] 

The concepts in this section are crucial;  

not only do they define the fundamental concepts of temperature and entropy,  

but they underlie the Boltzmann distribution, which in turn underlies everything.  

For counting states, we provisionally defined (eq. (2.1)): 
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( ) ( ) # of microstates in range around the energyE E E E E   =  ,    where ΔE is very small. 

In this simple definition of Ω(E), our choice of ΔE introduces an arbitrary additive constant to the value of 

entropy; such a constant is unimportant in most analyses.  The exact value of ΔE has no bearing on the 

following derivations; therefore we don’t need to specify ΔE exactly.  The only requirement is that it satisfy 

the energy continuum approximation (2.12):  

quantum spacing << ΔE << observable energy changes. 

(Nonetheless, we later define “absolute entropy” in the discussion around eq. (3.5), which eliminates ΔE for 

good.) 

Consider again the system in Figure 3.1.  The total system is isolated, so the total energy of the system, 

E, is fixed: 

A B B AE E E E E E= +  = − . 

There are no other constraints on the system, i.e., volume, pressure, etc. are arbitrary.  We bring the 

subsystems into contact such that they can freely exchange their internal energy.  We wish to find how the 

total energy divides between systems A and B in equilibrium, i.e. how much energy ends up in A, and how 

much in B.  Equilibrium between (sub)systems which can exchange energy is called thermal equilibrium.  

Along the way to equilibrium, we again define temperature as in (3.2). 

In the nutshell section above, it may seem contrived that we used logarithms without motivation.  So let 

us now back up, and derive the same result directly from multiplicities, in two slightly different ways; we 

will see that in both cases, logarithms arise quite naturally.  (We give further motivation for logarithms 

shortly.)  We proceed by providing detail to these steps: 

1. The equilibrium density of states is the maximum total density of states, t . 

2. The total density of states t is the product of the subsystem densities of states: t = AB. 

3. The maximum occurs when dt / dE is zero, and so that the fractional changes are equal: dA / A 

=  dB / B ; this defines temperature. 

4. We recognize that d /  = d ln , which defines entropy. 

Each subsystem has its own energy density of microstates as a function of energy, here called A(E) and 

B(E).  Figure 3.2 illustrate typical functions for A(E) and B(E).  Most density of microstates functions 

are strictly increasing with E [but see Negative Temperature on p103].  Both subsystems A and B must have 

energy between 0 and the total energy Et.  Figure 3.2c shows the numbers of microstates where subsystem A 

has energy EA, which we call t(EA) (an abuse of notation).   

EA

A(EA)

EA

t(EA)

Eequilibrium

total system 
energy

dt/dEA = 0

E

B(EB)

B(E − EB = EA)

not to scale
(a) (b) (c)

 
Figure 3.2  Qualitative view of density of microstates vs. energy for (a) subsystem A, (b) 

subsystem B, and (c) the combined system, as a function of A’s energy, EA.  

The fundamental postulate of SM says that the total system equilibrium macrostate is the one with the 

most microstates having total energy Et.  From the discussion of combining density of states, we have: 
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( ) ( ) ( )t A A A B t AE E E E =   − . 

At equilibrium, this is maximum (over all values of EA).  Therefore, if a small amount of energy, dE, moves 

from A to B, then ΩA decreases a little, ΩB increases a little, and Ωt is unchanged (to first order).  For this to 

happen, the fractional decrease in subsystem A’s density of states must equal to the fractional increase in 

subsystem B’s density of states.  E.g., if ΩA decreases by 1%, then ΩB must increase by 1% for the product 

to remain constant (to first order): 

ln ln
A B

A B
A B

d d d d

dE dE

 
=   = 

 
. 

The logarithm arises naturally, and as in (3.2), we find an equilibrium temperature parameter defined by 

∂S/∂E (or equivalently, by ∂E/∂S). 

We can repeat this derivation even more mathematically, by formally setting the derivative of Ωt(EA) to 

zero (Figure 3.2c).  For A, the energy change is – dE; for B, the energy change is +dE.  At equilibrium: 

 ( ) ( ) 0

( ) ( ) ( ) ( ) 0 .

t
A A B A

A A

A A B A A A B A
A A

E E E
E E

E E E E E E
E E

 
=   − =

 

 
  − +   − =  

 

 

Since EA + EB = E = const, dEB/dEA = –1.  Then: 

( ) ( )
( ) 0

( ) ( )

ln ( ) ln ( )
( ) ( )

A A B B
A A

A B

A A B B

A B
A B

A A B B

E E
E

E E

E E

E E
E E

E E E E

  
+  − = 

  

 

   
=   = 

   

 

as before.  And still, the left hand side is a function of system A only, and the right hand side is a function of 

system B only.  Therefore, for each system in thermal equilibrium, there exists an equilibrium parameter, 

(d/dE) (ln ), which is the same for both systems. 

We might have called this parameter “temperature,” but historically, it is inverse temperature.  For 

traditional units, we also scale this parameter by a constant scale factor.  This universal definition of 

temperature applies to any system, so we drop the subscripts A and B: 

1 1

( ) ln ( ) , is Boltzmann's constant
d S

T E k E where k
dE E

− −
   

         
. 

For any system, temperature is a function of its internal energy, T(E), though the specifics of the function 

vary radically for different kinds of systems. 

What Entropy Is 

The quantity ln  appears frequently in statistical mechanics.  We therefore define it, when scaled by 

the same factor, k, as a system state function, entropy: 

1

( ) ln ( ) ( )
dS dE

S E k E T E
dE dS

−
 

    = 
 

. (3.3)  

From the above, we see that in traditional units, entropy has units of energy / temperature, or J / K.   

Entropy is a state function that is a measure of the multiplicity of a macrostate,  

on a logarithmic scale. 
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We show later how this state-counting definition of entropy, S = k ln Ω, is related to the thermodynamic one:  

dS = đQreversible / T. 

The equilibrium macrostate of an isolated system is that of maximum entropy,  

or equivalently, maximum multiplicity. 

Why Entropy S Is a Logarithm 

There are several reasons why it’s convenient to define entropy proportional to the logarithm of , S ≡ 

k ln  : 

(1) ln  comes up naturally when we see that (d / ) is important, because d /  = d(ln ).   

(2) It makes entropy extensive: when combining systems A and B, the total density of states t = 

A· B.  This means that when combining systems, ln  adds: 

t A BS S S= + . 

(3) It allows for a simple definition of temperature that agrees with that from ideal gases: 
1 S

T U





. 

(4) ln  comes up naturally when expressing multiplicity in units of energy to combine it with the 

Boltzmann factor (more on this later), and we see that: 

( )ln // ( )/U kT kTU kT U TS kTe e e
− − − − − = = . 

What Entropy Is and Is Not 

Entropy Is Not Disorder, but Uniformity 

The idea of “disorder” derives from the fact that usually there are many more states that appear 

(subjectively) “disordered” than ordered.  If a gust of wind blows across a pile of paper, the papers will land 

randomly around the room.  They are unlikely to land in a neat pile, because there are many more ways to 

land that look “disordered” to our sensibilities than ways that look “ordered.”  But the probability of the 

papers landing in a neat pile at a given place is the same as them landing in any single given “disordered” set 

of locations.  The incorrect association of entropy with disorder is more a statement of our feelings about 

neatness than a statement about physics, and it can be misleading.   

For example: if we are mixing the sugar with the flour to bake a cake, we dump the two in a bowl.  At 

first, the mixture looks “messy,” or “disordered,” because the sugar and the flour are not well mixed.  We 

could define such a “not-well-mixed” system by some conditions requiring isolated local groups of sugar 

particles, and similarly for flour.  After we stir for a while, the sugar and flour are mixed very uniformly, and 

the mixture looks “neat” to us.  We could precisely define a “well-mixed” system by requiring all local groups 

of particles to be smaller than some size.  Thus most people would say the blobby, partially mixed system, 

being “disordered,” is high entropy, and the well-mixed system, being “ordered,”  as low entropy, exactly 

the opposite of the physics.  And opposite to our perception of the papers, where “neatness” is the state of 

lower entropy.  The physics hasn’t changed, only our aesthetics have. 

The not-well-mixed system has lower entropy than the well-mixed system: the well-mixed system is 

more uniform, hence higher entropy.  Fortunately, to make a nice cake we want uniformity; we want higher 

entropy.  We take advantage of the system’s tendency toward higher entropy by mixing it essentially 

randomly until it becomes “uniform.” 

Non-Uniformity Means Available Energy 

In 2021, a video [https://www.youtube.com/watch?v=jyQwgBAaBag] claimed to show that a wind-

powered car can be made to travel directly downwind faster than the wind itself (abbreviated DWFTTW).  

The car was made of wheels, gears, and a large propellor.  As thermodynamicists, do we think the claim is 

plausible? 
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I was skeptical (as any good scientist should be).  In fact, a UC Physics professor bet $10,000 that such 

a feat was impossible.  However, it occurred to me (much later) that the DWFTTW car is a fun example of a 

simple, very general physical principle.  From this principle, one can _predict_ (with no math) that traveling 

FTTW is clearly possible, and consistent with the laws of physics, and also that in the absence of losses, there 

is no fundamental limit to how much faster than the wind the car can go.  These are exactly the conclusions 

that a more-detailed aeronautical analysis derived. 

I’ll bet with some thought, this physical principle can be used in other fun and surprising ways. 

The principle is:  

Any discrepancy in the physical conditions between two regions of space can be used to 

do useful work.  The process of extracting such work will reduce the discrepancy. 

In the case of the wind car, we have that the velocity of the air is different than the velocity of the 

ground.  This is true in all reference frames: ground, wind, car, etc., and true no matter how fast the car is 

moving.  By establishing a “link” or “device” between the wind and ground, the car extracts work from the 

difference in velocity.  In the process, it reduces the discrepancy in velocity: the velocity of wind exiting the 

propeller is closer to the velocity of the ground (in the ground frame, the wind is slowed). 

So long as the ambient discrepancy is available to the car, it can extract continuous power, which means 

over time an arbitrarily large amount of energy.  Therefore, it can accelerate to any speed.  We reach this 

conclusion simply from this general principle of physics, and with no math at all. 

Perhaps the best known applications of this principle are in thermodynamics.  Differences in temperature 

can create electric potential differences in a thermocouple, or drive a heat engine.  Differences in particles’ 

chemical potential run an electric battery.  And so on.  Differences in conditions necessarily have lower 

entropy than uniform conditions; one extracts work at the expense of increased entropy.  Thermodynamics 

includes the study of using such differences to do useful work. 

Entropy Is Not About Knowledge 

Here's an example which at first seems to pose a paradox, but which is readily understood by the 

“constraint” definition of entropy.  Recall that a “macrostate” is a set of constraints, maybe pressure, volume, 

mass, etc., and entropy is a (macro)state function: a given system in a given macrostate has some definite 

entropy.   

Before we cautiously give the following example, note that in thermodynamics, entropy is a property of 

a system in dynamic equilibrium.  Such a system is constantly swirling through countless microstates, all of 

which are compatible with the macrostate (i.e., the constraints of macroscopic P, T, N, etc.).  The number of 

such microstates gives us the macrostate entropy.  Analogies involving decks of cards, or mixtures of flour 

and sugar, are not in any dynamic equilibrium: the cards remain in a fixed order, the flour and sugar sit 

statically in a container.  They are only dynamic if we add some artificial dynamic process (e.g., shuffling 

the cards, or shaking the flour/sugar container). 

Bear in mind the limitations of statistical mechanical analogies involving macroscopic 

“particles” such as playing cards, or grains of sugar. 

Suppose I hand you a shuffled deck of ordinary playing cards2.  The “system” is defined to be the 

ordinary deck of cards, and the “state” is “shuffled.”  It could be in any one of 52! configurations, so its 

entropy is ln(52!).   

Someone once said, “Now you look at the cards.  Because you looked at them, the entropy has changed.  

Now that you know what the order is, the entropy is 0.”  This seems odd, perhaps paradoxical, because how 

can looking at a system change its entropy?  It can’t. 

The “constraints” definition easily explains these events, with no weirdness.  When I hand you a shuffled 

deck of cards, and ask, “What is the entropy?”, the system is the ordinary deck of cards, along with the state 

 

2 Thanks to Wendell Misch for this example. 
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that it is shuffled.  The constraint is the macrostate “shuffled”.  Its entropy is ln(52!).  If you look at the cards, 

that changes nothing.  The entropy of “a deck of cards, shuffled,” is not affected by what you look at. 

The confusion is that after looking at the cards, many people unconsciously change the macrostate, by 

changing the constraints: they re-define the system/state to be “an ordinary deck of cards, constrained to be 

in the order I've seen.”  There is only one way to configure a deck in a given order, so its entropy is ln(1) = 

0.”  The constraints are part of the macrostate: different constraints are different macrostates, with different 

entropies. 

Entropy is very different than uncertainty. 

Properties of Temperature and Entropy 

The definition of temperature requires a fairly smooth entropy function of energy, S(E), whose derivative 

is the inverse of temperature.  Therefore, small systems, such as atoms, whose energy range is broken up into 

discrete quantum levels with large spacing (compared to the range) do not have a temperature!  It’s just not 

defined. 

Temperature is only defined for systems with dense energy levels,  

such that the entropy S(E) has a well-defined derivative over the energies of interest. 

Entropy, in contrast, is defined even for “lumpy” systems.  For example, a hydrogen ground-state 

electron has two spin states, and one spatial state; its entropy is therefore k ln 2.  An excited p-orbital electron 

has six states (2 spin for each of 3 spatial), and entropy k ln 6.  Smoothness is irrelevant. 

Absolute Entropy and the (Ir)relevance of ΔE 

For a microcanonical system (fixed energy), there is a deeper story about the meaning of the 

“multiplicity” Ω(E), and the use of ΔE in our provisional definition (2.1), repeated here: 

( ) ( ) # of microstates in range around the energyE E E E E   =  ,    where ΔE is very small. 

Strictly Absolute Entropy 

Some systems are simple enough that they have resolvably discrete energies, and multiplicities that can 

be exactly counted directly.  Then there is no need to even consider a density of states ω(E); we simply 

define:  

Ω(E) ≡ exact # of microstates with energy exactly E. (3.4) 

Examples are: (1) an atom in a magnetic field whose orbital magnetic dipole moment interacts with an 

external B-field; (2) an electron whose intrinsic magnetic dipole moment interacts with an external B-field; 

(3) a set of N such electrons, even with N macroscopic.  The combinatorics of N electrons are simple enough 

to count Ω(E) exactly.  (4) A 1D particle in a box; (5) a harmonic oscillator; (6) a small set of N identical 

harmonic oscillators.  In this last case (to our knowledge), the counting becomes infeasible quickly as N gets 

larger. 

For these kinds of systems, entropy is exactly extensive.  For a total system comprising two subsystems: 

( ) ( )( ) ( ) ln ln lntot A B A A B B tot A B tot A B A BE E E E S E E k k k S S + =         + =  =  +  = + . 

Note that such systems cannot have E different than those on the enumerated list of energies, so the 

multiplicities of non-enumerated energies are irrelevant (you can call them 0, if you like).  In this super-

idealized fixed-energy model, we need not consider quantum superpositions of energy states (in fact, we 

claim that we never need to consider them). 

Virtually Absolute Entropy for Some Macroscopic Systems 

For systems of nearly-free particles (e.g., a gas in a box), it is infeasible to directly count multiplicities 

[Pathr p18-20].  This motivated our provisional definition of multiplicity Ω(E) ≡ ω(E) ΔE.  As a simple 

example, consider a gas with N particles and fixed volume V.  Then Ω(E) ≡ Ω(E, V, N).  We focus here on 
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how Ω varies with E, because when we eventually upgrade to a system at fixed temperature, energy is the 

main variable of interest: energy is the only parameter in the Boltzmann factor.  For now, we define the other 

parameters, such as N and V as fixed, for simplicity.  For a simple box of gas, that is all the relevant 

parameters.  (Later, we consider how S varies with other parameters, such as V.) 

Since entropy S(E) ≡ k ln Ω(E), the choice of ΔE defining Ω introduces an additive constant in entropy.  

Most applications depend only on entropy changes, so an additive constant has no effect.  For example, 

standard chemical entropies are defined relative to a zero point chosen for laboratory convenience.  In these 

applications, the exact value of ΔE has no bearing on the physics, or on subsequent derivations; therefore we 

don’t need to specify ΔE exactly.  The only requirement is that it satisfy the energy continuum approximation 

(2.12): 

microstate quantum spacing << ΔE << observable energy changes. 

Since even a trivial system has a microstate spacing ~ 10–20 eV (see (2.14)), this constraint is easily met. 

Sadly, the advent of absolute entropy breaks this simplicity.  The Third law of Thermodynamics says 

that all systems approach zero absolute entropy (or nearly 0) as T → 0 K (and this has important 

consequences).  The additive constant in entropy introduced by ΔE can no longer be tolerated.  We need a 

new definition for multiplicity Ω(E).  Conceptually, however, we must maintain the fact that entropy is a 

measure of absolute multiplicity, and this will preserve the absolute character of entropy S.  (Later, it also 

allows a consistent definition of entropy S(T) for a canonical system (fixed temperature, rather than fixed 

energy), see (4.2)). 

A first step in “fixing” Ω is to define it more carefully as a count of states, rather than a rough estimate.  

We do this by considering the behavior of ω(E) ~ E3N/2 (see (2.10)).  Given ΔE, the true multiplicity in the 

energy interval (E – ΔE, E) is (Figure 3.3a): 

( ) ( ') '
E

E E
E E dE

−
 =   . 

(For this integral, we must take dE << ΔE, but again, this is readily accomplished.) 

E

ω(E) ~ E(3N−2)/2

(not to scale)

ΔE

energy

(a) (b)
E

ω(E) ~ E(3N−2)/2

ΔE

energy

 
Figure 3.3  (a) Qualitative view of ideal gas density of microstates vs. system energy.  For large 

N, essentially all the microstates below energy E have energies immeasurably different than E.  

(b) Mathematically more convenient comparison puts E on the left edge of the sliver. 

Not only is ω(E) ~ E3N/2 huge, but it changes rapidly with energy (Figure 3.3a).  This means any ΔE 

bigger than a tiny threshold is immeasurably different from any other.  In fact, we could just as well choose 

ΔE = E, and count all the states of energy from 0 up to E [Pathr p18]: 

0
( ) ( ') '

E

E E dE =   .  (3.5) 

(This is the same as Φ(E)).  To verify this claim, let us quantify how rapidly ω(E) grows, to a good estimate.  

Purely for mathematical convenience, we redefine our thin sliver to be between E and E + ΔE (Figure 3.3b); 

we ask, “For what width ΔE does the thin sliver contain many more states than all the states up to E?”  ω(E) 

goes as a power p of E, so ΔE must satisfy: 
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( )
1 1 1

0
' ' ' '

1 1

p p pE E E
p p

E

E E E E
E dE E dE

p p

+ + ++ +  −
    

+ +  . 

Canceling denominators, and using the binomial theorem on the left side: 

( )
( ) 1 2 11

1 ...
2

p p pp p
p E E E E E− ++

+  +  +  . 

All the terms on the left are positive, so if the inequality is satisfied for the first term, it is also satisfied 

exactly.  Then we can solve for a sufficient ΔE: 

1

E
E

p
 

+
. 

Now p ~ 3N > ~ 1020, so we can choose: 

10
~ ~

10

E E
E

N
  . 

Or we can just as well choose (3.5); it makes no measurable difference [Pathr p20, Huang p134].  Thus: 

Even for isolated systems (i.e., the microcanonical ensemble),  

we define an absolute entropy that is independent of any choice of ΔE. 

[One must use caution in interpreting [Pathr p20] that says for system energy E, we could just as well use an 

energy range of E – ΔE/2 to E + ΔE/2, with ΔE small.  Energy levels in the upper half (above E) have enormously 

large multiplicities, which overwhelm the total, supposed to be taken right at E.  Nonetheless, after taking the 

logarithm (to find S), the discrepancy becomes negligible (for macroscopic systems).] 

Notice that the above argument requires only a macroscopic system, but puts no restrictions on the nature 

of its constituent particles (or subsystems).  The result applies even to macroscopic systems with finite-

dimensional single-particle states, such as spin systems, orbital angular momentum, or finite multi-level 

subsystems of any kind.  In the special case of a macroscopic system with directly countable multiplicity, 

(3.5) agrees with the exact result (3.4), to high accuracy. 

The final definition of entropy is then: 

( ) ln ( ) ln ( )S E k E k E  =   (3.6) 

This result shows that the extensivity of entropy, and the absolute nature of our definition 

of entropy, are true (to a high degree of approximation) in the thermodynamic limit,  

but not always for small systems [Pathr p20, Huang p134]. 

We use the definition (3.5) later to define entropy of a realistic system in thermal equilibrium (eq. (4.2)). 

As an aside, note that a macroscopic system has unimaginably tight energy spacing (even a simple 10 

electron system in 1 cc has spacing ~ 10^-200 eV at room temperature, see (2.15)).  Such a tight spacing 

means the idealization of a perfect container is completely unphysical.  Fortunately, quantum mechanics is 

such that perturbations of the state energies do not affect the number of quantum states (only their energies), 

so counting the states in our super-idealized system still gives essentially the correct number. 

What About the Uncounted States? 

In the discussion around (3.5), we assumed that all the microstates were those of indivisible point 

particles, given by (2.10).  But an ideal gas is made of atoms or molecules, which certainly are divisible.  

Some uncounted microstates include ionized atoms, dissociated molecules, and even dissociated nuclei, but 

we ignored them.  Have we erred? 

Of course, our approach is an approximation which is quite valid for realistic gases at moderate 

temperatures (ionization energy >> kT).  Consider ionized atoms.  Those microstates with ionized atoms have 

a bunch of energy tied up in the ionization energy, leaving significantly less energy to be shared by other 
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atoms.  Since ω(E) is a very steep function of E, the remaining atoms have drastically fewer microstates 

available to them.  Therefore, microstates including ionized atoms are negligibly small in number. 

However, at high temperatures (ionization/dissociation energy ~ kT), these dissociated microstates 

(which have higher particle numbers due to ionization/dissociation) become significant.  This is the basis of 

metal smelting: at high enough temperatures, the increased entropy of dissociated oxygen favors the reaction 

from metal-oxide → pure-metal + O2.  Similar arguments underly the Saha ionization equation. 

We discuss other uncounted degrees of freedom after deriving the Sackur-Tetrode entropy equation. 

Sackur-Tetrode: The Ideal Entropy? 

Since we have the multiplicity for an ideal gas (2.11), it is fairly straightforward to find its entropy, S(E) 

= k ln Ω(E).  We start with Stirling’s approximation for the Γ function in the multiplicity: 

( )
3 3 3

ln ( 1) ln 1 , 1 ln 1 ln 1
2 2 2

N N N
x x x x

    
 +  −       +  −    

    
. 

We divide by N! to account for the indistinguishability of the particles, take the natural log, using Stirling’s 

approximation for ln N!: 

( )
 

)

3/2

3

(

2( ) 3 3
ln ln ln 1 ln 1

! 2 2
E

V mEE N
N N N N

N h





     − − − −      
 

. 

Note that ln 1020 = 46, so we must keep all terms above.  We expect the entropy to be extensive, but this 

formula is not obviously so, because terms like N ln N are not extensive.  An extensive quantity must be a 

multiple of N times a function of intensive quantities (including constants).  We see that we have E3/2 in the 

first term, and essentially (3N/2)3/2 in the second, so we can combine them into an extensive quantity: 

3/2 3/2
3/2 3 2

ln ln ln
2 3

N E
N E N N

N

      
   − =   
         

; 

this is extensive because E/N is intensive.  Similarly, we have ln V in the first term, and ln N in the third: 

ln ln ln
V

N V N N N
N

− = , 

which is extensive, because V/N is intensive.  Then: 

3/2 3/2

3 3

( ) 1 4 3 1 4 5
ln ln ln

! 3 2 3 2

E V E V E
N m N N N m

N N N N Nh h
 

         
    + + = +    

           

. 

Finally, the absolute entropy is the Sackur-Tetrode equation for a monatomic ideal gas: 

 
3/2

3

1 4 5
( , , ) ln Sch 2.49 p77

3 2

V E
S E N V Nk m

N Nh


    
 = +     

     

. (3.7) 

This is valid for large N (because of Stirling’s approximation), and when the single-particle state occupation 

numbers << 1 (because we ignored quantum statistics).  It is extensive, as expected.  It includes only the 

translational degrees of freedom.  (It is often written in other, equivalent forms.) 

What About Other Degrees of Freedom? 

Many gas particles have internal degrees of freedom, due to electron spin, nuclear spin, molecular orbital 

angular momentum, etc., which add to the entropy.  Defining g as the degeneracy of such degrees of freedom, 

the added entropy is: 
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( )int intln ln ,N
total transS k g Nk g S S S= =     = + . 

How significant is Sint, compared to the entropy from translational motion?  This depends on temperature, 

because Φ(E) decreases as E (and therefore T) decrease.  We can find a temperature scale by approximating 

at what T does Strans = Sint?  Φ(E) also depends on volume, N, and the particle mass m.  For illustration, we 

choose V = 1 cm3 = 10–6 m3, N = 1020, E ≈ (3/2)NkT (where k here is Boltzmann’s constant, not wave-number), 

and molecular H2 gas (m = 3.310–27 kg). 

Substituting into the Sackur-Tetrode entropy (3.7), and then solving for T: 

( )

( )

3/2

3

3/2

3

2/3 2

1 2 5
ln ln

2

5
2

2

5 / 2
.

2

V mNkT
Nk g Nk

N Nh

V
g mkT

Nh

g N h
T

V mk







    
 = +  

     

= +

 −
=    

 

 

For molecular H2, if it has an angular momentum of L = 1, then g = 3, yielding T = 0.21 K. The Sackur-

Tetrode equation may not be valid at such low temperatures, because the effects of quantum statistics are 

significant there.  Nonetheless, this sets a rough scale for T to make internal multiplicity g a significant 

contributor to entropy S.  Such a temperature is easily achieved in modern laboratories, showing that other 

degrees of freedom can make a significant increase in the system entropy.   

From the form of T here, we see that the entropy of internal degrees of freedom increases with smaller 

volume (T gets bigger), increases with N, and decreases with increasing particle mass m.  Note that g itself 

may depend on temperature, such as when the rotational states of diatomic gas molecules become excited 

around 100 K.  The effect on entropy increases with g. 

We can turn the question around, and ask: for our system at room temperature, how big does g have to 

be for Sint to equal Strans?  Plugging into the equation for g above, we get g = 28,000.  Therefore, at ordinary 

temperatures, the entropy from internal degrees of freedom is insignificant. 

General Equilibrium 

The arguments above defining entropy and temperature generalize to any two systems exchanging any 

conserved thing which affects the multiplicity of a macrostate, i.e. which affects the entropy.  It will always 

be the case that equilibrium is reached when the product of the density of states of the two systems is at a 

maximum: 

system-A system-B

( ) ( ) ( ) is the total of some conserved thing

is amount of in , is amount of in

0 (at the maximum) (at equilibrium)

t A A A B A

A B

t

A

X X X X where X

X X A X X B

d S S

dX X X

 =   −

  
=  =

 

 

Roughly speaking: 
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Conserved quantity 

that is exchanged 

Equilibrium 

parameter 

 

Comments 

energy 1/T ~ ∂S/∂E defines temperature 

volume p ~ ∂S/∂V say, for A and B separated by movable piston 

particles μ ~ ∂S/∂N defines chemical potential μ  

any conserved thing, X ~ ∂S/∂X defines some equilibrium parameter 

We expand on these relations later.   

The chemical potential μ is special, because it can also be used in the case of non-conserved particles, 

i.e. when particles can be created or destroyed, e.g. through chemical reactions.  In this case, the “conserved” 

quantity seems somewhat mathematical, but has very real significance.  For example, in some reaction: 

A + B ↔ C e.g. 2H2 + O2 ↔ 2H2O . 

The conserved quantity is (NH2 / 2 + NO2) + NH2O.  See later section on μ. 

Entropy For Systems Out Of Equilibrium 

One might be tempted to say that entropy is defined only for systems in thermal equilibrium.  But there 

is a fundamental contradiction between declaring that restriction, and then comparing the entropies of systems 

that are clearly not in thermal equilibrium (as in (3.1)).  This is the most egregious failure of many references 

on entropy.  Equilibrium is defined as “stationary macroscopic properties” (properties don’t change with 

time).  Therefore, by definition, any system which spontaneously time evolves was not initially in thermal 

equilibrium.  By restricting entropy to equilibrium, it is then meaningless to ask if a system’s entropy has 

changed.   

We have resolved this problem by defining entropy for a system with a given set of constraints.  Perhaps 

the simplest constraint is that the system be in thermal equilibrium, but other constraints describe out-of-

equilibrium systems.  One often defines non-equilibrium constraints in terms of “local thermal equilibrium” 

(LTE), which allows us to define local entropies in subsystems of the whole system.  We then define the total 

system entropy as the sum of the local entropies, and only then can we say the system “entropy” has increased 

after a spontaneous process.  This is simplest if the “local” entities are discrete, bounded subsystems, as in 

our prior discussions of Figure 3.1.  We supposed the system had two well-defined subsystems, each of which 

has its own entropy.  Then we discussed how the total system entropy varied as energy flowed between the 

subsystems.  Often, though, we must consider a system as a continuum of mesoscopic volumes, each in local 

thermal equilibrium. 

Seeing Entropy: How Long Must I Wait? 

When Are Entropy Differences Significant? 

We can define that two systems have “significantly” different entropies if a simple tabletop, earthbound 

experiment at realistic temperatures can demonstrate the difference.  We describe some examples shortly.  It 

is not meaningful to compare entropy differences to absolute entropy.  A huge baseline entropy has no effect 

when systems with small entropy differences interact.  As often stated in thermodynamics, the zero of entropy 

is usually irrelevant: it is (usually) entropy differences that matter.  Furthermore, an appropriate quantitative 

test of entropy differences compares them in light of the time it takes for the system to evolve at the 

temperatures of interest.  (This evolution time is related to the height of the free energy barriers between 

quasi-equilibrium states). 

I generally think of entropy in the Statistical Mechanics sense: the logarithm of the number of microstates 

of a system satisfying some conditions.  This has the advantage of being inherently path-independent: entropy 

is a state function, and independent of how the system got into that state.  In contrast, the classical 

thermodynamic definition of integrating reversible heat (đQrev/T) from absolute zero can be misleading, in 

part because it emphasizes some path of constructing the system. 
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An example: Consider a thin, horizontal sheet of oil at room temperature, in which are suspended 

particles of sugar and coffee.  The Brownian motion of those particles is visible under a hand magnifier.  For 

a sheet of a few cm on edge, we could sprinkle sugar on one half, and coffee on the other.  Within a few 

hours or days, the particles would mix.  This clearly demonstrates that the system was not in thermal 

equilibrium at first.  This initial entropy must be the sum of that of the sugar half of the system plus that of 

the coffee half.  Entropy increases as systems evolve toward equilibrium.  Therefore, by our definition of 

“significant”, this experiment demonstrates that the entropy is significantly lower at first. 

Note that if we sprinkled particles directly on a table top, there would be no mixing, even though there 

is still an entropy difference.  However, this dry experiment introduces large potential barriers between quasi-

equilibrium states.  The entropy difference between the separated and mixed states is just as large as in the 

oil-film case, but the experimental setup makes it hard to spontaneously evolve from one state to another, so 

the difference is not “significant.”  This has nothing to do with entropy; it has to do with the free-energy 

barriers.  Those are very different things. 

A second factor is that the sugar/coffee-on-table experiment conjures the realistic image of friction on 

the table top, which our minds must work hard to overcome. If we eliminate friction from the desktop, the 

particles skitter freely across the surface.  They would exhibit Brownian motion, and collisions.  It would be 

a high-speed version of the oil-film experiment, with the same outcome: a significant entropy difference. 

In short, the stability of two quasi-equilibrium states says nothing about their entropy differences.  

Instead, the barriers in the free-energy landscape determine the quasi-equilibrium state lifetimes. 

The Shake Test: Which Has Higher Entropy?   

We can visualize which of two systems has higher entropy with the “shake test.”  Shake up both systems.  

If one turns into the other, then the latter has higher entropy.  One benefit of the “shake test” is that it is 

independent of the free energy, and intentionally isolates only the entropy.  Shaking temporarily adds a large 

amount of energy, so that the free-energy landscape presents no significant barriers.  This focuses in on the 

entropy alone.  When we stop shaking, we remove that temporary energy, recalling that the final state entropy 

is independent of path.  If the shake test consistently transforms one set of conditions into another, then it 

must be that the latter state has significantly higher entropy. 

We can also see such entropy differences in the classical thermodynamic definition of entropy by 

integrating from absolute zero.  Since entropy is independent of path, there is no need to raise the temperature 

monotonically.  In fact, we can overshoot the final temperature by a large amount, and then come back down.  

If overshooting results in a different final condition than the monotonic increase, it must be because this new 

final condition has significantly higher entropy. 

In summary, the shake-test isolates entropy, independent of the free-energy landscape, 

and allows simple, realistic comparisons of entropy differences. 

Summary: Driving Change 

A key point is that entropy is not the whole story.  Entropy differences are not the only driving factor for 

spontaneous change.  In fact, the free-energy landscape, i.e. the availability of paths of evolution that transpire 

on reasonable time scales, is also a huge factor.  In many everyday examples (such as particles on a table), it 

is the largeness of the energy barriers, not the smallness of the entropy differences, that make equilibrium 

thermodynamics inapplicable. 

Furthermore, even without large energy barriers, the importance of entropy differences must take into 

account the temperature.  A tiny entropy difference of 110–20 J/K says nothing directly about how long a 

spontaneous process might take, or how much energy is absorbed/released.  Those depend on the temperature.  

Smelting ore, carbonizing steel, and diffusing dopants in semiconductors, are all hugely important processes 

that rely on the tiny entropy difference of mixing, so we must say that those entropy differences are 

significant.  In practice, they are made significant by using high temperatures. 

For some applications, it is important to be able to separate entropy differences from energy barriers.  

The shake test for “significant” entropy differences intentionally avoids free-energy barriers: “If I can easily 
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demonstrate it, it is significant.”  But by itself, this says little about practical consequences.  A given entropy 

difference may have no practical consequences in some processes (high barriers or low temperature), but 

may be clearly significant in others (low barriers or high temperatures). 

"Small” Entropy Changes: What Is the Significance of This? 

Many references state that even big factors in the multiplicity Ω(E) are negligible when we compute 

entropy with the logarithm: 

negligible?

~ ln ' ln ln ' 'S B B where B =   +     . 

But we must be careful with such an approximation, because sometimes we exponentiate the entropy, such 

as in computing the macrostate probability (see (5.2)): 

( ) ( )RelPr(macrostate ) (...) exp / (...) exp ln (...)r TS kT = =  =  . 

Therefore, any factor that is significant in Ω can lead to a term that is significant in S, no matter how “small" 

that term might seem. 

Of course, if we’re only seeking the location of the peak in macrostate probability, then any factor (big 

or small), can be neglected: 

arg max ( ) arg max '( )
x x

x x   =    . 

Nonetheless, we recommend caution before throwing out seemingly-small terms in a logarithm. 
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4 Nuts and Boltzmann: The Canonical Distribution 

The Boltzmann distribution (aka canonical distribution) “is the most useful formula in all of statistical 

mechanics.” [Sch p223b].  It underlies a huge amount of SM, and is therefore critically important.  In 

particular, it underlies the “partition function,” which we will use heavily later.   

The Boltzmann distribution gives the relative probability of a system in thermal 

equilibrium with a heat bath to be in a single microstate of given energy;   

it is independent of the internal structure of the system  

(big, small, classical, quantum, fermion, boson, etc.)  [Wan p65t] 

The Boltzmann distribution is universal: it applies to photon quantum states, atoms, galaxies, etc.  The 

only condition for the Boltzmann distribution to apply is that the system in question must have as its only 

significant interaction the thermal exchange of energy with a large temperature reservoir (aka “heat bath”) 

at fixed temperature, T. 

For example, in a classical gas of non-interacting helium atoms, a given atom could be a “system”.  Its 

only interactions are through collisions with the other atoms, which compose the heat bath.  Therefore the 

energy of a given atom follows the Boltzmann distribution.  Since all the atoms are in the same environment, 

all atoms’ energies follow the Boltzmann distribution. 

As a counter example, we might ask, how likely is a given quantum state to be occupied by a massive 

particle?  Will it follow the Boltzmann distribution?  No, because to be occupied, it must take a particle from 

the reservoir, which means it violates the condition needed to use Boltzmann (it exchanges particles and 

energy).  (We consider the microscopic distribution of such systems later.)  In contrast, photons are freely 

created and destroyed, and their numbers are not conserved.  In fact, photons are a mechanism of energy 

exchange.  Thus, we can fill a photon state without depleting any photons from the reservoir.  Therefore, 

photon quantum states do follow the Boltzmann distribution. 

Ensemble of distinguishable 
systems in a large heat bath

Heat Bath

system

Heat Bath

system

system 3

system 2
system 4

system 5

System in a large heat bath(a) (b)  
Figure 4.1   (a) A system in thermal contact with a heat reservoir (heat bath).  (b) A real or 

hypothetical ensemble of identical systems. 

We derive the probability of the system having a given energy from only the properties of the heat bath!  

This proves that the construction of the system is irrelevant [Wan p65b].  Many texts use multiple copies of 

the system (i.e., an ensemble) as the heat bath.  This is confusing, and unnecessary.  It suggests that there is 

something special about using identical systems for the heat bath, when there is not.  Any large system which 

can exchange energy with the given system is a heat bath [Wan p64t].  The heat bath’s internal structure is 

not relevant. 

Consider a system in thermal equilibrium with a large heat bath (above left).  We must work with 3 

things: (1) the system, (2) the heat bath, and (3) the combination system/heat-bath.  The combination is 

isolated, therefore all microstates of the combination are equally likely; it has temperature T, and it has fixed 

total energy Et.   

What is the probability that the (blue) system is in a microstate s1 of zero energy, Es1 = 0?  The probability 

of the system being in that microstate is proportional to the number of microstates of the heat bath to have 

energy Et , ΩB(Et): 

1RelPr( ) ( )B ts E=  . 

Consider another single microstate s2 of the system, of higher energy Es2.  Its relative probability is: 
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2 2RelPr( ) ( )B t ss E E=  − . 

Recall that the definition of temperature tells us something about how B changes with energy: 

ln1
lnBd dE

k d
T dE kT


   = . 

dE < 0, since we’re considering energy taken from the heat bath and put into the system.  Since the heat bath 

is large and the system small, we can use the linear approximation for d ln B: 

2

2 2 2

2 2

/2 2

1

ln ln ( ) ln ( ) 0, 0

( )
ln (exponentiate both sides)

( )

( ) RelPr( )

( ) RelPr( )
s

B B t s B t s s

B t s s

B t

E kTB t s

B t

dE
d E E E where dE E E

kT

E E E

E kT

E E s
e

E s

−

 =  − −  = = −  

 − −
=



 −
= =



 

The Boltzmann distribution is derived from the properties of only the heat bath, and not 

the system.  That is why it is independent of the internal structure of the system. 

Since relative probabilities have an arbitrary multiplicative factor, we choose RelPr(s1) = 1.  Then we 

can write: 

2 /
2RelPr( ) sE kT

s e
−

= . 

Or, for any single microstate: 

/
Pr(state with energy ) sE kT

ss E e
−

=  . 

We can normalize this to absolute probability by noting that the sum of probabilities of the system being in 

all possible microstates (or equivalently, having all possible energies) is 1: 

/

microstates
/

1

Pr(microstate ) , energies of microstates &
s

r

E kT

s r
E kT

r

e
s where E E s r

e

−

−

=

= 



. 

Be careful to distinguish the Boltzmann distribution from the Maxwell-Boltzmann distribution.  More on this 

later. 

Finally, if the Boltzmann distribution seems to suggest that a system “seeks lower energy,” remember  

that (1) the Boltzmann distribution refers to a single system microstate, not system macrostate; and (2) the 

reason the lower-energy microstate is more likely is because the higher energy macrostate of the heat bath is 

more likely, almost as if the heat bath seeks higher energy.  But we’ve already seen that the equilibrium state 

is, in fact, not the state of lowest system energy. 

Meet the Partition Function 

The denominator above is much more important than just a normalization factor, so we give it a special 

name: 

microstates
/

1

( ) , are microstates and their energiesrE kT
r

r

Z T e where r E
−

=

  . 

Z(T) is the famous partition function of a system.  It applies to any sized system from a single particle, to a 

large system; the “states” you sum over are always system microstates, but recall that a single-particle system 

has microstates that are also single-particle states.  Notice, though, that the normalization factor, Z(T), is a 

function of temperature.  Therefore: 
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We can compare relative probabilities, or Boltzmann factors,  

for two microstates only at the same temperature. 

The partition function is dimensionless.  We study the partition function in more detail later, and learn that it 

defines all the thermodynamic properties of a system. 

For discrete states, we can also write the partition function as a sum over system energy levels: 

system
energy
levelsmicrostates

//

1 1

, are microstates and their energies,
( )

, are energy levels and their multiplicites .
mr rE kTE kT

m
m mr m

r E and
Z T e e where

E




−−

= =


 = 

 
   

The distribution ωm of allowed system energies Em affects the absolute probabilities of microstates only 

through the normalization factor.  However, the relative probabilities of individual microstates or system 

energies are independent of the allowed energies. 

The partition function readily generalizes to a system with continuous energies: 

min
RelPr(energy )

( ) ( ) exp( ) ( ) energy density of microstates
E

E

Z dE E E where E   

 



 −  . 

A system may be too small to have a well-defined temperature (e.g., an atom);  

in the Boltzmann distribution, T is the temperature of the heat bath, not the system. 

Meet the Macrostates 

For macroscopic systems, we are interested in the probability of the system being in some observable 

macrostate, i.e., having a specified energy E, rather than being in a specified microstate.  Then for discrete 

energies, we can simply sum the probabilities of all system microstates of energy E: 

/

Pr(system energy ) is the multiplicity of system energy
( )

E kT
E

E

e
E where E

Z T




− 
 = = . 

However, macroscopic systems have essentially continuous energies with density ω(E) (a classical system), 

so we use the continuum equivalent of the above, with a narrow range ΔE near E: 

/( )
Pr( system energy )

( ) energy density of microstates

E kTE E e
E E E

Z

where E





−
  +  =

  

, 

and 

min

/
( ) ( )

E kT

E
Z T dE E e


−

   . 

Macroscopic Properties as Averages 

Thermal equilibrium between two systems is a dynamic equilibrium: there are small fluctuations in the 

properties of the systems, but over time, no macroscopic properties change significantly.  (The study of 

fluctuations quantifies these statements, but we do not pursue that here.)  But fluctuations require that we 

define our macroscopic properties as averages over these fluctuations.  Usually, we can readily define these 

averages by using the Boltzmann distribution to provide the probabilities.  For example, suppose we know 

the pressure as a function of the energy p(E) of an isolated system.  Then the average pressure of a system in 

thermal equilibrium at temperature T is: 
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microsta

pressu
P

te

e

s

(

/

r
r )

( ) ( )
( )

r

E

E kT

r

r

e
p T p E

Z T

−

 =    . 

Usually, this average value is simply called the pressure of the macrostate, and its average nature is 

understood.  This works for any property that is well-defined as a function of energy of the isolated-system 

(microcanonical ensemble): 

micro

property
P )

states /

r(

( ) ( ) ( ) constant at fixed temperature
( )

r

X

E kT

r

E
r

e
X T X E where Z T

Z T

−

 

 = =       . (4.1) 

We now choose energy E as the independent variable (instead of temperature).  In the thermodynamic 

limit, the fluctuations of any property X are tiny (Figure 4.2), so the average value of any property X of a 

system with average energy <E> is just the value of X for an isolated system with energy exactly equal to 

<E>: 

( )
canonical microcanonical

distribution system

( ) is any property of the systemX E X E where X=       . 

This concept is straightforward for most properties, but entropy raises a problem. 

E

macrostate 
likelihood

most likely 
macrostate (not to scale)

width ~ Emost-likely /√N

 
Figure 4.2  Likelihood system has energy E, for a system in equilibrium with a heat bath, i.e. a 

system at fixed temperature.  Each value of E defines a macrostate. 

Multiplicity of What, Exactly?  Canonical Equilibrium 

For a system in equilibrium with a heat bath, average entropy poses a unique problem: just what are we 

averaging?  We said earlier, “Multiplicity is what matters, and nothing else” (p70).  To find the average 

entropy, do we average the multiplicity and then take the log?  Or do we take logs of multiplicity, and average 

them?  The difference between the two is vitally important. 

Physically, our original claims still stand: multiplicity is what matters, not its logarithm; for an isolated 

system, maximum multiplicity is the equilibrium point.  These remain true for a system in equilibrium with 

a heat bath (Figure 4.1a): maximum multiplicity is the equilibrium point.  But multiplicity of what, exactly? 

Entropy as an Average 

Before defining multiplicity more carefully, let’s quickly dispense with entropy.  The entropy of a 

canonical system (a system in equilibrium with a heat bath) is defined the same as all other properties, with 

(4.1), and the definition of absolute multiplicity (3.5): 
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m

Pr

s

(

icro tates microstat

)

es/
/

( ) ( ) ln ( )
( ) ( )

r
r

E kT
E kT

r r

r r
E

e k
S T S E e E

Z T Z T

−
−

  =  =    . (4.2) 

Canonical entropy is the average of the logarithms, so it no longer directly relates to the average multiplicity.  

Nonetheless, entropy remains an important and widely-used property of a canonical system. 

Equilibrium of a Canonical System 

As noted above, for a canonical system in equilibrium, entropy is not maximized.  But the multiplicity is 

still maximized, and for a canonical system, the average multiplicity is maximized: 

micros e

(

tat

)

s
/1

( ) ( )
( )

r

rE kT
r

Er

T e E
Z T

=

−



 =     . 

For a canonical system (i.e., in equilibrium with a heat bath at fixed temperature), 

the average of the log of Ω gives the entropy, S  <ln Ω>; 

but the log of the average Ω is maximized in equilibrium. 

We show in the Free Energy chapter that the log of the average multiplicity is the (negative) free energy: A 

≡ –kT ln<Ω>.  Equilibrium occurs at maximum average multiplicity, which is minimum free-energy. 
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5 Free Energy and Chemical Potential 

Introduction to Free Energy 

Free energy is of fundamental importance to all of statistical mechanics, thermodynamics, and chemistry.  

However, it can be confusing, so we start with a simple example of free energy, then give several brief high-

level views of free energy, and then describe each of these in more detail.  This section assumes a thorough 

understanding of the Boltzmann distribution (described earlier).   

Beware that systems with different constraints require different definitions of free-energy.  Each system 

has one and only one meaningful definition of free energy.  Some system constraints are fairly common, so 

we give them standard names, such as Helmholtz free-energy, or Gibbs free-energy.  Other systems have 

free-energies with no standard names. 

We start with an example, and an overview of the properties of free energy, then we derive it. 

Example of Free Energy: Water Absorbed in a Paper Towel 

As an example of free-energy in action, consider a glass of water with a paper towel suspended partially 

immersed (Figure 5.1).  We find that the equilibrium position has the water soaked part way up the towel 

(Figure 5.1c).  The system on the left is minimum energy, since all the water is as low as possible (least 

gravitational potential energy).  The system in the middle is maximum entropy, since the water is dispersed 

among the largest possible area, and consequently has many more ways of rearranging its molecules 

(maximum number of microstates).  But the equilibrium position is neither minimum energy nor maximum 

entropy: it is minimum free-energy.  The system on the right has made the equilibrium tradeoff between 

energy and entropy, such that its macrostate is the most likely. 

water

dry paper 
towel

water

soaked paper 
towel

water

partly wet 
(equilibrium) 
paper towel

(a) (b) (c)  
Figure 5.1  (a) System with minimum energy.  (b) System with maximum entropy.   

(c) System with minimum free-energy (in equilibrium). 

The equilibrium position is neither minimum energy nor maximum entropy;  

it is minimum free-energy.   

This cannot be completely explained by surface adhesion, as shown by the system with two glasses, and 

a paper “bridge.”  TBS. 

Putting Entropy to Work: A Brain Teaser 

As another example, consider a container of ideal gas (say, air), at ambient temperature (Figure 5.2).3  

Now we compress it (say, adiabatically in an insulated container), thus putting energy into the system of air 

(Figure 5.2a).  Doing so results in a smaller volume of air at higher pressure, and higher temperature (Figure 

5.2b).  Now remove the insulation, and let that air cool to ambient temperature (Figure 5.2c).  Thus the system 

lost, as heat outflow, some of the energy that we put in.  But we still have compressed air, and we can do 

work with it.  Question: what fraction of the energy that we put in gets lost as heat out? 

 

3 Thanks to Rick Cavallaro for this interesting puzzler. 
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Work

(a)

heat

(b)
insulation

(c)  
Figure 5.2  (a) Compressing a gas in a cylinder.  (b) Cooling the gas back to ambient.  (c) The 

resulting system has high pressure, and so can do work. 

The answer may surprise you: we lose 100% of the energy that we put in, but still have a container of 

compressed air that can do work.  How so?   

The internal energy of an ideal gas depends only on the temperature, and nothing else (not pressure, 

volume, etc.).  The final gas is at the same temperature as the initial gas, so its internal energy is the same as 

when we started: all the work-energy put into compressing the gas has gone out again.  However, at fixed 

energy, entropy increases (or decreases) with volume, so the entropy of the system after compression and 

cooling is lower than before.  Also, we have a discrepancy of conditions: inside the container is high pressure, 

outside it’s lower.  So we can extract useful work by letting the volume expand.   

Two simple ways we can expand are (1) adiabatically, and (2) isothermally.  For adiabatic expansion, 

we insulate the container and let it expand.  The gas cools down as it does work: the internal energy of the 

gas is converted to outgoing work.   

For isothermal expansion, we let it expand slowly, with heat flowing in from the ambient as it expands, 

keeping the system temperature constant.  That heat is the source of energy that gets turned into expansion 

work.  Note that the system entropy increases as it expands, and that entropy increase draws in heat from the 

ambient.   

Free energy preview:  In thermodynamics, for non-cyclic processes, we quantify the amount of energy 

that is available (free) to do work: it is the “free-energy” state function.  For this system, we can compare the 

initial free energy Fi to that after compression and cooling, Ff.  Since only the temperatures before and after 

are the same, we must use the Helmholtz free energy: F = U – TS.  As noted, Ui = Uf, so the lower entropy 

after compression and cooling results in a higher free energy: thus the system has some energy that is free to 

do work.  In doing such work, the system free energy decreases. 

Physical View of Free Energy 

There are several ways to look at free energy: 

1. Free energy is a measure of macrostate probability, on a log scale, and with a minus sign:  

A = –kT ln RelPr(macrostate).  This implies ... 

2. Much like the Boltzmann factor gives the relative probability for a system to be in a single 

microstate of given energy, the Boltzmann factor formula acting on free energy gives the relative 

probability of a system to be in a macrostate of given free energy.  This implies ... 

3. Free energy is minimized within a system in thermal equilibrium (maximum likelihood macrostate). 

4. In other words, free energy is a state function of a system at fixed T, which when minimized, 

maximizes the entropy of the universe.  Being a state function only of the system in question, it 

allows us to ignore the rest of the universe, and focus on what we know. 

5. Free energy includes the effect of energy “borrowed” from the heat bath due to the system’s entropy.  

This implies that for a system spontaneously evolving from an initial to a final state of equal 

temperature, the maximum useful work you can get is the difference between the free energies of 

the initial and final states. 

6. Free energy accounts for the “Multiplicity Defies Energy” principle in a single parameter, with units 

of energy.  Essentially, free energy includes a way of measuring multiplicity in energy units, and 

adding it to the real energy.   
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Because of the various forms of potential energy, there is a different “free energy” defined for each set 

of constraints on (or energy stores in) a system (more later).  However:  

A given system with constraints has only one kind of free energy relevant to it.   

The free energy is always the quantity that is minimized  

when a constrained system reaches equilibrium. 

Also, free energy is only relevant for systems at fixed temperature; i.e., for free energy to be meaningful, 

one of the constraints must be fixed temperature.  However, for the “maximum useful work” measure 

described above, the process can change temperature in the middle, but the final temperature must be the 

same as the initial temperature.  Free energy is a state function, so how we get to the final state is not 

important.  We examine this in more detail later. 

I would say that it is almost a coincidence that the free energy is both a state-function which is minimized 

for a system in thermal equilibrium, and also the state-function which gives the maximum useful work 

obtainable from a spontaneous process.  The connection between the two is subtle, and one might imagine 

that in some alternate universe, these two phenomena might have been given by two different state-functions. 

The Free-Energy Principle: Multiplicity Defies Energy 

The free-energy principle is one of the most important concepts in Statistical Mechanics.  We now use 

the Boltzmann distribution to show: 

The equilibrium macrostate of a system is not the lowest energy, nor the maximum 

entropy; it is the most likely state, which takes both energy and multiplicity into account.   

Consider a macroscopic system which has discrete (i.e. quantized) microstates, each with a definite 

energy.  The energies are microscopically close together, and indistinguishable at the scale of laboratory 

measurements, but QM says the microstates are discrete.  (It is usually easier to think of them as discrete 

states, so this is a rare case where QM simplifies our lives.)  We can label each system microstate with an 

index, such as s.  Note that many states may have the same energy.  The number of states with a given energy 

is the multiplicity of that energy level (sometimes called the “degeneracy” of the energy). 

When any (macroscopic or distinguishable microscopic) system is in thermal equilibrium with a 

reservoir, the reservoir temperature characterizes the system (or equivalently, the parameter β ≡ 1/kT , with 

units of inverse energy).  The Boltzmann distribution gives the relative probability of the system being in a 

particular quantum-state, or microstate, as a function of the state’s energy, and β, according to the Boltzmann 

factor: 

Pr(microstate ) i.e. RelPr(microstate )s sE E
s e s e

 − −
 = . 

This formula states that for systems which can exchange energy with a large reservoir, we are more likely to 

find the system in a microstate with a lower energy than another microstate with higher energy.  (We’ll 

assume β > 0 for now,  which is by far the most common case.  We’ll address systems of indistinguishable 

particles later, in the Fermi-Dirac and Bose-Einstein distributions.)   

Example:  At room temperature, β  1/(26 meV).  Consider two microstates with energies E1 = 0, and 

E2 = 18 meV.  Then: 

(0) (18 )
1 2Pr( ) 1, Pr( ) 0.5

meVE e E e − −
 =  = . 

Microstate 1 is twice as likely to appear as microstate 2 (Figure 5.3a).  In the figure, each blue box is a single 

microstate.  The height of the box is the relative probability (Boltzmann factor) for its energy; higher energies 

have smaller relative probabilities.  If a system has only these two microstates, then we can normalize the 

probabilities to find Pr(microstate 1) = 2/3, and Pr(microstate 2) = 1/3.  Therefore: 

Pr(system energy = E1) = 2/3, and Pr(system energy = E2) = 1/3.   

Then the average system energy of this 2-state system is: 
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1 2
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E1 E2
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Relative Probability

E
E1 E2

<E>

E

<E>

g1 = 1 g2 = 1 g1 = 1 g2 = 10 g1=1 g2=10 g3=40

E1 E2 E3

micro 

states

Relative Probability Relative Probability

E4

g4>40
(a) (b) (c)  

Figure 5.3  (a)  A system of two microstates.  (b)  A system of 11 microstates.   

(c)  A system with more energy levels, and still more microstates. 

If a similar system had the same two energies, but there were 10 microstates with energy E2 (Figure 

5.3b), the average system energy would be much closer to E2.  All microstates of the same energy have the 

same relative probability, and the relative probability for a system energy level Em is the sum of the relative 

probabilities of all its microstates; this is just its multiplicity, ωm, times the Boltzmann factor:   

/
2RelPr( ) RelPr( ) 10(0.5) 5mE kT

m mE e E −
=  = = . 

Then the probability normalization factor is Z = 6, and the average energy is much higher than before: 

1 2

1 5 1 5
(0) (18 meV) 15 meV

6 6 6 6
E E E= + = + = . 

Now consider another system with the same two energies, but where there are 1,000 microstates of 

energy E1, and 1,000,000 microstates of energy E2.  (This is quite plausible.)  The relative probability of 

being in a particular microstate of energy E1 is still 1, and the relative probability of being in a particular 

microstate of energy E2 is still 0.5.  What is the average energy of this new system?  We have 1000 microstates 

with relative probability 1, and 1,000,000 microstates with relative probability 0.5: 

(0)
1

(18 meV)
2

RelPr(energy ) 1000 1000

RelPr(energy ) (1,000,000) 500,000

E e

E e





−

−

= = =

= = =

 

We’re 500 times more likely to have system energy E = E2 than E1.  As before, to find <E>, we first convert 

relative probabilities to absolute probabilities.  The probability normalization constant is: 

1 2

RelPr(microstate ) 1,000 500,000 501,000. Then:

1,000 500,000
(~ 0)(0) (~ 1.0)(18 meV) 18 meV .

501,000 501,000

s

Z s

E E E

= = + =

= + = +   


 

Even though the probability of being in any given high energy microstate is only half that of being in a given 

low energy microstate, the multiplicity of the high energy microstate vastly outweighs the small energy 

“advantage” of the lower energy microstate.  Multiplicity defies energy, and raises the average system energy 

to essentially equal the higher energy level.  In other words, the system is nearly guaranteed to be in the 

higher energy level (not what we were taught as freshmen). 

With more energies and microstates (Figure 5.3c), the average system energy is close to the dominant 

energy level, where dominance is given by the product of the Boltzmann factor times the multiplicity. 
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We will see shortly how much energy a given multiplicity is worth.  This quantification of multiplicity 

extends the concept of entropy: 

Entropy is a measure of multiplicity, on a logarithmic scale, which in turn,  

is a measure of a macrostate’s ability to acquire more energy from the reservoir. 

In practice, for large systems, we usually treat the micro- and macrostates as continuous; the continuum 

approximations to the above analysis are straightforward. 

Example: The Statistical Chain 

Consider a massless chain of N links, hanging vertically with a constant weight F pulling on the bottom 

(Figure 5.4).  Each link in the chain has length l , and can be in one of 3 positions: left, right, or down.  Note 

that this system is simplified because it has no kinetic energy (which we will see leads to it having a finite 

maximum energy, even at arbitrarily large temperature).  However, it is realistic, in that some spin-systems 

have this same property (and even weirder ones; see “Negative Temperature” later on).  Questions: 

1. What is the low temperature average vertical length of the chain? 

2. What is the high temperature vertical length? 

3. What is the average length at temperature T ? 

(a) (b) (c)
L R D

F
 

Figure 5.4  Statistical chain.  (a) Three possible states of a link.  (b) Example chain configuration. 

 

Answers:  1.  At low temperature, there is “no” energy available from the thermal bath.  Therefore, all 

the links are pulled vertically down by the weight.  The length is Nl.  This is the macrostate of lowest energy, 

and it has only one microstate. 

2.  At high temperature, there is “infinite” energy available from the thermal bath, so the work involved 

in pulling the chain up, left, or right, is negligible.  Therefore, all 3 states of each link are equally likely.  Only 

the down state contributes to vertical length, so the average length is simply Nl / 3.  Notice that this is not the 

macrostate of lowest energy, since some links are Left or Right, and have more energy than Down links.  

This macrostate has many microstates (microstates of the same length). 

3.  The chain is an ensemble of links; therefore, the links follow the Boltzmann ensemble statistics: 

/
RelPr( ) 1/ is the temperature parameter

E kT EE e e where kT − −
= =  . 

In this way, we are temporarily considering each link to be a “system.”  In this (or the larger full-chain) 

system, there is no kinetic energy, only potential energy.  Consider one link of the ensemble.  We could say 

that being in the left or right position requires doing Fl units of work to lift the weight, and being down 

requires no work.  We would then write the energies of the 3 states as , 0L R DE E Fl E= = = . 

But we can choose the zero-point of energy as we like, and it is equally valid to say that the L and R 

position are 0 energy, EL = ER = 0, and the down position has ED = –Fl (the system gives up potential energy).  

We choose the latter, because it will make our equations a little simpler if more of the energies are zero: 

0,L R DE E E Fl= = = − . 

We use the Boltzmann distribution to write the relative probabilities of the 3 states: 
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( )(0)RelPr( ) RelPr( ) 1, RelPr( )
Fl FlL R e D e e

 − −−= = = = = . 

We normalize the relative probabilities into absolute probabilities in the usual way: since a link must be in 

one of the 3 positions, the sum of the absolute probabilities is 1: 

link states

RelPr( ) 1
Pr( ) Pr( ) Pr( ) , Pr( )

1 1 2
RelPr( )

Fl

Fl Fl

i

i

E e
E L R D

e e
E



  
=  = = =

+ + +


. 

Each link has the same probability of being down, so the average length is: 

Pr( )
2

Fl

Fl

e
length Nl D Nl

e




= =

+
.           QED. 

Notice that this is not the state of lowest energy. 

Since this is the general answer for any temperature, we check our first two answers: (1) at high 

temperature, β → 0.  <length> = Nl(1/3).  (2) at low temperature, β → ∞.  <length> = Nl. 

Now we can answer more questions: 

4. What is the internal energy of the system at low temperature?  High temperature? 

5. What is the entropy of the system at low temperature?  High temperature? 

Answers:  

4. At low temperature, all the links are down (from answer above) and: 

(low )E NFl T= − . 

At high temperature, 1/3 of the links (the Down ones) have energy –Fl, so internal energy is: 

(high )
3

NFl
E T

−
= . 

This is relative to our zero point of energy where every link is Left or Right, and the chain has zero vertical 

length.  This is somewhat unusual that the system has an upper bound on energy.  Most systems (e.g. a gas) 

have kinetic energy which is unbounded, so internal energy is unbounded with increasing T. 

5.  This is a system with discrete energies (rather than a continuum of energies).  Therefore, we use (T) 

≡ the number of microstates available at temperature T (rather than using any density of microstates at 

temperature T).  At low temperature, there is only one possible state: 

( 0) 1, ( ) ln ( ) ln1 0T S T k T k → =   = = . 

  At high temperature, all states are equally likely, and each link has 3 states: 

( )( ) 3 , ( ) ln ( ) ln 3 ln 3N NT S T k T k Nk →  =   = = . 

Notice that entropy varies linearly with N, so entropy is extensive.   

We can answer still more questions: 

6. At finite temperature, the chain is like a spring: if we pull down on it and let go, it springs back up 

to its equilibrium length.  If we push up the weight, it falls back down to the equilibrium length.  

Find the effective spring constant for small displacements, in force/length. 

7. What is the fractional fluctuation in energy (and length) for a chain of 100 links at temperature T?  

For a chain of 1020 links? 

8. What is the entropy of a long chain at temperature T?   
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Answers:  6.  The spring constant is dF/dX, where X is length.  We already have X(F) from (3) above.  

We invert it to find F(X), and take the derivative: 

( )

( )

( ) , 2 , 2
2

2 1
ln , ln 2 ln ln

1 1 1

( ) ( )

Fl
Fl Fl Fl Fl Fl

Fl

spring

e
X F Nl X Xe Nle X Nle Xe e Nl X

e

X
Fl F X Nl X

Nl X l

dF
k

dX l X F Nl X F


    










= + = = − = −
+

= = + − −  −

  
 = +  

−   

 

This is called entropic elasticity.  It results because the chain is not in the macrostate of lowest energy, and 

the number-of-microstates (multiplicity) function (T) combined with the Boltzmann distribution makes one 

particular macrostate (length) more likely than any other.  At high temperature (β → 0), the spring constant 

goes to infinity: with infinite thermal energy, the chain can lift any weight. 

7.  In this system, there is no kinetic energy, only potential energy.  Length is proportional to energy:  

# of Down linksD D

E
X n l where n

F
= − =  . 

We first note that the order of magnitude for any fractional fluctuation is almost always ~1/√N .  This gives 

us ~10% length (or energy) fluctuation for 100 links, and ~10–10 for 1020 links.  For the exact answer, we use 

the binomial distribution: a link is either down, or it’s not.  The standard deviation of a binomial distribution 

(see Funky Mathematical Physics Concepts) is: 

( )

( ) ( )

1 is the number of "trials" (links)

Pr( )
2

1 11 1 1

Fl

Fl

Np p where N

e
p Down

e

Np p p p p

X Nlp p pN N









= −

 =
+

− − −
= = =

 

At high T, p = 1/3, and the correction factor to 1/√N is only √2.  As T goes down, the fractional fluctuation 

increases to a point.  From there, as T gets even colder, the chain hangs lower with little energy to make it 

fluctuate.  At T = 0, p = 1, and the chain length is Nl, with zero fluctuation. 

8.  The entropy is computed from the multiplicity of the macrostate, i.e. the average number-of-

microstates of the system that match the macrostate (4.2): 

ln ( )( ) TS T k  . 

For large N, the fluctuations are tiny, so we can use the most likely macrostate, and find S(T) = S(most-likely-

macrostate).  Also for large N, the most-likely number of down links is virtually identical to the average 

number of down links, which we found above: 

* (most likely number of down links)
2

Fl

D D Fl

e
n n N

e




 =      

+
. (5.1) 

Since this is a discrete system, we can find  as the # of ways to choose nD down links from N links total: 

( )

( )
( ) ( ) ( )( )

!
( ) choose *

* *! * !

!
( ) ln ln ! ln *! ln * !

*! * !

D
D D D

D D
D D

N N
T N n

n n N n

N
S T k k N n N n

n N n

 
 =  = 

− 

 = = − − − −
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Eq. (5.1) shows that nD
* > N/3, so if N is large, so is nD

*.  Then we can use Stirling’s approximation for the 

factorials. 

Return to statistical chain after free-energy and partition function, and compute those?? 

How Much Energy Is Multiplicity Worth? Definition of Free Energy 

We’ve seen that multiplicity allows a system to offset higher energy.  So how much energy is multiplicity 

worth?  In other words, how much energy surplus can multiplicity overcome?  We find the answer directly 

from the Boltzmann factor.  Our basis for comparison is a macrostate with multiplicity 1; it has a relative 

probability of exp(–E/kT).  Without loss of generality, we can take E = 0, so RelPr = 1.  Consider a different 

macrostate with energy δE and multiplicity Ω.  To have the same probability as our reference macrostate, we 

must have: 

0 / /
0 1RelPr( 0) 1 1, RelPr( ) 1 ln

E kT E kTE e E e N E kT − −
 =  = =  = =  =  . 

In other words, our multiplicity Ω is “worth” δE = kT ln Ω units of energy. 

Note that how much energy Ω is worth (δE) depends on the temperature.  At higher temperature, 

multiplicity is worth more energy, because more thermal energy makes it easier to reach higher energy 

macrostates.  Also, for any T, the energy-equivalent of multiplicity is proportional to ln Ω., i.e. it’s 

proportional to entropy.  Specifically, from S = k ln Ω: 

E TS = . 

We can see the effect of multiplicity on macrostate probability directly.  The relative probability of a 

macrostate with energy E and multiplicity Ω is (using the Boltzmann factor): 

( )

( )
free ene

/

rgy

RelPr( , ) exp( / ln ) exp ln /

exp / .

E kTE e E kT E kT kT

E TS kT

 

−   =  = − +  = − −  

 
 = − −  
 
  

 (5.2) 

In other words: 

The quantity A ≡ E – TS gives us the macrostate relative probability,  

much like E gives us the microstate relative probability, using the Boltzmann formula.   

A is called the free energy. 

Helmholtz Free Energy 

The free energy of a system starts with the internal energy U, and de-rates it by the energy equivalent of 

multiplicity.  In other words, it gives you an energy equivalent to tell you the macrostate relative probability 

from the Boltzmann formula.  We illustrate with the simplest free energy: Helmholtz free energy. 

The simplest constraint on a system is that of constant temperature: a system held in a heat bath.  We 

now show that for such a system, the free energy is the Helmholtz free energy: 

F(T, V, N) ≡ U – TS for a system at given temperature. 
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RelPr(system energy = E)

equilibrium
E

density of 
microstates, ω(E)

Boltzmann factor, 
exp(−E/kT)

free energy,
A(E)

(not to scale)  
Figure 5.5  Qualitative view of the product of density of microstates and the Boltzmann factor to 

produce the relative probability of the system having a given energy, and the free energy 

associated with that probability.  Equilibrium is at the probability maximum, which is the free-

energy minimum. 

This is just an example of the “multiplicity defies energy” concept shown above.  First, recall that the relative 

probability of the system having discrete energy Em is: 

/
RelPr(system energy is ) discrete energy of the system,

multiplicity of energy .

mE kT
m m m

m m

E e where E

E





−
 = 

   
 

The energy (macrostate) with the maximum relative probability is the most likely energy.  Finding this 

state involves dealing with two parameters: ωm and Em.  It’d be nice if we could combine these two into a 

single function of macroscopic state variables (which we call free energy) which combines the energy and 

the multiplicity.  To do this, we first bring the factor of ωm up into the exponent: 

 / / ln
RelPr(system energy ) m m mE kT E kT

m mE e e
 − − +

 = = = . 

Next, we measure the multiplicity in energy units, by multiplying ln ωm  by kT: 

( ) ( )

( )

ln
RelPr(system energy ) exp exp ln

exp /

m m m m
m m m

m m m m

E kT E TS
E where S k

kT kT

A kT where A E TS




   − − − −
 = = =       

   

= −  −

 

The energy equivalent of multiplicity depends on temperature:  

the higher the temperature, the more energy a given multiplicity is “worth”. 

ln mE kT TS = = . 

We could restate the aphorism “Multiplicity defies energy” as “Multiplicity attracts thermal energy 

(heat).”  Higher multiplicity allows for higher system energy only for a system in a heat bath, because higher 

multiplicity allows the system to offset its lower Boltzmann factor for higher energy.  For a continuous 

system: 

RelPr(E) = Ω(E)exp(–E/kT) .   

The higher system energy comes from the heat bath (Figure 4.1a), which keeps the system at constant 

temperature.  For a system with low energy and low entropy, heat flows from the heat bath into the system, 

because the increase in system entropy more than offsets the decrease in Boltzmann factor for higher energy.  

When these two effects just balance, the system is in thermal equilibrium.  Hence, the multiplicity (entropy) 

“attracts” heat into the system from the heat bath: Multiplicity attracts heat.  The TS term in the Helmholtz 

free energy represents real energy that goes into the system from the heat bath. 

The most likely macrostate is that with the highest relative probability, 
/mA kT

e
−

, which is that when the 

free energy Am is minimized.   
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Free energy is a measure of the relative probability of a macrostate.  Therefore,  

random energy exchange causes systems to evolve to the state of minimum free energy. 

An explicit statement of absolute macrostate probability of a small energy range dE is: 

( )
/( )

Pr energy ,
( )

( ) is the multiplicity of states in the range .

E kTE dE e
E E dE

Z T

where E dE





−  
 + =  

 

 

Entropy as a Heat Sponge: Energy Absorbed From the Heat Bath 

TBS. 

We show that the entropy of a macrostate of a system at temperature T defines the heat energy the system 

has absorbed from the heat-bath,  through the equation (derived later): 

Q TS= . 

Therefore, if a system undergoes a process taking it from macrostate 1 (state 1) to another (state 2) at the 

same temperature, the heat entering the system is: 

( )1 2 2 1Q T S S→ = − . 

TBS. 

What’s Free About Energy? 

Why is it called “free energy”?  Perhaps a better term would be “available energy”.  Given a system with 

constraints, you can extract energy from it to do useful work, by letting the system evolve spontaneously to 

a more likely state.  In doing so, its state changes from ‘initial’ to ‘final’.  How much useful work can you 

get out?  I.e., how much of the system energy is “free” (available) to do useful work?  It is the difference 

between the free energy” of the initial state, and the free energy of the final state.  If the initial state has 10 J 

of free energy, and the final state has 3 J of free energy, then the maximum work I can get done when the 

system evolves from initial to final state is 7 J.   

But here's the really cool part: the internal energy lost by the system , in some cases, is less than 7 J [Sch 

p154].   

The maximum useful work can be more than the internal energy lost from the initial to 

the final state, because the TS term in the free energy represents  

real energy that goes into the system from the heat bath.. 

That's possible if the final state has higher entropy than initial, and hence the system absorbs heat energy 

during the process, some of which can go out as useful work.  This is exactly the case with a car battery 

(Figure 5.6): the useful (electrical) work out is more than the internal energy loss, because the car battery 

entropy increases while discharging, so it absorbs some heat from the environment.   

ΔU = −310 kJ

Q = +80 kJ

W = 390 kJ
electrical 
work out

 
Figure 5.6  A car batter converts chemical energy and ambient heat to useful work, thereby 

producing more work than the decrease in internal energy. 

Part of that absorbed heat goes out as useful electrical energy [Sch p154].  This means that your car 

battery won't work as well if it's thermally insulated, because it can't absorb any heat.  The available energy 

would be less than normal.  [Reactions which absorb heat are called endothermic.] 
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Another way the useful work can be more than the change in internal energy is if the size of the system 

changes.  If it shrinks, then the ambient does work on the system, some of which could find its way out as 

useful work.  For a system at constant pressure, the Gibbs free energy accounts for this in the +pV term. 

TBS: example of burning hydrogen from [Sch]. 

Gibbs Free Energy and Enthalpy 

Gibbs free energy is just Helmholtz free energy in disguise.  We will see this by considering a sequence 

of 3 systems, each slightly different from the previous, starting with a system minimizing Helmholtz free 

energy, and inevitably ending up at a system minimizing Gibbs free energy.  Thus, we will derive the Gibbs 

free energy from the Helmholtz free energy.  Similar arguments apply to enthalpy, which is just the sum of 

internal energy plus the associated potential energy of pV work [Wan p137t]: 

H U pV + . 

Consider a gas, in a rubber balloon, in a vacuum (below left): 

vacuum

gas

balloon

constant temperature box

atmosphere

gas

flexible container

constant temperature 

heat bath
 

Suppose our balloon can stretch, but for simplicity, always exerts constant pressure on the gas.  If the gas 

expands inside the balloon, it does work on the balloon equal to p dV, which the balloon stores in its stretched 

rubber.  The box is held at constant temperature, and exchanges energy with the balloon/gas system through 

thermal radiation (e.g., black body).  Hence, the gas is also at the same temperature. 

Case 1:  As a first case, take our system to be the balloon and the gas.  The internal energy of the system, 

E,  then includes the kinetic energy of the gas, and the potential energy stored in the stretched rubber of the 

balloon, which equals pV.  There is no other energy, so we have the simple case of Helmholtz free energy 

being minimized.   

Case 2: Define the system as the gas inside, but not including the balloon.  Changing our definition has 

no effect on the physics of anything, but now we would say that the pV potential energy is not in our system.  

But clearly, when the volume expands, the gas particles lose kinetic energy through pV work.  When the gas 

contracts, the gas particles acquire energy from pV work done on them.  The pV work is still a store of 

potential energy connected to the gas.  Our choice of system boundary which excludes this potential energy 

store is perhaps, then, misguided, but we can make up for it by including the pV potential energy “by hand”: 

free energy = U + pV – TS . 

We can think of (U + pV ) as a sort of “effective internal energy.” 

Case 3: Replace the balloon with a flexible, but non-stretchy, gas bag, such as a hot-air balloon.  Immerse 

the balloon in a constant pressure environment, such as the atmosphere.  Define our system to be the gas in 

the balloon.  (Including or not the balloon itself doesn’t matter, since it has no energy.)  In this case again, 

when the gas expands, it loses KE through pV work done on the atmosphere.  When it contracts, it acquires 

KE from the pV work done by the atmosphere on the gas.  The gas itself doesn’t know or care where this pV 

energy goes, or where it comes from.  Hence, the behavior of our 3rd system is identical to that of both the 1st 

and 2nd systems.  In this case, though, it’s even harder to ascribe the pV potential energy to the system itself.  

In fact, the pV potential energy is stored in the gravitational potential energy of the air in the atmosphere, as 
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the atmosphere is lifted by an expanding gas bag, and the atmosphere falls when the gas bag contracts.  But 

the system behavior is the same as if the pV work were potential energy of the system, so we again include 

it “by hand” as a kind of “effective internal energy.”  Since this case arises so often in the real world, we give 

it a special name, Gibbs free energy: 

G ≡ U + pV – TS . 

Generalized Free Energy 

As a generalization beyond Gibbs free energy, we note that the nature of the “external” state-dependent 

energy, which is effectively internal energy of the system, does not matter.  It could be pV work, magnetic 

work, or any other kind of energy store which is returned to the system upon a change of some observable 

property [Wan p137m]: 

free-energy [Reif p??]

(free-energy)

is arbitrary work done by the system, and stored as a function of the state

i i

i

i i

i

i i

U F X TS

d dU F dX T dS

where F dX

= + −

    = + −

   



  

Such a free energy is valid for fixed “forces” Fi: For Gibbs free energy, p is fixed.  For Helmholtz free energy, 

there is no state-dependent energy term, so we have the simplest case: just internal energy minus the heat 

from the bath, F = U – TS.   

For Gibbs free energy, with fixed p, we have the state-dependent energy of pV (FX where F → p, X → 

V), which could have been considered part of the internal energy of the system, so G = E + pV – TS.  The 

case of just pV work is so common in real systems that its free energy has a special name: Gibbs free energy. 

For any other free energy, we add internal energy plus all stores of potential energy, minus TS.  For 

example, a magnetically permeable material responds to an applied magnetic field vector H with a 

magnetization vector M.  The energy stored by the magnetic dipoles in M is: 

magnetic-energy = −H M . 

Therefore, we would define a free-energy for such a system, valid at fixed H, as: 

( )A U pV TS + + − −H M . 

Free energies in general are the sum of the internal energy; plus potential energy terms (often confusingly 

considered “energy out”); minus TS, the contribution to internal energy that comes from the heat bath.  When 

a system changes state, the available work comes from changes in the internal energy, heat energy that comes 

for “free” from the heat bath, and energy returned to the system from a potential energy store (e.g., pV, or 

magnetic).   

More on free energy after the Partition Function, below. 

Free Energy Ladder 

Each set of external constraints has only one meaningful “free energy” associated with it, i.e. some 

thermodynamic function which is minimized at equilibrium.  Three common sets of constraints are these: 

 

Constraints Free energy Comments 

Isolated system (no heat 

exchanged or work done) 

–S Entropy is maximized, so –S is minimized.  This 

isn’t really an “energy” (see Note 1). 

Fixed temperature Helmholtz: F = U – TS Heat is exchanged with heat bath.   
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Fixed temperature and 

pressure 

Gibbs: G = U – TS + pV Heat is exchanged with heat bath, work can be 

done and stored in the ambient pressure. 

Other (general) energy 

stores 

free-energy = 

i i

i

U F X TS+ −  

Heat is exchanged with heat bath, work can be 

done and stored in various state-dependent ways 

(Note 2). 

Notes 

1. –S isn’t really an “energy”, but temperature is not relevant for a system that cannot exchange 

heat, so we don’t define the free energy as –TS.  We could instead consider A = U – TS as the 

free energy of an isolated system, since U is fixed, and T doesn’t matter. 

2. The Fi are generalized forces, and so unrelated to Helmholtz free-energy F. 

Notice that entropy always has a negative sign in front of it, because increasing multiplicity (without changing 

other parameters) will increase likelihood, and therefore be closer to equilibrium.  The minus sign means that 

because higher entropy is more likely, it is lower free energy that is more likely. 

TBS: Grand free energy?? 

Schrodinger’s Cat Says “mu”: Chemical Potential 

A large number of practical systems involve two or more source particles (reactants) combining or 

splitting up to produce one or more final (product) particles.  For example: 

,A B C A B C D+ + + . 

These reactions need not be chemical in nature.  When they are, the “particles” are usually atoms or 

molecules.  In cosmology, the particles may be primordial subatomic particles such as electrons, positrons, 

neutrinos, photons, etc. 

When a system can have a variable number of particles in it, we consider the possibility of adding (or 

removing) one particle to the system, and ask: Is the system more likely to be found (in a macrostate) with 

this added particle, or without it?  And how much more or less likely?  Chemical potential answers these 

questions.  “Chemical potential” is a misnomer, since the reaction need not be chemical.  Some sources use 

the term “electrochemical potential” to try to broaden the term’s scope, but it is still inadequate.  As we will 

show, a better term is “free-energy per particle”, which one might shorten to “particle potential.” 

This section assumes a thorough understanding of macrostate probability and free energy (discussed 

earlier).   

Very brief review of free energy:  A system at constant temperature can potentially be in one of a large 

number of macrostates.  The probability of a given macrostate depends on both its energy (due to the 

Boltzmann distribution), and its multiplicity (entropy): macrostates with more microstates (i.e., higher 

multiplicity = more entropy) are more likely.  Free energy is a way of adjusting the true energy to account 

for multiplicity, so that: 

Free energy is a direct measure of the macrostate relative probability,  

on a logarithmic scale, and with a minus sign: 

/
RelPr( state with free energy )

appropriate free energy for the system .

A kT
macro A e

where A

−
=    

  
 

Recall that free energy also includes any energy stored as a byproduct of the macrostate, i.e. “reversible 

work” such as the pV work in a constant pressure system, or work from surface tension.  Because of this, 

different system constraints require different definitions of free energy.  Any given system has only one 

relevant definition of free energy.  The most common examples of free energy are: (1) a system at constant 

temperature that does no work (e.g., constant volume) is characterized by Helmholtz free energy (F ≡ U – 

TS); and (2) a system at constant temperature and constant pressure (which therefore includes the reversible 
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pV work) is characterized by Gibbs free energy (F ≡ U + pV – TS).  NB: Free energies can only be compared 

between systems at the same temperature. 

The chemical potential of a particle in a system is the free energy cost of adding the particle: 

appropriate free energy for the system
A

where A
N




 


. (5.3) 

The chemical potential is the free-energy cost of adding a particle to the system. 

Thus, we can say μ measures the relative probability of adding a particle to that system.   

Example: for a system at fixed T and V: 

,

( , , )
( , , ) , [Rei 8.7.10 p313]

( , , ) ( , , ) ( , , ) is the Helmholtz free energy for the system .

T V

dF T N V F
T N V where

dN N

F T N V U T N V TS T N V


 

 =  
 

 −  

 

Example: For a system at fixed T and p: 

,

( , , )
( , , ) , [Rei 8.7.12 p313]

( , , ) ( , , ) ( , , ) ( , , ) is the Gibbs free energy for the system .

T p

dG T N p G
T N p where

dN N

G T N p U T N p pV T N p TS T N p


 

 =  
 

 + −  

 

Chemical potential includes both real energy and system multiplicity as a function of N, the number of 

particles of a species.  The chemical potential can be positive or negative.  If μ > 0, the system is more likely 

to be found without the particle, because adding it would increase the system free energy, and removing such 

a particle decreases the free energy.  If μ < 0, the system is more likely to be found with the particle, because 

adding it would decrease the free energy. 

Many sources define μ ≡ (∂U/∂N)S,V.  This is equivalent to our definition through some identities [Reif 

p313], but it is much less useful.  Definition (5.3) is directly applicable to most situations.  Note that it need 

not specify which variables to hold constant, since that is implicit in the one-and-only applicable free-energy 

for the system, A. 

[The absolute or relative nature of chemical potential is subtle.  Note that free energy A may include an arbitrary 

additive constant (per particle) for its energy term, and often another arbitrary additive constant (per particle) for its 

entropy.  These constants therefore affect μ.  However, in some cases, μ is an absolute quantity, without an additive 

constant.] 

For some applications, only differences in chemical potential are important, and such applications 

tolerate an additive constant in μ.  (See below.) 

The chemical potential for a particle is a function of the macrostate, just like particle density, or pressure.   

The chemical potential is not an intrinsic property of a particle.   

Sometimes, the chemical potential is misleadingly described as the “energy cost” of 

creating a particle.  However, it is the free energy cost, which is different,  

and it’s the cost of adding such a particle to a system (rather than creating it). 

As previously noted, “probability rules,” not energy; equivalently, “free energy” rules (not energy).  

Therefore, we can think of the chemical potential of a particle as the “probability cost” of adding a particle, 

measured by free energy.  When μ > 0, the system evolves toward fewer particles (if it can), to lower its free 

energy.  When μ < 0, the system evolves toward more particles, again to lower its free energy. 

For example, consider a monatomic ideal gas at constant temperature (not constant entropy), and 

constant volume.  If we add an atom, the system energy increases because the particle must acquire a kinetic 

energy of (3/2)kT.  That is the true energy cost.  However, the entropy of the system also increases, which 

means some heat will flow in from the thermal bath to the system (entropy attracts heat).  So the system 
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doesn’t lose probability according to the full energy cost of adding the particle: the heat inflow offsets some 

of the energy cost.  I.e., the entropy increase results in a heat inflow: 

đQ T dS=  . 

So the probability cost of creating the particle (in units of energy) is only the difference between the true 

energy increase and the energy inflow from the heat bath: 

probability cost the change in free energydE T dS dA where dA −  =  . 

Another way to think of this is: chemical potential for a particle is the real energy cost (dE) minus the 

entropy benefit (T dS).  Once again, this includes the “multiplicity defies energy” principle for the particle. 

Systems with different kinds of particles:  Many systems are a mixture of different kinds of particles, 

which we label here with the subscript i.  Then instead of N to specify the number of particles, we have a set 

of {N} ≡ {N1, N2, ... } to specify the number of each kind of particle.  Then each kind of particle has its own 

chemical potential: 

 
 ( )

 ( )
, ,

( , , ,...) , , , relevant free energy for the systemi
i

A T V N
T V N where A T V N

N



 


. 

Gibbs Free Energy and Chemical Potential:  For many systems, especially chemical ones, the pressure 

is fixed, and the volume varies.  We have seen previously that this leads to Gibbs free energy:  G ≡ E + pV – 

TS.  This is because the work done by the system expanding against the pressure (1) is a store of energy, (2) 

is a function of the system state, and (3) is returned when the system contracts.  Therefore, that work can be 

included as part of the “total energy” of the system [Wan p137t].  The chemical potential is always defined 

as the change in free energy per particle, using the one-and-only free energy that is appropriate for the 

constraints of the system.  For constant pressure, then, the chemical potential is: 

,

probability cost of one particle

(system at constant , ) .
T p

dE pdV TdS dG

dG
T p

dN


= + −  →

 
   

 

 

For reasons I don’t understand, many references now consider a special case: for constant pressure and 

temperature, G is extensive, i.e. is proportional to N.  In this case, the chemical potential is the same for any 

sized system (i.e., any number of particles), because any sized system has the same particle density, and 

temperature.  Each particle “feels” the same environment, no matter how many other particles are in the 

system.  Therefore, for a system of just one particle type: 

/ (system at constant , )G N T p = . (5.4) 

This situation of each particle “feeling” the same environment comes about for any system when we fix two 

intensive properties (in this case, pressure and temperature). 

Note that in this case, G for the system may include an arbitrary additive constant for the energy of each 

particle, and possibly for the entropy.  (Such additive constants are extensive: they scale with the system size; 

they are constant only for a given system size.)  Therefore, the μ in (5.4) is not absolute, since it includes any 

per-particle additive constants. 

The chemical potential is sometimes described as the “Gibbs free energy per particle.”  

That is misleading on several counts. 

For one, it confuses the fact that chemical potential is the free energy cost of adding a particle, using the one-

and-only free energy that is relevant for the system at hand.  In particular, Gibbs free energy is only 

meaningful for systems constrained by constant temperature and pressure.  For systems with other 

constraints, the Gibbs free energy is meaningless.  For example, systems that include other forms of reversible 

work, such as surface tension or magnetic work, use a different free energy.   
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Secondly, it is easy to misinterpret the statement to mean that chemical potential is independent of system 

state.  In fact, chemical potential is a function of the system state.  For example, for a fixed-volume system, 

μ depends on pressure, N, etc [Sch p165]. 

And finally, for systems of multiple particle types, each type has its own chemical potential.  The 

description above says nothing about how to divide up the Gibbs free energy among different particle types, 

and assign each type some piece of the total Gibbs free energy.  Once again, we see that the definition (5.3), 

μ ≡ ∂A/∂N, avoids such confusion. 

Maxwell relations for chemical potential:  TBS.   

Chemical Potential of Photons 

Photons are different than most other particles because their number is not conserved.  Systems freely 

create (radiate) or absorb photons in any number.  Therefore, in equilibrium, the chemical potential of a 

photon must be zero: if it were positive, the system would absorb some photons and decrease the free-energy.  

If it were negative, the system would radiate more such photons, and again decrease the free energy.  The 

photon number is stable (i.e., in equilibrium) only when there is no free-energy benefit to either absorb or 

create photons. 

Each photon frequency is considered a separate particle “type”.  Therefore, each frequency has a 

chemical potential of zero.   

Comments on the Chemical Potential 

At least one reference says μ is due to inter-molecular forces.  The potential energy of 

such forces are sometimes part of μ, but such forces are not required.   

In fact, in [Car] problem 9.2, he asks you to compute the chemical potential of an ideal gas.  An ideal gas, by 

definition, has no inter-molecular forces.  If chemical potential were due to inter-molecular forces, an ideal 

gas particle could not have μ ≠ 0. 

As a free energy, the chemical potential includes kinetic energy (KE) per particle, potential energy (PE) 

per particle, possibly other energies, and entropy per particle: 

( ) ( ) for one particleKE PE TS = + − . 

[?? However, recall that the potential energy and the entropy S both include arbitrary zero points.  If we 

change the zero of either, don’t we also change the zero of μ, at least, for any particle affected by the change??  

For example, if we add an arbitrary constant to an electrostatic potential energy, then all charged particles 

have their μ changed by that amount.  However, the μ for photons and neutral particles such as atoms, 

molecules, and neutrons, are not affected.  Consider gas particles when gravity is significant, or charged 

particles in an electric field.] 

Free Energy for Unusual Systems 

To illustrate the generality of free energy, we consider here an unusual kind of system that expands 

against a spring.  TBS. 
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6 Classical Statistical Mechanics 

So far, we’ve mostly talked in terms of quantum states.  But statistical mechanics is often useful in 

analysis of classical macroscopic systems, whose detailed quantum behavior is not important.  For such cases, 

we derive some simple rules to obtain SM equations for classical systems.  But remember that statistical 

mechanics cannot exist outside quantum mechanics, because there is no way to count states without quantum 

mechanics.  Our simple rule is based on the fact that, for each dynamic variable of a system, the number of 

quantum states of a system equals the phase space volume divided by Planck’s constant, h: 

1 1 2 2

1

1 1 phase-space-volume
...

# dynamic variables (degrees of freedom) of the system

f

i i i system i f ff f
i

n dx dp n n dx dp dx dp dx dp
h h h

where f

=

=       = = =



   

The continuous energy approximation: As before, since the detailed structure of the quantum energy 

states is not important, we aggregate discrete quantum states into a continuous energy density of states.  For 

single particles: 

( ) quantum multiplicity of state

( ) continuous energy density of states

j jg g E dE where g j

g E

→ 


 

This converts single-particle formulas with a summation over energies into an integral over energy.  For 

example, the partition function goes to: 

1 1
0

1

( ) ( ) ( )jE E
j

j

Z g e Z dE g E e
  

 − −

=

= → =  . 

For a full system, we generally know the hamiltonian, which gives E as a function of p and x: 

1 1 2 2( , , , , ... , , ) ( , )

# dynamic variables (degrees of freedom) of the system

f f i iE H p x p x p x H p x

where f

= 


 

H is a function of the phase-space state of the system.  There are many states with the same energy, but rather 

than finding ω(E) explicitly, we use the sum-over-states formula for Z, and count each hf units of phase space 

as one quantum state: 

microstates
1 1

phase
space1

...
( ) ( , )s

f fE
i if

s

dx dp dx dp
Z e H p x

h

 −

=

 =  . 

However, Z(β) is arbitrary up to a multiplicative constant, so we can drop the hf: 

1 1( ) ... ( , )f f i iZ dx dp dx dp H p x =  . 

Example: One Dimensional Gas: TBS 

Terms of Endearment 

You see the same mathematical terms over and over in SM, and they generally have the same meaning 

everywhere.  So here’s a simple summary of each common mathematical term.  Isolating internal energy on 

the left hand side, we have: 

dU dN T dS P dV F dX= + − − . 

Alternatively, we can put free energy (described below) on the left hand side: 

(free-energy)d dU P dV F dX T dS= + + − . 
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dU The change in internal energy. 

μ dN The free-energy it takes to create/add N particles. 

T dS At constant temperature (i.e., in a heat bath), T dS is the heat energy that flows from the 

heat bath into the system due to an increase in entropy (or out from a decrease).  This is the 

“multiplicity defies energy” principle, also known as the “entropy attracts heat” principle 

(as shown by the canonical ensemble). 

p dV At constant pressure, the work done by the system on its surrounding from volume 

expansion.  The surroundings store this work as potential energy, and it could be considered 

part of the total energy of the system.  p dV is just a special case of F dx work. 

F dX The generalization of p dV, where F is any kind of “force” (force, tension, pressure, etc.), 

and X is the associated “size” of the system (length, area, volume, etc.), such that F dX is 

work done by the system, according to  δW = F dX.  The surroundings store this work as 

energy, and it can be considered part of the total energy of the system.   

Other work terms include σ dA (surface tension times area), and H•dB (magnetic work). 

Enthalpy 

Enthalpy uses the same idea as the Gibbs free energy: the energy of a system at fixed pressure can be 

divided into “internal” energy, U, and the energy stored in the “atmosphere” which provides the fixed 

pressure.  Note that the “atmosphere” doesn’t have to be the earth’s air; it could be a piston, or any other 

energy storage mechanism that depends on a “size” parameter of the system.  In effect, this “external” energy 

store must be included as part of the energy of your system, but we write the “internal” energy and “external” 

energy as separate terms.  For a typical system of varying volume in a fixed pressure, we have: 

H U pV + . 

and this is the true total energy of our system.   

Enthalpy is useful for thermally insulated systems, where the heat flow is zero (Q = 0).  

In this case, all the energy of the system is accounted for in the enthalpy. 

Example: Enthalpy In Action 

Given 1g (10–6 m3) of liquid water at 20 C, force it through a thermally insulated porous plug at 104 atm.  

The plug empties into a room at 1 atm.  What happens to the water?  (I.e., what is the final state of the water?)  

Assume that liquid water is incompressible (same volume at 104 atm as at 1 atm). 

Since the plug is insulated, there’s no heat flow, and enthalpy accounts for all the energy of the system.  

Even though the pressure of the water changes as a result of the process, the pressure is fixed before, and 

fixed after, the process.  Hence the enthalpy measures the total system energy in each case.  We take as our 

initial state the water at 104 atm.  It’s total energy is then: 

( )( )4 6 3(20 ) 10 atm 10 mi i i iH U p V U C −= + = + . 

Since total energy is conserved, the final enthalpy equals the initial enthalpy: 

f iH H= . 

The 104 atm does a lot of work on the water to force it through the plug, so we expect the water 

temperature to rise.  How much does it rise?  The work done to get it through the plug is (104 atm)(10–6 m3), 

but on the other side, the water does (1 atm)(10–6 m3) of work to push the atmosphere out of the way.  The 

difference in work heats the water: 

i f i i i f f f f i i i f fH H U p V U p V U U p V p V=  + = +  − = − . 

But the change in internal energy is just from the temperature rise of the water: 
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( )

4 6 3 6 3
5 2

( ) heat capacity 4.186 J/(g-C)

(10 atm)(10 m ) (1 atm)(10 m )
1 atm 10 N/m

4.186 J/(g-C) (1 g)

239 C

f iU U C T where C

T Use
− −

− =   =

−
  = 

=

 

Whoops.  The liquid water will boil.  So the final state is either a mixture of liquid/gas at 100 C, or pure 

steam at some higher temperature.  The “heat of vaporization” of water at 1 atm is 2,260 J/g.  Note that to 

vaporize water, we must add energy to do 2 things: (1) overcome the attractive potential between liquid water 

molecules, and (2) push the atmosphere out of the way to make room for the greater volume of steam.  In 

other words, 

“Heat of vaporization” is really “enthalpy of vaporization.” 

We must consider the process in at least 2 steps: first, raise the water temperature to 100 C, then convert 

some (or all) of the water to steam.  As above, the work done is: 

9 2 6 3 5 2 6 3(10 N/m )(10 m ) (10 N/m )(10 m ) 1,000 Jf f i ip V p V − −− = − = . 

Raising the water temperature requires (100 C - 20 C)(4.186 J/(g-C)) = 335 J, leaving 665 J to boil the water.  

It would take 2,260 J to boil the whole gram of water, so the process boils: 

665 J
0.29 g

2260 J/g
= of water. 

Thus the final state is 0.71 g of liquid water and 0.29 g of steam, both at 100 C. 

The Partition Function 

The partition function was briefly introduced earlier: 

microstates
/

1

( ,...) , are microstates and their energiesrE kT
r

r

Z T e where r E
−

=

  . 

It is dimensionless, and may be a function of any system parameters, such as N, V, P, etc.  For brevity, we 

generally omit the extra parameters, and write it only as a function of T (or β).  Taken as a function of 

temperature T, the partition function Z(T) defines all thermodynamic properties of a system.  In practice, we 

often use it to compute (as a highly accurate approximation) the free energy of a system.  But from the free 

energy, we get all other thermodynamic properties.   

The partition function is also sometimes used as the normalization constant for the relative probabilities 

of microstates, and to compute the average energy for a system.  The use as normalization constant is trivial, 

though, and simply restates a basic probability definition that doesn’t require the bother of defining any 

partition function.  Using the partition function to compute average energy is more interesting, because it 

starts us down the path of using it to compute all other thermodynamic properties, as well. 

The partition function is defined for all systems for which the Boltzmann distribution 

applies, from subatomic to macroscopic systems.  In other words, the partition function is 

defined for all distinguishable systems in thermal equilibrium with a heat bath. 

Note that for a system held in a heat bath, the system energy is a variable (not a constraint).  The system may 

have more energy than the average, or less, in principle, all the way down to zero.  Differing much from the 

average is extremely unlikely for large systems, but for mathematical expedience, it is still counted as a 

possibility in Z(T). 

When our “system” is a single particle, we often note that by calling the partition function Z1(T), where 

T is the temperature of the heat bath.  For any system, we can call its partition function Z(T). 

Since the partition function is a sum of relative probabilities: 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

6/6/2023  18:41 Copyright 2002 - 2023 Eric L. Michelsen.  All rights reserved. Page 70 of 116 

The partition function includes an arbitrary multiplicative constant.   

This arbitrariness also reflects the arbitrary zero of energy.  Changing the zero-energy simply multiplies the 

partition function by a constant, with no effect on the physics. 

This following discussion relies on the Boltzmann distribution.  Recall that the Boltzmann distribution 

gives the relative probability of a system, in thermal equilibrium with a heat bath, to be in a single microstate 

of given energy (see “Nuts and Boltzmann,” earlier): 

RelPr(microstate of energy ) exp( / )s sE E kT= − . 

The partition function is also called the “sum of states,” which so far as I can tell, means absolutely 

nothing.  It should be called the “sum of relative probabilities of all the microstates,” but that doesn’t roll off 

the tongue so well. 

We proceed on these lines: 

1. Partition function as a normalization factor. 

2. Using the partition function to compute average energy and such. 

3. Partition function tells all. 

4. Partition function and free energy. 

The partition function as a normalization factor:  As shown in the section on the Boltzmann 

distribution, Z(β) is the sum of relative probabilities of all the microstates, or equivalently, the sum of the 

relative probabilities of each system energy value.  For a system with discrete energies: 

( ) ( )

system
micro- energy
states levels

1 1RelPr(state ) RelPr(energy )

( ) exp exp , multiplicity of energy

j

s m m m m

s ms E

Z E E where E    

= =  

 − = −     . 

This readily generalizes to a system with continuous energies: 

min
RelPr(energy )

( ) ( ) exp( ) ( ) energy density of microstates
E

E

Z dE E E where E   

 



 −  . (6.1) 

The partition function serves as the normalization factor to convert the relative probability of the system 

being in some microstate, or having some energy, into an absolute probability: 

( )

( )

microstates

1

microstates

1

RelPr( ) exp( )
Pr(state )

( )
RelPr(state )

RelPr( ) exp( )
Pr energy

( )
RelPr

r r

s

m m m
m

j

j

E E
r

Z
s

E E
E

Z
E





 



=

=

−
 = =

−
= = =





 

But this is trivial, and simply uses the letter Z for something that is already well known. 

Partition function for average energy, and such:  Another use for Z(β) is to compute average energy.  

This is an important first step in understanding its broader use.  Recall from basic statistics that for any 

discrete random variable, say E, its average is: 

Pr( )i i

i

E E E=  .  (6.2) 

Therefore, for the energy of a system, we have: 
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microstates microstates microstates

1 1 1

RelPr( ) 1
Pr( )

( ) ( )
sEs

s s s s

s s s

E
E E E E e E

Z Z



 

−

= = =

= = =   . 

This is exact for all systems, tiny or large.  But purely as a mathematical trick, we notice that the factor: 

microstates microstates

1 1

1 1 1
( )

( ) ( ) ( )

s s

s s

E E
s

E E

s s

e E e

E e e Z
Z Z Z

 

 




     

− −

− −

= =


= − 



 −  − 
= − = =

   
 

So far, it gives us nothing new, simply using Z for something already well-known.  As another step, notice 

that: 

1
( ) ln ( )

( )
E Z Z

Z
 

  

−  
= = −

 
. 

This is still exact for all systems.   

Partition function tells all:  In the end, given the partition function Z(β) for all values of β, we can 

compute every (thermodynamic) thing there is to know about the system.  That is, a system’s thermodynamics 

is fully characterized by its partition function.  Recall that a system is also fully characterized by its energy 

density of microstates ω(E).  Therefore, knowing the partition function and knowing the density of 

microstates are equivalent.  How are the two related?  Recall the partition function for continuous systems, 

(6.1): 

min
RelPr(energy )

( ) ( ) exp( ) ( ) energy density of microstates
E

E

Z dE E E where E   

 



 −  . 

This is the definition of the Laplace transform of ω(E), with transform variable β.  Recall the Laplace 

transform is uniquely related to the original function.  Therefore: 

The partition function Z(β) is the Laplace transform of the density of states ω(E),  

so knowledge of one is equivalent to knowledge of the other.   

Either one fully defines the thermodynamic properties of the system. 

However, in practice, you usually need to know ω(E) to find the partition function, so this Laplace transform 

relationship isn’t usually very useful.  [Pathria’s example where it is useful??]  We show shortly that the 

partition function is a convenient intermediate step to go from the density of microstates ω(E) to the free-

energy A(T, ...).  Then the free-energy gives us other properties from simple derivatives. 

Example: Thermodynamic zipper 

A horizontal zipper has N links. Each link has two states: closed with energy 0, and open with energy .  

The zipper can only unzip from the left end and the sth link cannot open unless all of the links to its left 

(1, 2, ..., s–1)  are already open. 

• • •

s
N  

Figure 6.1  Zipper requires energy ε to open each link. 

(a) Find the partition function for the zipper. 

(b) Find the mean number of open links.  These kinds of questions always mean “as a function of 

temperature.” 
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(c) Evaluate your result in both the low and high temperature limits.  (The high temperature limit is 

tricky.)  Explain conceptually each result of low, middling, and high temperatures. 

Answer:  (a)  We use the variable s as the state variable, defined as number of open links.  s runs from 

0 to N.  The system energy is a function of s, E(s) = sε.  Then the partition function is: 

( ) ( ) ( )

( )
( )

Relative Pr
of st

s

t

microstate 1

0 0 0

a e

1
( ) exp exp exp . Use

1

1 exp ( 1)
( )

1 exp

N N n n
s i

k

k s

k

s i

r
Z E s ar a

r

N
Z

    






−

= = = 
  

−
 = − = − = −   =  −

− − +
=

− −

   
 

This is exact, for all N. 

(b)  The average number of open links: 

( ) ( )( ) ( )( )

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

1 1
ln ( ) ln 1 exp ( 1) ln 1 exp

1 exp ( 1) exp1

1 exp ( 1) 1 exp

1 exp ( 1) exp

1 exp ( 1) 1 exp

E
s Z N

N N

N

N N

N

  
    

   

  

 

 

−  − 
 = = = − − + − − −  

 + − + −
= − − 

− − + − − 

+ − + −
= − +

− − + − −

 (6.3) 

This is exact, for all N. 

(c)  We expect at low temperature the zipper is fully closed, since the thermal energy is too low to open 

even one link.  Mathematically, as T → 0, β → ∞, exp(–βε) → 0: 

0

0 0
lim 0

1 1T
s

→
= − + = , 

as expected. 

The high temperature limit turns out to be more complicated than I expected, and you can skip this if 

you want.  At high temperature, there is unlimited energy, and we might expect every link to open.  As 

T → ∞, β → 0, exp(–βε) → 1.  The denominators go to zero in <s>, but a 1st order expansion of  

(1 – exp(–x)) = x + O(x2) resolves the problem: 

( )
( )

1 1 1
lim 0

1T

N
s

N  →

+ 
= − + =

+
. 

Whoa!  Can this be right?  Yes.  We’ll analyze the high-temperature limit in two different ways.  Consider 

the temperature of our zipper, as a function of energy (from (3.2)): 

( )
1

( ) , ( ) ln ( ) measurable energy change
dS

T E S E k g E E where E const
dE

−
 

         
 

. 

Strictly speaking, temperature is only defined for a continuous g(E).  If N is large, we can take the states as 

continuous, and to define a temperature, we take ΔE ~ ε.  The approximate (or “smoothed”) density of states 

is g(E) = 1/ε, since there is only one state of any given energy, and energies are spaced by ε.  There is only 

one microstate for each energy E, so: 

1

( ) ln1 0 (constant), 0, ( )
dS dS

S E k T E
dE dE

−
 

= =    =     = →  
 

. 
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The temperature of the zipper is hotter than any heat bath at finite temperature.  It will always transfer energy 

from the zipper to the heat bath, until it has no more energy to give.  Thus <s> = 0.  This is an unusual system 

(constant entropy), and such weird systems fairly often have bizarre behavior like this. 

A slightly different analysis avoids any zipper temperature by directly considering the entropy of the 

heat-bath/zipper combined system.  It is an isolated system, and so equilibrates in the macrostate of maximum 

entropy.  The entropy of the zipper is fixed at 0, so the maximum entropy of the system occurs at the 

maximum entropy of the heat bath.  The heat bath has finite (and positive) temperature, so its maximum S(E) 

is at maximum E.  Thus all the energy leaves the zipper, and goes into the heat bath.  The zipper has no open 

links, as above.  But there is still more to the story. 

The careful reader must now wonder about <s> at middling temperatures.  The entropy argument above 

suggests that energy will always leave the zipper until its energy is zero.  How does that square with <s> 

found in part (b), which is sometimes positive?  To illustrate the principle, consider a zipper of only 3 links, 

at a temperature such that exp(–βε) = ½.  Then: 

3

0

RelPr( 0) 1, RelPr(1) 1/ 2, RelPr(2) 1/ 4, RelPr(3) 1/ 8 .

RelPr( ) 15 / 8, Pr( ) RelPr( ) /

Pr(0) 8 /15, Pr(1) 4 /15, Pr(2) 2 /15, Pr(3) 1/15.

i

s

Z i s s Z

=

= =      =      =      =  

 = = 

=  = = =  

  

This shows that the most likely state is that of zero energy, but there are always thermal fluctuations.  In this 

case, the probability of an excited state is nearly ½.  Let’s compute the average energy.  From the above 

probabilities, and also from (6.3): 

8 0 4 1 2 2 1 3 11 4 (1 / 16) 1 / 2 11
,

15 15 15 / 16 1 / 2 15
E E  

 +  +  +  
= = = − + = . 

For N >> 1, the probability of an excited state approaches ½.  In other words, when kT ~ ε, the probability 

of an excited zipper is finite.  In the high-T limit, though, the entropy of the heat bath is huge, and essentially 

draws all the energy into it, leaving <s> → 0. 

Summary:  At low T, <s> = 0, because there is no energy to open a link.  At high T, <s> = 0 because 

the entropy change of the heat bath for even one link’s worth of energy is so huge, it overwhelms the energy 

fluctuations in the zipper, which approach zero.  In the middle, the energy fluctuations of the zipper are 

substantial, and therefore the average energy (number of open links) is finite. 

Perhaps I should find a simpler example for a partition function.  TBS. 

Free Energy and the Partition Function 

When considering the possible macrostates of a system, what really matters is the most-probable 

macrostate, and to be meaningful, it must be the only macrostate with any significant chance of occurring.  

To compute free-energy from the partition function, we use the general conclusion that: 

For macroscopic systems,  

the partition function is dominated by the one most-probable macrostate.   

Why do we bother with a partition function?  If we know the most-probable state, shouldn’t we just use 

that?  Yes.  But often we don’t know the most-probable state.  And mathematically, it may be easier to 

compute the complete sum Z ≡ sum-of-(all)-microstate-relative-probabilities [Rei p219b].  In the 

thermodynamic limit (macroscopic systems), the most-probable state and the complete sum are equivalent 

(to 10 orders of magnitude or so), so we do whatever’s easier. 

The equilibrium macrostate of a system is simply the most-likely macrostate in thermal equilibrium; this, 

in turn, is that macrostate with the largest number of likely microstates, i.e. largest product of (Boltzmann-

factor)  (#-microstates): 
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( ) ( )most-likely most-likely
energy

levels

arg max or arg max ( )m

m

E E
m

E E

E e E E e
  − −

= 

= = , 

where “arg max” means pick the argument Em that maximizes the following expression.  Therefore in 

principle, we can find the equilibrium macrostate by first identifying all the microstates, their probabilities, 

and the macrostate for each, and pick that macrostate with the largest likelihood =  (Boltzmann-factor)  (#-

microstates).  This is only meaningful if the most likely macrostate has probability near 1, so that all other 

macrostates are so unlikely they can be ignored.  For systems with a large number of subsystems, N  (e.g., 

large number of particles), this condition is true: only one macrostate has any reasonable chance of occurring. 

In practice, though, finding the “most likely” thing often has no closed-form mathematical expression.  

Therefore, we use an approximation to the most-likely macrostate (Figure 4.2): for systems of large N, almost 

all of the likely microstates are crowded very near the most-likely macrostate; therefore, it’s usually more 

convenient to simply sum the relative probabilities of all the microstates, as an approximation to the number 

of likely microstates near the most-likely energy.  This often allows closed-form mathematical answers, 

which would otherwise be mathematically untenable.  For large systems, it is indistinguishable from the 

“exact” answer. 

We now show that for systems with a large number of component subsystems (systems of large N), there 

is a simple approximation to the Helmholtz free energy of the system from the partition function: 

( ) ln ( ) (large system)A kT Z  − . 

Here’s why: for large N, there will be only a few terms in the partition function which dominate all the other 

terms combined.  These few terms all have very nearly the same energy, so they can be lumped together as a 

single multiplicity for that energy: 

( ) ( )

microstates near
maximummicrostates

1

( ) exp / exp /

is the dominant energy in the sum .

m m m max

m m

max

Z E kT E kT

where E

  

 

=

= −  −

 

   

This means that the probability of the system being at Emax is essentially 1: 

( )

( ) ( )

microstates near
maximum

exp /
( )

Pr( ) 1

m max

m
max

E kT
Z

E
Z Z




 

−

=  =


. 

This is as we expect: for systems of large N in thermal equilibrium, there is only 1 realistic macrostate. 

Now if Z(β) has only one significant energy Emax, then we can rewrite Z(β) or Z(T) to follow the reasoning 

of free energy.  We can replace the sum of the few ωm near Emax with a single ωeff, since they all have 

essentially the same energy, Emax: 

( )( ) exp / is the dominant energy level in the sumeff max maxZ T E kT where E − . 

Now we write ωeff in terms of energy by putting it into the exponential: 
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( )( ) exp(ln ) exp / writing as an exponential

ln
exp ln writes in terms of energy

( )
exp ( ) ln

( )
exp

eff max eff

max eff
eff eff

max max
max eff

Z T E kT

E kT
where kT

kT

E TS E
where S E k

kT

A T
wher

kT

 


 



 −          

− + 
=      

 

− 
= −     

 

 
= − 

 
( ) free energy of the macrostate at tempe A T T

 

Once again, we’re simply quantifying how multiplicity (ωeff) defies energy, and measuring multiplicity in 

units of energy.  Solving for A(T) yields the free energy from the partition function:  

( ) ln ( ) (thermodynamic limit)A T kT Z T −  . 

Note that since Z is defined only up to a multiplicative constant, A(T) is defined only up to an additive 

constant, which is always true for energy (free or otherwise). 

Note that for tiny systems, such as atoms, “temperature” is not defined, and therefore, 

neither is free energy.  The above approximation only works for large systems,  

where the thermal equilibrium macrostate is sharply defined. 

What kind of free energy?   

The partition function is calculated for a given set of constraints,  

just like the various kinds of free energies.   

For a system constrained as for Helmholtz free energy (fixed T, no work done), we compute Z(T) within 

those constraints, and A = –kT ln Z gives Helmholtz free energy.  If the system had different constraints, such 

as those of Gibbs free energy (fixed T and p), then Z(T) is different, and G = –kT ln Z gives Gibbs free energy.  

Computing Z(T) within the system constraints automatically give the one-and-only meaningful free-energy 

for the system. 

Big Partition Functions From Little Ones 

To effectively use the partition function to compute free energies, we must know how to construct big 

partition functions from little ones.  It is quite common to have a system comprising a large number of simple 

subsystems, e.g. a gas of particles.  We know how to find the partition function for a single subsystem with 

known energy states.  Is there a simple relationship between the 1-particle partition function and the N-

particle partition function?  Of course there is. 

Distinguishable Subsystems 

We start with a simple case: we define a new system as the combination of two smaller subsystems, A 

and B.  For now, we take them to be distinguishable, so no exclusion principle or quantum statistics applies.  

A microstate of the combined system is defined by specifying the two microstates of the subsystems.  If the 

two subsystems interact, and their energies depend on each other’s states, then we can’t compute anything.  

But if the two subsystems are independent, we have a simple result: the probability of being in two given 

microstates of the subsystems, which is the same as one microstate of the combined system, is just the product 

of the two probabilities: 

/ / ( ) /

RelPr( in with energy , and in with energy ) RelPr( in )RelPr( in )

A B A B

A A B B A B

E kT E kT E E kT

A S E B S E A S B S

e e e
− − − +

=

= =

 

This is nothing more than the statement that the combined system, with energy EA + EB , follows the 

Boltzmann distribution.  A few short steps of algebra then shows [Wan p86t]:  
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( )( )

( ) ( )
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Independent distinguishable subsystems combine to give a partition function  

that is the product of the individual partition functions.   

This immediately gives, for a system of N identical, but distinguishable, noninteracting subsystems: 

( )1( ) ( ) (identical, distinguishable, noninteracting subsystems)
N

NZ T Z T=   . (6.4) 

As an example, consider an Einstein solid (a crystal of harmonic oscillators) made of spin-1/2 fermions 

with a magnetic dipole moment.  Besides the quantum spatial state (oscillator) energy, there can be spin 

energy, either from an external magnetic field or from adjacent-spin interactions.  The spin energy is 

independent of the spatial state (in fact, we can consider the spatial and spin components as separate 

subsystems).  Then the total energy separates into a sum of spatial + spin, and therefore the partition function 

factors into a product of spatial  spin: 

( ) ( ) ( ) ( ) ( ) ( )spatial spin spatial spinE T E T E T Z T Z T Z T= +  = . 

Identical Subsystems 

If the subsystems are indistinguishable, such as atoms, then we should divide by N!, to account for the 

N! ways that the N-particle quantum state has been overcounted in the above equation (i.e., we should use 

correct Boltzmann counting): 

( )1( )
( ) (identical, indistinguishable subsystems)

!

N

N

Z T
Z T

N
=  . 

This assumes that the particles are so sparse that multiple-occupation effects are negligible.  If N is fixed, 

though, then N! is simply a multiplicative constant.  Since the partition function is defined only up to a 

multiplicative constant, the N! has no effect when N is fixed. 

However, correct Boltzmann counting will be critically important later, for the grand partition function, 

where N is a thermodynamic variable. 

A microscopic individual subsystem, such as an atom, is too small to have a temperature or free energy, 

but a large number of such subsystems (e.g., gas of atoms) do have a temperature and a free energy.  This 

gives the simple result that: 

1ln ( ) ln ( )NA kT Z T NkT Z T= − = − . 

Here again, for identical subsystems, there would be a (–ln N!) term, but that is an additive constant to the 

(free) energy.  Since energy and free energy are only defined up to an additive constant, the (–ln N!) term can 

be dropped.  The important point is that: 

 ln Z1(T), for a single tiny subsystem, doesn’t mean anything, because the subsystem is 

too discrete to have a temperature or free energy.  But N ln Z1(T) is meaningful for large 

N, because it describes a system with a nearly continuous energy density of microstates. 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

6/6/2023  18:41 Copyright 2002 - 2023 Eric L. Michelsen.  All rights reserved. Page 77 of 116 

For example, a normal six-sided die has an average roll of 3.5.  If I ask you to predict a single roll of a 

die, knowing the average tells you nothing.  However, if I ask you to predict the sum of a billion rolls, 

knowing the average tells you a lot [Wan p11m]. 
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7 The Ensembles 

Whole chapter under construction. 

There are 3 main classes of systems we consider, distinguished by their constraints.  An ensemble is a 

(usually imaginary) set of systems in identical macrostates.  Here, we use: 

N # of particles (or moles, or quantity) of a system 

E energy of a system 

These 3 classes of systems lead to 3 kinds of ensembles: 

Microcanonical ensemble (MCE) N fixed, E “essentially” fixed 

Canonical ensemble (CE) N fixed, E variable 

Grand canonical ensemble (GCE) N, E both variable 

Ergodicity applies to all the ensembles, i.e. the time average of any observable (macroscopic) quantity 

equals the ensemble average (except for a few unphysical concoctions).  This is equivalent to saying that 

given enough time, the system will visit a representative set of microstates.  (However, in practice, it cannot 

visit every microstate, because that would take inconceivably many multiples of the age of the universe to 

happen.) 

Microcanonical Ensemble 

A microcanonical ensemble is a set of systems, where each is (almost) completely isolated from its 

surroundings: no energy or particle exchange, no work done.  The microcanonical ensemble is an unphysical 

idealization used to develop methods of calculating thermodynamic quantities from microscopic physics.  

There are some problems defining entropy [e.g., Pathr sec. 1.4], so theorists usually allow some tiny variation 

in system energy (here called ΔE).  In the discussion surrounding eq. (3.5), we show in detail that absolute 

entropy can be defined (independent of ΔE).  [I’m not sure the “ensemble” idea is a good one.] 

TBS.   

System of (nearly) fixed energy [Hua p176b, Kub p7b], volume, particle number.  Don’t appeal to 

“classical” thermodynamics; pretend we don’t know thermodynamics.  T is defined and it is intensive (see 

definitions of equilibrium, temperature, etc., above). 

(Ordinary) Canonical Ensemble 

A canonical ensemble is a set of systems, each in thermal equilibrium with a large heat bath at a fixed 

temperature T.  This means heat can be exchanged with the heat bath, but no other exchanges occur: no 

particles or work. 

Many works have the systems in an ensemble exchanging stuff with each other.  This is not necessary, 

and I think confuses the real issues.  Such works have a single system in the ensemble use all the other 

systems in the ensemble as their heat bath.  However: 

The nature of the heat bath is irrelevant, and in particular,  

it need not be other identical systems.  Only its temperature matters. 

TBS.  Can’t fix energy; it must be allowed to fluctuate. 
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Helmholtz free energy: ( , , ) ln
F F

A N V T U TS kT Z p
N V


 

= − = −  = −
 

. 

Grand Canonical Ensemble 

A grand canonical ensemble is a set of systems, each in thermal equilibrium with a large heat bath 

(reservoir) at a fixed temperature T, and which can also exchange particles with the reservoir.  Thus heat and 

particles can both be exchanged with the reservoir, but no other exchanges occur: no work. 

Many works have the systems in an ensemble exchanging stuff with each other.  This is not necessary, 

and I think confuses the real issues.  Such works have a single system in the ensemble use all the other 

systems in the ensemble as their heat and particle bath.  However: 

The nature of the heat and particle reservoir is irrelevant, and in particular, it need not be 

other identical systems.  Only its temperature and chemical potential matter. 

TBS. 

( )
microstates

0 0

( , , ) labels the microstates [Sch 7.7 p258]

ln

sE N

N s

V e where s

kT pV

 
 


− −

= =

=

 = − = −

 Z

Z

 

Though I think it’s confusing, the grand partition function is sometimes written in terms of “fugacity,” 

z, by pulling out the chemical potential factor z = exp(βμ): 

0 0

( , , ) ( , , ) ( , , )N N

N N

V e Z V N z Z V N where z e    
 

= =

= =  Z . 

This hides the relative nature of the energies with respect to the chemical potential. 
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If the particles are distinguishable, the factors of N! are not present. 

Quantum mechanically: 
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Equipartition of Energy 

Equipartition of energy is a classical result, not strictly true quantum mechanically.   

Short version: anything that stores energy is a “system.”  Ergo, any dynamic variable, x (a position or 

momentum) whose value determines its energy content (position for potential energy, momentum for kinetic 

energy), is a “system.”  Any ensemble of systems in thermal equilibrium follows the Boltzmann distribution 

for energy: 

pdf(microstate with energy ) , 1 /EE e where kT − =  for continuous states. 

Knowing the energy E(x) as a function of the dynamic variable x, and plugging into the Boltzmann 

distribution, gives the PDF for x:   

( )
( )pdf( ) ( )

E x
E x

all x

e
x where Z e dx

Z




−
−=    =  . 

Integrating energy, weighted by pdf(x), gives the average energy of a system: 

( )( )

( ) pdf( )

E x

all x

all x

E x e dx

E E x x dx
Z

−

= =


 . 

Therefore, any dynamic variables whose energy functions have the same form (e.g., 2
( )E x Cx= ) will store 

the same average energy in thermal equilibrium.  For this quadratic form, do the math, and / 2E kT= . 

Some references overcomplicate the derivation, and miss the real point.  The key is that you can consider 

any term in the total system energy as a “system” of its own [Sch ??].  For example, in the boring example 

of a particle in 3D space, you can consider its x-motion as a system in thermal equilibrium with the “systems” 

of y- and z- motion, and any other terms (say, potential energy).  A gas of such particles is an ensemble of 

these systems at a fixed temperature, and hence follows the canonical (i.e. Boltzmann) distribution.  The rest 

is just math (following the short version above): 

pdf(microstate with energy ) , 1 /EE e where kT − =  for continuous states. 

Now 2 2
( )E p Cp p=  , (or 2

( )E x Cx= , then substitute x for p in the following), so: 

( )

( )

( )
( ) pdf( )

E p

E p

E p e dp
E E p p dp

Z e dp






−


−

− −

−

= =

=





. 

Again, the key is recognizing that: 

Each independent dynamic variable (coordinate or momentum) is a “system” in the 

Statistical Mechanics sense, in thermal equilibrium with its surroundings.   

Hence the energy of that dynamic variable follows the Boltzmann distribution.   

If you know the energy as a function of the dynamic variable (coordinate or momentum), that gives you the 

PDF for the dynamic variable.  Then you use the standard formula for computing the average energy given 

the PDF for the dynamic variable.  This process also allows you to answer questions about the partition of 

energy if E is not quadratic in x. 

Note that we don’t aim to separate potential energy from kinetic energy;  instead, we separate individual 

dynamic variables (Hamiltonian coordinates or momenta).  In the classic 1D ball-on-a-spring oscillator, there 

are two dynamic variables: position of the ball, and momentum of the ball.  In a set of N such balls-and-

springs in thermal contact, energy can be exchanged between any of the 2N dynamic variables.  Thermal 

equilibrium is by definition the stable macrostate of a system when energy can be exchanged between its 
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component subsystems.  In this example of N springs/balls, a single ball on a spring is a subsystem, but the 

position of the ball is a smaller subsystem, and its momentum is another subsystem.  The set of N springs/balls 

is a true, physical ensemble (as opposed to the oft-used “imaginary” ensemble) of 2N little systems.  Since 

each of the 2N little systems is in thermal equilibrium with all the others, the ensemble statistics follow those 

of Boltzmann.  Hence, we can compute the average energy of each of the 2N little systems using Boltzmann 

statistics.  Ergo, (with some math): equipartition of energy. 

Once the concepts of equipartition are clear, the derivation of [Rei] provides a solid mathematical 

foundation for it. 

The increasing heat capacity of diatomic gases with temperature, from 3/2 R to 5/2 R, and 

sometimes to 7/2 R, demonstrates that equipartition does not apply to quantum systems. 

[Aside:  [Rei] cleverly points out that we can find Eavg above without evaluating the integral, by using a math 

trick.  Note that the denominator is just a normalization constant for fixed β, but is a function of β.  Rewrite the 

numerator in terms of the denominator (we do this all the time in Stat Mech): 
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Now interchange the order of integration and differentiation, since they operate on different variables: 
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But this is of the form 
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= −   (Eq. 1) 

Focus on the integral for a while: Since we only care about a derivative with respect to β, we can remove β from the 

integral with a variable substitution: 
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Wasn't that fun? ] 
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8 Microscopic Distributions and Quantum Statistics 

Given a system of N particles (N large), our purpose here is to derive the average occupation number of 

a single-particle quantum state (of known energy) within the system.  As usual, we consider the particles as 

“weakly-interacting,” which means their interaction energy is negligible, except at very close range where 

they collide elastically.  However, fermions still “interact,” not through a potential energy between them, but 

through the exclusion principle.  Similarly, bosons’ indistinguishability causes their behavior to deviate from 

classical behavior.  This will have enormous consequences. 

We consider the single quantum state in question to be a “subsystem” within a bath, which is the rest of 

the system.  Since we are concerned with how many particles are in the quantum state, we must be concerned 

with particle exchange between that state and the bath.  Therefore, we must include the effects of particle 

gain or loss by the bath, i.e. we must include the chemical potential of particles in the bath. 

[Some references start the quantum distribution discussion with a bunch of stuff about multi-particle wave-

functions and density matrices.  They then proceed to derive the microscopic distributions without using any of the 

introductory quantum physics review material.  Here, we skip the multi-particle wave-functions and density 

matrices, since they aren’t needed for a proper understanding.] 

Recall that any system in equilibrium has only one relevant state function called the “free energy.”  The 

particular form of the free energy depends on the constraints of the system. (Free energy is discussed in detail 

elsewhere).   The chemical potential of a particle in a system is the free energy “cost” to add a particle to the 

system in equilibrium.  Mathematically: 

relevant free energy for the system
A

where A
N




 


. 

Since systems time-evolve toward lower free energy, a system favors particles with lower chemical potential 

over those with higher chemical potential. 

The term “Maxwell-Boltzmann distribution” is ambiguous, because it has at least 3 different meanings.  

We use it in this chapter as an approximation to either the Fermi-Dirac distribution, or the Bose-Einstein 

distribution, at higher energy.  We call this the Maxwell-Boltzmann occupation number.  [Another commonly 

used meaning is “the speed distribution of atoms in a gas.”  What is the other meaning?? Need refs.] 

Summary of the Main Statistical Mechanics Distributions 

All of these distributions only apply in thermal equilibrium, at temperature T. 
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Distribution Formula What it gives you What it applies to Examples 

Maxwell TBS The speed (or 

momentum) distribution 

of particles in an ideal 

gas. 

An ideal gas with no 

potential (e.g., no 

gravity). 

 

Boltzmann /E kTe−  relative probability of 

being in a single 

microstate, of energy E. 

any system of any 

size or complexity, 

quantum or 

classical.  Most 

important! 

an atom moving in a 

gas, electronic 

excitations of an 

atom in a gas, a 

magnetic dipole in a 

lattice  

Maxwell-

Boltzmann ( )

( )

/

/

1

E kT

E kT

e

e





−

− −
=

 

average occupation 

number of a given 

single-particle quantum 

state  of energy E; this 

equals the absolute 

probability that the state 

is occupied, since <N> 

<< 1.  

A single-particle 

quantum state in a 

classical system at 

low density, or high 

temperature, so that  

<N> << 1. 

an atom moving in a 

gas, an electron 

state in a 

semiconductor 

energy band 

Fermi-Dirac 

( ) /

1

1
E kT

e
−

+
 

average occupation 

number of a given 

single-particle fermion 

quantum state of energy 

E; since <N> < 1, this 

exactly equals the 

absolute probability 

that the state is 

occupied.  

A single-particle 

fermion state in any 

system; note that  

0 < <N> < 1. 

an electron state in a 

semiconductor 

energy band, an 

electronic energy 

state in an atom 

Bose-

Einstein ( ) /

1

1
E kT

e
−

−
 

average occupation 

number of a given 

single-particle boson 

quantum state of energy 

E.  

A single-particle 

boson state in any 

system; note that 

<N> > 0, and 

unbounded. 

a photon state in a 

photon gas, a 4He 

atom state in a 

collection of 4He 

atoms 

Black body 

(Planck 

spectrum) 
3

3 /

( )

8

( ) 1E kT

u E

E

hc e



=

−

 

the energy density per 

unit energy of thermal 

photons. 

Black body 

radiation, i.e. 

photons in 

equilibrium with a 

black body. 

 

 

Be careful to distinguish the “Maxwell distribution”, the “Boltzmann distribution”, and the “Maxwell-

Boltzmann distribution”.  They are all different, though some sources (confusingly) use the term “Boltzmann 

distribution” to also mean “Maxwell-Boltzmann distribution”. 

The black body radiation case is somewhat unusual, because photons have no rest mass, and their 

numbers are not conserved.  They are freely created (radiated) and absorbed by charges, with no threshold 

energy.  This gives them a different distribution than massive bosons. 

The Interactions of Non-Interacting Quantum Particles 

When we speak of non-interacting bosons or non-interacting fermions, we mean that there is no energetic 

interaction, i.e. no inter-molecular forces, which means the inter-particle potential energy is negligible.  

However:  
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So-called “non-interacting” quantum particles actually do interact: though there may be 

negligible potential energy, fermions still interact through the exclusion principle, and 

bosons interact in a way that allows them to occupy the same quantum state. 

It is in this sense that we speak of three things: (1) “ideal classical gases” (of non-interacting classical 

particles), (2) “ideal fermion gases,” and (3) “ideal boson gases.”  “Ideal” means no forces, or equivalently, 

no potential energy between particles, but there may still be quantum interactions [Wan p179b].  These 

quantum interactions derive from the symmetry (for bosons) and anti-symmetry (for fermions) of their multi-

particle wave-functions.  The anti-symmetry of fermions implies the Pauli exclusion principle. 

Therefore, systems at low density tend to act as ideal classical gases for two separate reasons:  

1. Low density implies the particles are far apart, and so their Coulomb potential is low (“ideal,” i.e. 

“non-interacting”). 

2. Low density implies low fractional occupancy of quantum states, so the fermion or boson quantum 

interactions are negligible (“classical”). 

At low energies, the M-B occupation number is unrealistic, because it ignores the quantum implication 

of indistinguishability.  Real particles are quantum, and often indistinguishable (e.g., a gas of identical 

molecules).  When the particles are indistinguishable, then the conditions for the particles to obey the 

Maxwell-Boltzmann occupation number do not strictly apply.  Specifically, the Maxwell-Boltzmann 

occupation number requires that the only interaction is thermal exchange of energy.  But identical quantum 

particles interact through their quantum nature, as noted above.  Therefore, the system, as a whole at fixed T, 

obeys the Boltzmann (not Maxwell) distribution for energy, because (as we saw earlier) the Boltzmann 

distribution for system energy is independent of the nature of the system.  But the quantum states do not 

follow the Maxwell-Boltzmann occupation number, because of the particles’ quantum interactions. 

An Ideal World 

Now that we know that ideal (so-called “non-interacting”) systems do, in fact, interact, it is time to more 

precisely define an “ideal” system, at a given temperature. [This is out of place??] 

The Amazing Fermi-Dirac Distribution 

We start with fermions, because they are conceptually simpler for this topic.   

The Fermi-Dirac distribution tells us, for a given temperature,  

the average number of fermions in a single quantum state of given energy;  

or equivalently, what is the probability of occupancy of a single quantum state. 

When gas particles are fermions, they interact through the Pauli exclusion principle.  We usually think of 

interactions in terms of energy: an interaction potential.  But fermions also interact through exclusion, and 

this isn’t described by an interaction potential [Wan p179b]. 

For any system of identical fermions in thermal equilibrium, the chemical potential, μ, serves as a natural 

energy reference level.  The chemical potential may include an arbitrary additive constant of energy per 

particle.  This allows the Fermi-Dirac distribution to be written with absolute probabilities: 

( ) /

occupation number Pr(single-particle state s with energy is occupied)

1
chemical potential .

1s

s

E kT

E

where
e




−

=

= 
+

 

For fermions, the average occupation number of a state is between 0 and 1,  

and therefore equals the probability of occupation of the state.   

Note that the probability of occupancy of a state at E = μ is exactly ½, but no such state need exist. 
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μ can be determined by the density of single-particle states g(E), the number of particles in the system 

N, and the temperature, T.  Given fixed constraints (e.g., volume), there is a unique μ which satisfies both the 

Fermi-Dirac distribution, and adds up to the right number of particles: 

( ) /0

1
chemical potential ( , ) such that ( )

1sE kT
N T N dE g E

e





−
 =

+
 . 

This equation implicitly determines μ. 

Physicists usually define the Fermi energy, or the “Fermi level,” as εF ≡ μ(T = 0), the chemical potential 

at absolute zero.  Others, such as [Wan], [Rei], and semiconductor physicists, call μ the Fermi energy at all 

temperatures:  εF(T) ≡ μ(T), i.e. the Fermi level is just another name for chemical potential. 

 

E

<n> = 

Pr(occupancy)

1

0.5

E

<n> 

2

1

EF = μ μ

Fermi-Dirac 

distribution

Bose-Einstein 

distribution

 
Figure 8.1  (Left) Fermi-Dirac distribution: <occupation number> = Pr(occupancy).   

(Right)  Bose-Einstein distribution: <occupation number> is unbounded. 

We derive the Fermi-Dirac distribution from the definition μ = ∂A/∂N [TBS]. 

The Amazing Bose-Einstein Distribution 

The Bose-Einstein distribution tells us the average number of bosons in a single quantum 

state of given energy; for bosons, this is unbounded. 

The Bose-Einstein (B-E) distribution results from the quantum property of bosons which allows any 

number of bosons to occupy the same quantum state.  This quantum constraint is different than fermions.  

Many books introduce a “fugacity” to describe the B-E distribution, but I think it is easier to start by thinking 

in analogy to F-D statistics.  In F-D statistics, the Fermi energy, EF, served as a “reference point” for energy: 

the energy that appears in the exponential is the difference between the energy of the quantum state and EF.  

Similarly, in the B-E distribution, the chemical potential, μ, serves as the “reference point” for energy.  An 

important difference is that in F-D distributions, the average occupation number equals the probability of 

occupancy.  In the B-E distribution, that is not the case [Wan p186].  Also, there is a minus sign in the 

denominator: 

( )/

1
occupation number chemical potential

1sE kT
where

e



−

=     
−

. 

The behavior at low energy Es is important: the occupation number gets very large;  similarly, at low T, 

the occupation number gets large.  At some point, almost all the particles are in the ground state, which is 

Bose-Einstein condensation. 

The occupation number is valid only if E > μ.  It blows up when E = μ, and would be negative for E < μ, 

which is physically meaningless.  Therefore: 

For bosons, μ must be less than the ground state energy. 
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Photons are a special case of bosons: they have no mass, and cannot exist with zero momentum or zero 

kinetic energy.  This means their particle number is not conserved: photons are freely created (radiated) or 

destroyed (absorbed).  This implies that a system in thermal equilibrium has evolved to a point where every 

photon’s chemical potential μ = 0.  Thus, there is no free-energy advantage to creating or destroying any 

photons: they are in equilibrium with the system.  Each frequency of photon is a different particle species. 

TBS: B-E statistics favor multiple occupation of states [Wan p185].  E.g., for 2 bosons distributed among 

2 equiprobable states, the probability of being in the same state is ½ for classical particles, vs. 2/3 for identical 

bosons: 

state 1

state 2

(a) (b)  
Figure 8.2  (a) Classical states of two particles.  (b)  Quantum states of two identical particles. 

Black Body Radiation (a Special Case of B-E) 

We now derive the black body radiation spectrum (and thus the occupation number formula) from the 

Boltzmann distribution applied to photons, which are bosons.  However, photons do not have a fixed particle 

number, since they are easily created (radiated) and destroyed (absorbed); this is distinct from say, 4He where 

the number of atoms is fixed. 

Occupation numbers of boson states:  If we treat each EM radiation mode (k, ε) as a “system” (e.g., 

an oscillator with discrete energy states), then we can use the Boltzmann distribution to find the probabilities 

of every excitation level.  Recall the Boltzmann distribution applies to any distinguishable system held at 

fixed temperature (say, by a heat bath), and it applies to boson excitation levels, because it relies only on the 

properties of the heat bath, and not at all on properties of the system.   

Note that in this context, we consider a photon state, say |2>, as a single “system” which is either 

occupied or not; we do not consider it as 2 separate photons.  Then N ≡ Nk,ε here is excitation level, not 

number of system particles.  Then for a given mode (k, ε) of frequency ω = c|k|, the total number of 

excitations over all N is: 
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The numerator of the above sums relative probabilities, while the denominator normalizes the result to 

absolute probabilities.  Consider the denominator: 

/ 2 3 /

0

1 ...N kT kT

N

e x x x where x e 


− −

=

= + + + +  . 

This is a geometric series, with sum: 

( )2 3

/

1 1
1 ... denominator

1 1 kT
x x x

x e −
+ + + + = =

− −
. 

Now consider the numerator: 
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The final average number of excitations is numerator/denominator: 
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Equivalent to the above, it can be shown that the chemical potential of photons in thermal equilibrium is 

μ = 0 [Schr p??].  Then we can think of each mode as a single-photon quantum state.  Photons are bosons, so 

each state has an occupation number, Nocc.  The average Nocc using the B-E distribution with μ = 0 is that just 

derived. 

The average occupation number of a photon quantum state at temperature T  

follows directly from the Boltzmann distribution. 

Note that <Nk,ε,tot> may be fractional, and greater or less than 1. 

The Amazing Maxwell-Boltzmann Occupation Number Distribution 

The “Maxwell-Boltzmann distribution” is an approximation to either the Fermi-Dirac distribution, or 

the Bose-Einstein distribution, at higher energy.  It therefore gives the average occupation number of a single 

quantum state of given energy, which must be << 1 for the approximation to hold.  When (E – μ) > (few)kT, 

the Fermi-Dirac and the Bose-Einstein distributions both approach the Maxwell-Boltzmann distribution: 

( ) ( ) ( )

( ) ( ) ( )

/

/

Fermi-Dirac Bose-Einstein Maxwell-Boltzmann

/ /

1

1 1 1
1.

1 1

E kT

E kT E kT E kT

E few kT e

e e e



  


−

− − −

−    

  
+ −

 

Note that at the higher energies where this approximation applies, the occupation number is << 1, and is 

therefore equal to the probability that the state is occupied, since the chance of double occupancy is 

negligible. 

At higher energies, for any particles, the average occupation number of a state << 1,  

and therefore equals the probability of occupation of the state.   

Maxwell energy distribution:  The Maxwell-Boltzmann energy distribution describes the distribution 

of energies of molecules in an ideal gas.??  (This is different than the occupation number distribution, though 

they can be related through the density of states.)  There’s no physics here.  Just combinatorics.  We can use 

the reasoning of the Boltzmann distribution to show that the most likely way to distribute a fixed number of 

N distinguishable particles throughout arbitrary energy levels, while maintaining a fixed total energy, is to 

populate each possible quantum state according to these relative probabilities: 

Pr(single-particle energy ) or RelPr( )s sE E
s sE e E e

 − −
   = . 
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We show this by considering each particle to be a microscopic “system” which is in thermal equilibrium with 

the “bath” of other particles [Sch??].  Our given macro-system is then an ensemble of little-systems (particles) 

in thermal equilibrium.  These are exactly the conditions of the canonical ensemble, and hence the ensemble 

(i.e., the little-systems, aka particles) follow the Boltzmann distribution.  When applied to the microscopic 

distribution g(E) of single-particle states within a system, these statistics are called Maxell-Boltzmann 

statistics. 

Because this is a Boltzmann distribution, it has the amazing property that the relative probability of a 

particle being in a given state depends only on the state’s energy E, and is independent of the distribution of 

energy levels, g(E)!  However, the absolute probabilities do depend on g(E) through the normalization factor, 

just as for any Boltzmann distribution. 

I repeat: there is no physics here.  Nature doesn’t really “seek” this distribution; it doesn’t “seek” 

disorder; it doesn’t “favor” lower energy states.  The particles stumble about randomly between all possible 

configurations, with each configuration as likely as any other.  There are simply more ways to distribute your 

particles among the energy levels according to the M-B (Maxwell-Boltzmann) distribution than there are any 

other ways to distribute them (keeping total energy fixed).  This means if you examine a system at some 

random time, it’s simply much more likely to be in the M-B distribution than any other.  No physics, just 

combinatorics (unless you consider combinatorics a part of physics.  Hint, hint.) 

But how likely is a system to be in the M-B distribution?  For N ~ 1020 systems (particles), it’s virtually 

guaranteed.  Deviations from the M-B distribution are exponentially unlikely, i.e. their probabilities fall off 

exceedingly rapidly. 

Subtle point: in some works, the derivation of the M-B distribution uses phrases like “we seek to 

maximize” some thing.  Actually, we don’t try to maximize anything.  The distribution is fixed by 

combinatorics, and we have no freedom.  There’s no knob we can turn to change (or maximize) anything.  

We seek to find the most likely distribution, knowing that our large-N system is exceedingly likely to be in 

such a state.  This is a subtle, but important, point.  Nature isn’t trying to maximize or minimize anything.  

Some things just come out maximized or minimized by combinatorics.  All we can do is find out what things 

those are. 

Maxwell speed distribution:  The Maxwell speed distribution describes the distribution of speeds (or 

momenta) of nonrelativistic molecules in an ideal gas.  You can derive it from the M-B energy distribution 

and g(E) by noting that speed = (2E/m)1/2. 

Black Body Radiation and Einstein Coefficients 

We somewhat follow [Bay p276-8].  Einstein used the photon occupation numbers to learn something 

about the quantized interaction of matter with radiation (which was a mystery at the time).  Imagine a box 

with a photon gas at temperature T.  The walls have atoms or molecules which can absorb and emit photons; 

we treat the photons as particles.  Consider a wall molecule with two states, separated in energy by ħω, and 

a photon state (mode) (k, ε).  Let M ≡ # molecules.   

We determine the ratio of excited molecules to ground-state molecules by again using the Boltzmann 

distribution: 

( ) ( )/
0

0

Pr molecule being excited , Pr molecule in ground statekTe
e

P
e where P P

P

−=   . 

On average, the absorption rate (in photons/s) is proportional to the number of photons in the gas, N(k, ε) ≡ 

N, and the number of ground-state molecules (excited molecules cannot absorb another photon): 

0 (photons/s)abs absw B NMP= . (8.1) 

Since M (the # molecules in the system) is fixed, we could “absorb” it into the coefficient Babs, but we are 

trying to see how a single molecule interacts with radiation, so it helps to include M explicitly. 
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In thermal equilibrium, the overall absorption rate of photons by the molecules must equal the overall 

emission rate.  The fact that thermal equilibrium between the photons and the molecules can be established 

at every temperature says that the emission rate must go up with temperature. 

From common experience, we expect that an excited molecule will eventually “decay,” and radiate a 

photon: hot bodies radiate and cool, phosphors glow in the dark.  Also from macroscopic experience, we 

might expect to dislodge a photon from an excited molecule if we whack it (a collision).  Therefore, we take 

a leap, and suppose that emission can occur from two causes: spontaneous emission, and stimulated emission 

(aka “induced emission”).  Stimulated emission is ambient radiation causing an excited molecule to radiate; 

in other words, a collision with a photon can stimulate emission much like a collision with a particle can.  (At 

the time, 1917, some physicists thought of this as absorption of a photon followed by emission of two 

photons, but this “indirect” stimulated emission model is not necessary, and has no supporting evidence.)  

Einstein guessed that stimulated emission is proportional to the ambient intensity, N, which seems reasonable: 

more collisions induce more radiation.  Thus: 

, # ambient photonsem stim em ew B NMP where N=  . (8.2) 

We will see shortly that at high temperature, this must be true.  But each molecule has no “idea” of 

temperature; it knows only that there is an EM field of some intensity impinging on it.  (Recall that 

temperature is an aggregate concept defined by 1/T = dS/dE; a single molecule does not have a temperature, 

but it can be in equilibrium with a heat bath that does have a temperature.) 

For independent molecules, the overall spontaneous emission rate is proportional to the number of 

excited molecules: 

, decay constant of proportionalityem spon ew AMP where A=  . (8.3) 

In thermal equilibrium, the total emission rate must equal the total absorption rate: 

( ), , 0abs em stim em spon abs em e e em ew w w B NP B NP AP NB A P= +  = + = + . (8.4) 

As noted, all the coefficients are properties of the molecules, and therefore independent of temperature.  We 

see that for large N (corresponding to high T), A becomes insignificant.  That is, as T → ∞: 

/
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e
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We can therefore drop the subscript on B.  Now, at finite temperature, this allows us to solve for A in terms 

of B, recalling that we supposed that A is independent of T.  Then from the equilibrium of rates, (8.4), we 

have: 
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From our earlier analysis of occupation numbers of boson states, we can use for N the average occupation 

number, and solve for the spontaneous emission coefficient A: 
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In other words, the spontaneous emission rate is the same as the stimulated rate from an EM field of a single 

photon. 
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Now we return to a single molecule in the presence of N ambient photons; thermal equilibrium is no 

longer a consideration.  From the emission and absorption rates (8.1) - (8.3), the emission rate of an excited 

atom must relate to the absorption rate of a ground-state atom according to: 

1em

abs

w BN A N

w BN N

+ +
= = . 

How does this square with quantum mechanics?  Recall that the dipole radiation matrix element includes 

a matrix element of the magnetic vector potential (or the electric field with the same result): 
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Thus, our quantum formulas for the interaction of quantized radiation with matter agree with results 

demanded by statistical mechanics, and are thoroughly verified by experiment. 

Energy Spectrum of a Photon Gas in Thermal Equilibrium 

What is the spectrum of black body radiation?  Perhaps the most famous spectrum in physics, this is the 

spectrum of the Cosmic Microwave Background radiation.  We find the energy spectrum from first principles 

by simply multiplying the photon single-particle density of states by the average energy of each state, at a 

temperature T: (this needs cleaning up the notation for densities??) 

( ) ( ) ( , ) such that ( ) energy in ( , )su E T u d d        = = + . 

The density of states ρs(ω) is the density of EM modes per unit angular frequency.  We now find ρs(ω) by 

fitting waves into a finite rectangular box, and then changing variables from k to ω in several steps.  (It is not 

hard to show that for “large” boxes [compared to the significant wavelengths of the photons], neither the 

actual shape of the box nor the exact boundary conditions significantly matter.)  For simplicity, we start with 

a 1D “particle in a box.”  We can take the wave-function (or EM wave) to be a standing wave that is zero at 

the edges: 

0
, 0 ( ) , ( ) , ( ) ( ') '

k

k k
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k n k n k k k n k k dk
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=   = = = = 

   . 

Each standing wave is a superposition of left- and right- momenta, but we’d like to count those momenta (k-

values) separately, so we allow k to be negative, and then count those states separately.  This halves the k-

space density of states: 

( ) , ; ( ) ( ') '
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k

k k
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dn L
k k n k k dk
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 −
= = −    + =  . 

Generalizing to a 3D box: 

( ) ( )
3 3

( ) (a constant), volume of the box
2 2

x y zL L L V
V

 
= = k k . 

As we’ve seen before, this implies that each state occupies a volume in phase space of (2πħ)3 = h3. 

We are often interested in the energy spectrum (not k or momentum spectrum), so we must convert this 

to an energy density of states (and then to frequency density of states).  Since the energy of a photon E 

depends only on |k|, we change variables to E in two steps: (1) we convert ρk to the density per unit magnitude 

of k; and (2) convert from k ≡ |k| to E.  First, the number of states in a k-space spherical shell of fixed k is 

simply the surface area of the shell times its thickness: 
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Second, we use the relation between momentum and energy (i.e., the “dispersion relation”) for a photon: 
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We must now include a factor of 2, because each k value has 2 independent polarization modes, yielding: 
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Finally, converting to energy density per unit ω: 
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Massive Non-interacting Boson Gas: Bose-Einstein Condensation 

Many systems exhibit interesting and useful properties when they are very cold.  One example of this is 

Bose-Einstein condensation (BEC), defined as a system of bosons so cold that a “significant” fraction of the 

particles is in the system’s ground state.  There are many variations of BEC, depending on the particle 

interactions and sometimes the confining potential.  For example, liquid 4He becomes a superfluid at 2.17 K, 

and involves significant inter-molecular forces. 

We consider here a very simple case: bosons in a cube (3D particles in a box).  The ground state 

wavelength is always about twice the box size, regardless of the size of the box, or the details of the confining 

potential (Figure 8.3).  The ground state kinetic energy is not zero; for the idealized particle in a cube, it is: 

2 2 2
0 3 (in some units) kinetic energyx y zKE n n n where KE= + + =  .   

xLx

confining potential 
U(x) (the “box”)

ψ0(x)

E0

0  
Figure 8.3  The ground state wave-function is always about a half-wavelength, regardless of the 

size of the box, or the details of the confining potential. 

In a large system, this is tiny, but conceptually, it is finite.  The 1st excited state has kinetic energy: 

KE1 = 12 + 12 + 22 = 6  (twice E0). 

We choose U(r) = 0 everywhere, so: 

En = KEn, and in particular: E0 = KE0 . 
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Some references choose U(r) = –KE0, so E0 = 0.  In this case, one cannot then claim that the momentum is zero 

because the energy is zero.  Other references invoke periodic boundary conditions, which would allow the ground 

state energy and momentum to be zero, but periodic boundary conditions are inconsistent with the ground state of a 

box.  Any bound particle has nonzero KE, and therefore a nonzero momentum. 

Despite many claims to the contrary, the ground-state momentum is not zero.  In an idealized box: 

( ) ( ) ( )( )0 ( , , ) sin sin sin / , etc.x y z x xx y y N k x k y k z where k L = =  

In each dimension (x, y, and z) the momentum is a superposition of a positive-going and negative-going 

nonzero momentum.  This is consistent with the fact that the ground-state kinetic energy is nonzero. 

At all temperatures, there must exist a chemical potential μ = μ(T) such that the average occupation 

numbers of all the states of the system add up to N, the known number of particles: 

( )

microstates

/

1
(exact)

1sE kT
s

N
e

−
=

−
 . 

At warm temperatures, we can approximate the sum of average occupation numbers with an integral (Figure 

8.4, left): 

( ) /0

1
( ) ( ) single-particle density of states

1
E kT

N g E dE where g E
e





−
     

−
 . 

At every temperature, the ground state occupation number N0 is finite, but above some critical temperature 

Tc, it is nearly zero (negligibly small). 

N(E)

E

N(E)

E

warm

T > Tc

cold

T < Tc
missing 

from 
integral

E0 E0

actual 
occupation 
numbers

integral 
approximation

single-
particle 

density of 
states, g(E)

 
Figure 8.4  (Left) The integral approximation to the occupation number sum works well at high T.  

(Right) The integral approximation to the occupation number sum fails at low temperatures. 

However, at very low temperatures, the integral approximation for N fails because the ground state 

occupation number is mostly excluded from the integral (Figure 8.4, right).  To get a more accurate counting 

of the occupation numbers, we must separate the ground state occupation number (N0) from all the excited 

state occupation numbers (Nex): 

( )0 0 /0

1
( )

1
ex E kT

N N N N g E dE
e





−
= +  +

−
 . (8.5) 

It can be shown that for large N, only the ground state needs to be taken outside the integral [Mandl p294b]. 

The rapid increase in the ground state occupation number N0 as T decreases  

leads to a “critical behavior” of the system. 

To see the behavior of the occupation number sum (8.5), we must find g(E).  This is a standard result: 

we start with our known density of states for  k ≡ |k|, and change variables to the energy density of states: 
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The important point is that g(E) ~ E1/2 (and this depends on our having chosen U(r) = 0, so that E0 = KE0).  

Note that if we had chosen to make the ground state zero energy by shifting E0 to 0, then in principle, we 

should shift our energy density of states function by the same amount.  In practice, the difference is small, 

and is often neglected. 

E0 E1

μ

N0 T → 0

E2 Tc

T

N0N

critical 
behavior

“normal” 
behavior

kTc0(a) (b)  
Figure 8.5  (a) As T decreases below Tc, μ → E0, and N0 → N.  (b) Ground state occupation 

number N0 vs. temperature, showing the critical region. 

At low temperatures, as more particles go into the ground state, μ must approach E0.  Nex can then be 

upper-bounded (and approximated) by letting μ(T) → E0: 
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To evaluate the integral, we substitute ( )0 /x E E kT= −  in the denominator, and /x E kT  in the numerator 

(which inflates Nupper a little, but that’s OK, because it’s an upper bound).  Finally, dE = kT dx, which leaves 

us with a temperature dependence times a definite integral (a constant): 
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We define the critical temperature Tc as that when the upper bound matches the actual number of particles, 

Nupper = N.  Rearranging the above equation: 

( )
2 2 / 3

2
0.53 [Schroeder 7.126 p317]
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. 

At the critical temperature, μ is very close to E0 (Figure 8.5a), such that: 

0 1 0 [cf Schroeder p319m]cE E E kT−  −  . 

Tc is typically very small, millikelvins or less.  Using Tc, we can simplify the expression for Nex ≈ Nupper for 

T < Tc: 
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This shows that below Tc, a significant fraction of the particles are in the ground state, with minimum 

momentum (but finite), and minimum KE (also finite). 

Note that μ(T), and also N0(T), are smooth functions of T, so there is no true “kink” in N0(T) at T = Tc; 

however, the transition from N0 ≈ 0 to N0 ~ (Tc – T)3/2 is a small range: ΔT << Tc, so the transition is considered 

“abrupt” enough to call this a higher-order phase transition. 

When a parameter (such as N0, or an observable consequence of N0) varies as a power law of (Tc – T), 

for some critical temperature Tc, the parameter is said to exhibit critical behavior (Figure 8.5b).  Since N0 is 

continuous, this is sometimes said to be a higher order phase transition.  Note that this is distinct from, say, 

steam condensing to liquid water (a 1st-order phase transition), which involves two distinct phases: gas and 

liquid.  In contrast, the BEC critical behavior goes all the way to absolute zero.  There is no phase below the 

temperature range of critical behavior, i.e. no analog to the liquid phase. 

It is often said that BEC occurs when the particles’ de Broglie wavelength is of the order of the particle 

spacing, so multiple particles have to start crowding into a single quantum state.  It’s not clear this is 

physically valid, though, because 2D systems experience the same de Broglie wavelength effect, but do not 

exhibit critical behavior. 

Thermodynamic limit?  A reasonable definition of the “thermodynamic limit” is that the particle 

number N is large enough to be taken as continuous, and the energy is high enough that the energy density 

of states may be taken as continuous.  By this definition, a BEC is not in the thermodynamic limit, because 

it specifically distinguishes the ground state from all the excited states.  Therefore, N may be large, but the 

energy is insufficient to allow the energy density of states to be considered continuous. 

Other forms of BEC: Liquid 4He exhibits a superfluid transition at 2.17 K.  It can be explained as a 

kind of BEC, however it is quite different from the ideal gas we analyzed above.  After all, it’s a liquid and 

so must have strong intermolecular forces.  The critical exponent is different from 3/2, as well [ref??]. 
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9 Thermodynamics 

Thermodynamics isn’t really Statistical Mechanics, because it’s empirically based on observations of 

macroscopic systems.  But SM is the microscopic model that should be able to derive all of thermodynamics, 

so they are strongly related. 

In thermodynamics, “temperature” isn’t even well defined.  Usually, the best one can do is define 

“temperature” in terms of ideal gasses at low density and/or high temperature, where they experimentally 

follow the ideal gas law very closely.  Lower temperatures are defined with “ladders” of connections to other 

materials that have some simple, accurate equation of state at low temperatures.  Therefore, in 

thermodynamics, the relation: 

,

1
is empirical in thermodynamics

N V

S

T E

 
=  

 
. 

But in Statistical Mechanics, the relation: 

1
is a precise in Statistical Mechanics

dS
definition

T dE
 . 

Reversible Vs. Irreversible, and Entropy 

Reversibility is a huge stumbling block for many people, and many textbook descriptions are weak.   

A process is defined as reversible if an arbitrarily small change in system (or outside) 

conditions will make the process spontaneously reverse direction,  

and essentially restore the original state.   

Any process is “reversible” if: 

(1) there is only infinitesimal temperature difference causing any heat flow, and 

(2) only infinitesimal force differences doing any work, and  

(3) there are no dissipative forces (e.g., friction).   

But there are many ways to draw system boundaries, and a process that is reversible within a subsystem, may 

not be reversible within the larger system.  Therefore, it is important to distinguish between reversibility of 

changes that occur within a system, from changes that are done to a system by outside influences.  We talk 

first about reversibility within a system. 

Reversibility Within a System 

Consider a system comprising two parts: subsystem A and subsystem B.  Imagine A is infinitesimally 

hotter than B; then heat flows slowly from A to B.  It’s reversible because with only an infinitesimal change 

of system conditions, we could make B slightly hotter than A, and let the heat flow back.  A system with only 

infinitesimal temperature differences within it is in quasi-equilibrium,  i.e., it’s almost in equilibrium, but 

not quite.  Because the temperature difference is very small, the heat flow rate is very slow. 

In general, entropy increases when you equilibrate subsystems at finitely different temperatures.  This is 

intuitive, because once you equilibrate finitely different temperatures, you can’t separate them back into hot 

and cold parts without substantial effort.  But a quasi-equilibrium process is (essentially) isentropic, that is, 

we can make the entropy change arbitrarily small by making the temperature difference small enough.  

Continuing our example of subsystems A and B, we can see mathematically why entropy does not increase 

when the system is in quasi-equilibrium.  Imagine đQ joules of heat flow from A to B: 
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Quasi-equilibrium is isentropic (constant entropy), and slow.  But slow is not necessarily quasi-

equilibrium (= isentropic).  Consider a thermos bottle filled with hot water, sitting in a box (our system).  The 

heat flows very slowly from the hot water into the box, because the thermos is well insulated, but the system 

is not quasi-equilibrium.  There is a large temperature difference between the hot water and the air in the box.  

The entropy of the system increases as the temperatures equilibrate, even though it happens slowly. 

Some references use the term “quasi-static” to mean “quasi-equilibrium.”  This is misleading, because 

“static” implies motionless, and “quasi-static” suggests “slow.”  But we have already seen that being slow 

doesn’t mean being isentropic.  However, being nearly in equilibrium does mean isentropic, i.e. reversible. 

When considering changes within a system, reversible  

implies slow, but slow does not imply reversible. 

Note that any friction or other dissipative losses (e.g., magnetic hysteresis) converts energy into heat, 

and cannot be undone by infinitesimal changes within the system.  Here again, even if friction conversion to 

heat is very slow, it is still irreversible. 

Reversible Changes To a System 

Now let’s consider a different view: we have a system, and outside influences change its state.  These 

changes can be made to happen slowly, with the system continually in quasi-equilibrium, or they may be 

made quickly, where the system doesn’t have time to equilibrate after transfer of significant heat or work.  If 

changes are made slowly, the system is said to be changed reversibly, because infinitesimal changes in the 

outside influences can cause the system to slowly retrace its path back to its original state.  In this case, slow 

does mean reversible!  However, if the changes were done quickly, so that the system was knocked out of 

equilibrium, there is no easy way to make the system go out of equilibrium in the reverse direction.  Such 

changes to the system are said to be irreversible.   

When considering changes to a system, reversible and slow are equivalent. 

For example, if a very hot reservoir conducts heat slowly through an insulator to a system, the system 

has no way of “knowing” how the heat got there, or that it was a large temperature difference.  All the system 

can respond to is how fast heat flows into it.  If it’s slow, the system is in quasi-equilibrium.  In this case, the 

formula for the entropy change of the system can be written 

(changes a system)slowđQ
dS to

T
= . (9.1) 

Notice that isothermal changes to a system (system remains at constant temperature) require the system to be 

in quasi-equilibrium the whole time, are necessarily slow, and therefore dS = đQ/T. 

The reasons for “slow” are (1) to have well-defined temperatures throughout the system, and (2) to avoid 

accelerations, which result in kinetic energy of motion, which then is usually lost to the environment when 

the motion stops, through heat-of-deformation, friction, sound, etc.  However, if there are no losses (e.g., if 

the system is constant volume, and does no work), then the internal energy increases by the finite heat input: 

(no losses)U Q =     , 

no matter how fast or slowly the heat is transferred.  The final system state is the same, whether the heat is 

added quickly or slowly.  Thus, the final entropy is the same, whether heat is added quickly or slowly.  

However, when heat is added quickly, the system temperature becomes undefined for a while: the system is 

knocked out of equilibrium, and it has no definite temperature.  Therefore, we cannot use (9.1) on this fast 

process to compute the final entropy. 
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Equation (9.1) requires temperature T be well-defined at all times.  Therefore, to compute the final 

entropy of a system that had heat added quickly, we can simply compute the final entropy of the same system 

as if the heat were added slowly.  This requires us to know it’s heat capacity, and be able to find its 

temperature at every point in the process; if we can, then: 

reversibly
= slowly

(heat flow a system that has no energy losses)
f

i

đQ
S to

T

 

 =    . (9.2) 

Furthermore, the state of the system after any energy input (with no energy losses), is determined only by the 

new internal energy.  This means that the energy input doesn’t have to be heat: it can be radiation, mechanical 

agitation, chemical reaction, etc.  We can compute the entropy change as if it were heat added slowly, using 

the same equation. 

Finally, note that any infinitesimal heat addition to a system, by itself, is always reversible.  Reversibility 

or not enters only when we consider a finite amount of heat added over some finite time.  Therefore, we don’t 

write dS = đQrev/T, because đQ (by itself) is always reversible.  A proper equation referring to reversibility 

must refer to finite differences, and a reversible path of integration, as in (9.2). 

The Second Law of Thermodynamics, and Touchy, Feely Entropy 

From our Statistical Mechanics, we know that entropy is multiplicity, measured on a logarithmic scale, 

and usually measured in units of energy per unit temperature.  Here are some qualitative implications of this. 

The second law quantifies the fact that there are 2 kinds of energy: “ordered” energy, which can 

theoretically be converted without loss, and random or “thermal” energy, which is harder to get ordered work 

from.  It’s natural that a bunch of particles flying randomly about in all directions are less useful than an 

orderly chunk of energy waiting to be put to use, even if the two sources have the same energy.  The second 

law quantifies how much useful work you can get out of thermal (random) energy.  Any time you change 

energy from ordered to random, you decrease its usefulness.  Hence, friction is bad.  It’s not that friction 

destroys energy; total energy is always conserved.  But friction converts useful ordered energy into less useful 

thermal energy.  Note that having separate hot and cold reservoirs is some kind of order, and more useful 

than having a single tepid reservoir.  Hence, mixing hot and cold reservoirs wastes potential for useful work 

(i.e. increases entropy). 

There are two kinds of energy: ordered, and thermal (random).   

Ordered energy is more useful than thermal energy. 

Crudely, entropy is a way of quantifying how random, or how disordered, the energy of a system is.  

Hence, for a given amount of energy, lower entropy means greater usefulness; higher entropy means less 

usefulness.  As we’ve seen in Statistical Mechanics, however, it is not really disorder that matters, it is 

multiplicity of the system state.  More accurately, entropy is a measure of the number of microstates of a 

given macrostate (set of observables), on a log scale.  Lower multiplicity states evolve into higher multiplicity 

states; higher multiplicity states are those that often seem “disordered” to us, because there are lots of ways 

to be disordered, and only a few ways to be ordered. 

Thermodynamics is backwards: in thermodynamics, temperature is fundamental, and entropy is 

derived from it.  In SM, entropy is fundamental and temperature is derived from it.  Before you learn SM, 

forget all your thermodynamics.  The fundamental nature of entropy is why lots of theoretical work is done 

at constant entropy, instead of constant temperature. 
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Figure 9.1  A typical refrigerator. 

At a high level, compressor/expander refrigerators work by: 

1. “storing” the ability to get cold in the refrigerant, by compressing it.  Then ... 

2. bringing the refrigerant to ambient temperature with a simple heat exchanger, and ... 

3. releasing the ability to get cold from the refrigerant (by expanding it), which brings it below ambient 

temperature. 

One way to implement a refrigerator is to essentially “store” the ability to get cold in the refrigerant. 

We do this by compressing it, which makes it hotter.  If we expanded it now, it would cool back to near where 

it started.  But instead, we first run the refrigerant through a heat exchanger with the ambient, cooling the 

compressed gas down to ambient.  But it’s still compressed, and will cool off when we expand it.  So we 

have, in a sense, “stored” the ability to get cooler in the gas.  We now expand the gas (in an expansion valve, 

which is often called the “evaporator”).  As the gas expands, it cools.  We run the cold gas through a pipe in 

the box, and voila, the box gets cold.  This also warms the gas slightly to the box temperature.  We then 

compress the mostly-cold gas to complete the cycle, and return us to where we began.   

More TBS. 

Why does a refrigerant get cold when it expands?   

Because it has attractive inter-molecular forces.  The energy vs. distance curve looks like Figure 9.2.  The 

internal energy is fixed (if expanded quickly or adiabatically).  But the potential energy increases as the 

molecules separate, so the kinetic energy decreases.  For unbound particles (a gas), temperature is 

proportional to kinetic energy.  Lower kinetic energy means colder.  QED. 

separation

V(r)

r

internal energy 
per molecule

kinetic energy 
at high density
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Figure 9.2  Energy vs. distance for refrigerant molecules. 
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This means the refrigerant is not an ideal gas, because it has intermolecular forces.  In fact, we want it 

very non-ideal, because stronger forces make the gas cool more when it expands. 

The Carnot Conspiracy 

The Carnot cycle (or Carnot engine) is an important theoretical construction in thermodynamics, which 

sets the maximum possible efficiency for a heat engine to convert heat into work.  Virtually all fossil fuel 

and nuclear energy conversions today are forms of heat engine: cars, trains, planes, and oil, coal, and nuclear 

power plants.  The Carnot cycle is used in engineering practice as a standard for comparison: heat engine 

efficiency is sometimes stated in terms of “percent of Carnot,” which is to say, what fraction of the theoretical 

maximum efficiency is achieved.  For example, if the Carnot (theoretical maximum) efficiency for the given 

hot and cold temperatures is 60%, and the actual engine achieves 30% efficiency, then it is “50% of Carnot.”  

This is a typical efficiency for small-scale conversion such as cars.  Large power plants can afford more 

expensive designs that achieve 70-80% of Carnot, which is only about 34% - 40% conversion efficiency 

[Wolfson & Pasachoff, "Physics for Scientists and Engineers," 3rd Ed., Addison Wesley Longman, Inc., 

1999, p551]. 

Carnot engine operation also illustrates several important concepts in thermodynamics.  The Carnot 

engine is an idealization which can never be achieved in practice, and if it were, would take an infinite amount 

of time to run.  We describe the Carnot engine, from concepts, through construction, operation, and 

implications.  We then briefly describe the Carnot refrigerator, and give conclusions. 

This section assumes you understand the concept of reversible (isentropic) processes. 

The Carnot Concept:  In general, low entropy implies the ability to get useful work done.   

Increasing the entropy of a closed system (even the universe)  

wastes the opportunity for useful work.   

For example, if I have a hot gas, and a cold gas, I can make a heat engine which takes heat from the hot gas, 

exhausts heat to the cold gas, and creates useful work in the process.  However, if I simply mix the two gases, 

I get no work, and end up with a warm gas that cannot (by itself) do work.  Such mixing increases entropy, 

and thus wastes the opportunity for work.  Any time I increase entropy, I am wasting some opportunity for 

work.  Therefore, if I make an engine in which every step is isentropic (reversible), I waste nothing, and 

achieve the maximum possible efficiency of converting heat to work.  We elaborate below, but in short, the 

engine’s entropy increase of heat absorption must be canceled by its decrease on exhausting heat, which fixes 

the efficiency: 

1in out in out hot

hot cold in cold

Q Q Q Q T
S

T T Q T


−
 = =  = = − . 

The Carnot Contraption:  The Carnot engine uses a 4-step cycle, which converts heat from a hot 

reservoir into useful work and exhaust into a cold reservoir.  Each of the 4 steps is isentropic (reversible), 

and hence the entire cycle is isentropic.  Therefore, the Carnot engine has the maximum possible efficiency 

of converting heat to work.  As illustrated below, we can imagine the engine as a piston enclosing a gas, 

which expands and contracts during the cycle. 
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Figure 9.3  The Carnot engine (aka Carnot cycle).  Ideal gas formulas are given, but the engine 

operation is independent of the working fluid. 

Note that the p-V diagram tells us nothing about temperature, or time.  Recall that all reversible 

operations must be slow, since they are quasi-equilibrium, and take place with only infinitesimal temperature 

differences and/or pressure differences. 

Our cycle starts at point A, where the piston begins fully compressed, and the gas temperature is a smidge 

below Th; the outside pressure is a smidge below the gas pressure.  The engine reaches out and touches the 

hot reservoir, so heat slowly flows in, and from the tiny pressure difference, the gas slowly expands and the 

piston pushes out, slowly doing work.  This continues to point B.  Since heat flows in at constant temperature, 

the entropy of the engine increases, and the entropy of the hot reservoir decreases by the same amount: 

- engine entropy increasesin
A B

h

QđQ
S

T T
 = = + . 

Thus the entropy of the universe remains the same.  Note that this process is independent of the working fluid 

of the engine; in particular, it need not be an ideal gas. 

At B, the engine releases its touch of the hot reservoir, and continues to slowly expand with no heat flow 

in or out (adiabatically).  The outside pressure (magically) follows the p-V diagram, always staying an 

infinitesimal amount below the gas pressure.  This expansion does more work until point C, which is chosen 

to be the point at which the adiabatic expansion leaves the gas a smidge above Tc. 

At point C, the engine reaches out and touches the cold reservoir.  Heat flows slowly into the reservoir.  

The outside pressure is changed to slightly above the gas pressure (an infinitesimal change), so the piston 

slowly compresses, taking in work (but less than the outward work done already).  Since heat flows out of 

the engine, the entropy of the engine decreases, and that of the cold reservoir increases, by: 

- engine entropy decreasesout
C D

c

QđQ
S

T T
 = = − . 

The entropy of the universe is still unchanged, and now the entropy of the engine has been restored to 

that of point A.  Since Tc < Th, and |ΔSC–D| = |ΔSA–B|, it must be that Qout < Qin, and net work is done on the 

piston and outside world. 

At point D, the engine releases its touch on the cold reservoir.  The outside pressure continues to slowly 

increase just enough to compress the piston, adiabatically, to point A.  Point D is carefully chosen so that the 

temperature of the gas at point A is infinitesimally below Th.  This D-A step takes in more work.  The cycle 

has now returned to its initial state. 
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The net effect of one cycle is that heat is transferred from the hot to cold reservoirs, and more work was 

done on the outside world than was taken in.  The engine converted heat to (potentially useful) work.  The 

entire process is reversible. 

The Carnot Contrivance:  Most discussions of the Carnot cycle omit the difficult requirements that the 

temperatures and pressures must be within a smidge of the outside conditions.  While the engine itself can 

control its own gas temperature (by choosing the points B and D), the engine requires some kind of magic 

outside pressure regulator, which follows the gas p-V curve, but slightly lower for the expansion steps, and 

slightly higher for the compression steps. 

The Carnot Cooler:  The Carnot cycle can be run in reverse, such that it takes work in, and moves heat 

from the cold to hot reservoir, like a refrigerator.  All that is necessary is that the infinitesimal temperature 

and pressure differences be reversed, so that the piston expands from A-D, heat comes in from the cold 

reservoir from D-C, the piston compresses from C-B, and heat goes into the hot reservoir from B-A.  Each 

step in the cycle is still reversible. 

The Carnot Conclusion:  Because any increase in entropy represents a lost opportunity for doing useful 

work, a fully reversible (isentropic) process is necessarily maximum efficiency, because there is no entropy 

increase.  The Carnot cycle is such an idealized process which, in principle, comes arbitrarily close to zero 

entropy increase, and therefore is the maximum possible efficiency in converting heat to work. 
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10 Etcetera 

Temperature and Internal Energy 

The question of internal energy vs. temperature is a very important one.  It's only for systems of non-

interacting particles that an isothermal process causes no change in internal energy.  Better stated, “For a 

system of negligible particle interaction around the mean particle separation, the internal energy is 

proportional to temperature.”  Note that this is true without reference to any “process.”  Hence, a process 

need not be isothermal, so long as the final temperature equals the initial temperature.  By “negligible” we 

mean that the interaction potential difference over, say, 1/10 to 10 times the mean particle spacing is small 

compared to the particle kinetic energy.  Inside 1/10 the mean spacing, we say the particles are colliding 

elastically.   

We now derive that the internal energy of a non-interacting gas is proportional to temperature, following 

these steps: E α p2;  T is a derivative of entropy;  entropy, S is a known function of density of states;  find S; 

find T; find E.  T and E are proportional. 

We choose our zero of potential at the mean spacing (same as at infinity, because the interaction potential 

is negligible beyond that distance).  So the total particle energy is all kinetic: 

2

2

p
E dE p dp

m
=    (10.1) 

Now we recall that the definition of temperature is: 

1
dS

T
dE

−
 

  
 

. 

We also recall that we can define S to be (within an additive constant): 

( )( ) ln ( ) ln ( )S E k E k E V E     

where ω  is the density of microstates in states/volume/energy,   

 δE  is a finite, but small, energy range (how to justify this??),   

 V  is an arbitrary system volume.   

We now consider a single particle, and since all particles are non-interacting, all particles behave the 

same.  So now we must derive the single-particle density of states as a function of energy (we did this 

earlier??), and then we can simply plug into our formulas for entropy and temperature.  Recall that the number 

of states in a small region of momentum δp is the number of quantized lattice points (allowed momenta) in 

the spherical shell in momentum space of thickness δp.  That is: 

2
( )g E E p p    

 where  δp is the variation in momentum giving rise to δE variation in energy. 

But from (10.1), 1/ 2
, andp E p p E     , so: 

1/2( ) ( )g E E p p p E E    . 

Then at any arbitrary volume, V: 
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( ) ( ) ( )1/ 2

1

1 1
ln ( ) ln ln ln ln .

2 2

1 1

2

S g E V E E V E E V E E const

dS

dE E E

dS
T E

dE

  

−

 = = + = +

 

 
  

 

 

independent of volume.  QED. 

When there is particle interaction, E is not proportional to p2, and the above derivation fails; however 

since KE  (kinetic energy) is proportional to p2, the above derivation is valid if we replace E with KE.  Hence, 

for “interacting” particles (with significant potential energy changes on the scale of the mean particle 

spacing), T is not proportional to E, but T  KE.  This gives rise to the high-school definition of temperature 

as “a measure of the kinetic energy of particles in a gas.”   

For example, for repulsive particles, if the gas expanded, the average potential energy between particles 

goes down, even if heat flow keeps their kinetic energies the same.  So the total internal energy goes down, 

while the temperature remains the same.  In this case, temperature is not proportional to internal energy, but 

is proportional to KE. 

However, even the kinetic energy definition breaks down for bound particles (liquids and solids), hence 

the more general definition 

1
dS

T
dE

−
 

  
 

. 

Negative Temperature (Negative ) 

Negative temperature is hotter than positive temperature.  Increasing T just beyond +∞ takes you to  

–∞.  Sounds ridiculous?  That’s because T isn’t always the best parameter of thermal equilibrium;  sometimes 

β is.  β can be a more natural measure of temperature than T, because negative temperatures go smoothly 

through β = 0, not T = 0 (in fact, T jumps discontinuously from +∞ to –∞) [Wan p71m] [Pat fig 3.15 p81] 

[Kub p148m]. 

T > 0

smoothly 
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hotness
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T < 0

 > 0

smoothly 
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hotness



 < 0
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temperature

negative 

temperature

T = 

spontaneous 

heat flow

spontaneous 
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Figure 10.1  Why  is a better parameter for temperature than T, including negative temperature. 

Negative temperature, or better, negative β, means that the probability of occupancy of an energy level 

increases with energy, instead of decreasing as with positive β [Wan p68t].  For most systems, this is 

impossible because there are an infinite number of increasing energy levels: kinetic energy alone has an ever 

increasing density of states.  If the probability of occupancy increased with energy, the system would contain 

an infinite amount of energy, which is unphysical.  That is, for systems with unbounded energy: 

( ) /
Pr 0, or else probability blows uprE kT

rE e T
−

      . 

However, some systems have a finite number of energy states, or a decreasing density of states with energy 

that integrates to a finite number.  A spin system is an example of a system with a bounded energy density 
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of states, and a finite number of energy states.  Such systems can easily have internal energies that make 

higher energy states more likely to be occupied than lower energy states.  Such a system has a negative β. 

energy

1

probability of 
occupancy

β > 0

maximum 
energy

β < 0

 
Figure 10.2  Probability of occupancy vs. system energy for a finite system. 

1 S

T E



 =


. 

Now, even for β < 0, larger β is always colder, smaller β is always hotter.  Heat flows spontaneously from 

low β to high β [Wan p69m][Pat p83].  Reciprocally, applying heat to the system lowers β.  Heating beyond 

β = 0+ smoothly changes the system temperature to β = 0–. 

To create such a system in a solid, there must be good isolation of the spins from the lattice.  Otherwise, 

the lattice steals the energy, and the spin-subsystem reverts to the Boltzmann distribution at the lattice 

temperature. 

Spin Systems (and Other Finite Dimensional Quantum State Spaces) 

Spin-dependent systems are very common in the real world, e.g. magnetic systems.  The spin, and 

therefore magnetic moment, of a particle is described by a finite dimensional quantum state space, e.g. spin-

1/2 particles have a 2D state space, and atomic orbitals have a 2l + 1 dimensional state space.  Also, in some 

cases, bound particles have only a small number of significant quantum states, and can be approximated as 

if they have only that small number of allowed states (often just 2 or 3).  Systems of single-particles in a low-

dimensional state space create distinct phenomena compared to free-particle systems, and therefore require 

analysis methods specific to them.  However: 

The underlying statistical mechanical concepts of Boltzmann factors, partition functions, 

and thermodynamic limits apply to spin systems just the same as other systems. 

We now consider a few simple systems to illustrate some basic concepts.  We start with a non-interacting 

system, which also defines our notation, and then proceed to the simplest 1D interactions, the Ising model. 

This section assumes a basic familiarity with quantum matrix mechanics, and relies on understanding 

partition functions. 

Noninteracting Spins (Subsystems) 

Consider a particle with two magnetic moment states, σup = +1, and σdown = –1.  It is immersed in a 

magnetic field of magnitude B.  The spins are eigenstates of energy.  The single-particle hamiltonian can be 

written, in the |+> and |–> basis: 

1

0
ˆ , magnetic dipole moment

0

B

H where

B



 



+

−

−   
  =    =      
  

+   

. (10.2) 

The signs denote that the low-energy state has the magnetic moment aligned with the magnetic field, and the 

high-energy state is anti-aligned (it takes work to twist the particle away from the magnetic field). 
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Now put this “system” in contact with a heat bath.  Recall that such a tiny system has no temperature, so 

β ≡ temperature of the heat bath.  We can write its partition function by inspection: 

1

1

( ) exp( )B BZ e e B 



  + −

=

= + = − . 

Since the hamiltonian is diagonal, its elements are the energies of the single-particle states, and the partition 

function can be written in the useful and compact form of a trace: 

( )

( )

1
ˆ

1

1

exp 00

( ) Tr Tr exp Tr

0 exp0

exp( )

H
BB

Z e

BB

B











 

−

=

   ++ 
    = = =
      −−      

= −

 

as before.  We have used these facts: the exponential of a matrix is a matrix of the same size; the exponential 

of a diagonal matrix is the matrix of exponentials of the diagonals; the trace of a matrix is the sum of the 

diagonals. 

Now consider a system of N distinguishable such particles, that are noninteracting.  Its partition function 

gives all its thermodynamic properties.  The system partition function is the simple composition of subsystem 

partition functions, (6.4): 

( )1( ) ( )
N

NZ Z = . 

In preparation for interacting particles, it is instructive to rederive this noninteracting ZN directly from 

the N-particle hamiltonian.  The basis states are all the 2N combinations of the N magnetic moments; e.g. for 

N = 3: |+ + +>, |+ + –>, |+ – +>, etc.  The full hamiltonian is the tensor product (aka outer product) of the 

individual hamiltonians: 

1 2
ˆ ˆ ˆ ˆ... , a 2 2 matrixN N

N NH H H H=      , (10.3) 

where all the Ĥj have the same form, (10.2).  So far, our Ĥj are diagonal, and the outer product of diagonal 

matrices is also diagonal.  For example: 

0 0 0 . . .

0 0 00 0 . . .

0 0 . . .0 0 0

. . .0 0 0

c ac
a

da c ad

b d bcc
b

bdd

      
      
             
    = =   
                                

. (10.4) 

Therefore, ĤN is diagonal, and: 

ˆ
( ) Tr NH

NZ e
 −

= . 

Furthermore, we see from the first equality of (10.4) that the trace of an outer product of diagonal matrices 

is the product of their traces: ( ) ( ) ( )Tr Tr Tr =A B A B .  Now we invoke a crucial theorem: 

The trace of a matrix is independent of the basis in which it is expressed. 

Corollary: the trace of any matrix is the sum of its eigenvalues. 

Thus, diagonal or not: 

( ) ( ) ( )Tr Tr Tr =A B A B           (for any matrices A and B). 

Finally, then, we can say that for noninteracting subsystems, in any basis: 
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( ) ( ) ( ) ( ) ( )
ˆ

1 2 1 1
ˆ ˆ ˆ ˆ( ) Tr Tr Tr ... Tr Tr ( )N

N NH
N NZ e H H H H Z

 −
= = = = , (10.5) 

as before.  This means that if we can write the hamiltonian of N identical, distinguishable subsystems as a 

tensor product of N identical single-subsystem hamiltonians, then we can easily find the system partition 

function from the above equation.  This is true, even if Ĥ1 is not diagonal.   

The interacting system below will not be able to use this method exactly, but will be inspired by it. 

Interacting Particles (Subsystems): the Ising Model 

With all this as background, we can consider the Ising model [Pathr ??].  The Ising model describes 

particles on some kind of lattice, and each particle interacts only with its nearest neighbors.  For simplicity, 

we consider a ring of N identical interacting 2-state magnetic moment particles (or subsystems).  This is a 1-

dimensional system.  Some long-chain molecules are well-described by this simple model. 

The system is immersed in a magnetic field B, and additionally, each particle interacts with its two 

nearest neighbors.  The system hamiltonian is: 

1

unique
n.n. pa r

1 1

1 1

1 1

i s

ˆ

1, because it's a ring .

N N N

i i i i i i

i i i

i N

H B J B J

where

       

  

+ +

= =

 
 

=

+

= − − − +  

=       

=

    

  
 

Note that the second summation considers each nearest-neighbor pair exactly once.  If J > 0, then the spins 

are lower energy when aligned, called ferromagnetism.  If J < 0, the spins are lower energy when anti-

aligned, and the spins tend to alternate + – + ... , called antiferromagnetism. 

We seek the system partition function, since that gives us all the thermodynamic properties.  This is a 

complicated hamiltonian that is hard to analyze, as-is.  If we could write it as in (10.3), we could use (10.5) 

to simplify it, but the interaction terms do not allow it to be factored as a string of tensor products.  So let us 

see if we can do something similar.  Consider the i-th particle in the system, and its single-subsystem 

hamiltonian: 

1 1 2

1

1 1

ˆ ˆ ˆ ˆ ˆ ˆand ...

because it's a ring .

N

i i i i N i

i

N

H B J H H H H H

where

   

 

+

=

+

= − +  = + + + =  

        

  

In the i-th particle hamiltonian Ĥi, we have included its interaction with the next particle.  This subsystem 

has 4 basis states, since each of σi and σi+1 has two possible values, but as noted, we cannot use this 

hamiltonian directly.  We are forced to invent a “trick” to find the partition function. 

[At this point, some references “symmetrize” the Ĥi [Pat4 (2) p476], but this step is unnecessary.  We arrive at 

the same result without it.] 

By definition, the system partition function can be written directly as the sum over all microstates of the 

Boltzmann factors.  There are 2N microstates, one for each combination of σ1 ... σN: 

1

1 1

1 1 1

( ) ... exp

N

N

N i i

i

Z B J

 

      +

= = =

  
= +   

  
   . 

Now is when things get tricky.  In (10.3), we found the string of products useful, so here, we try something 

similar.  First, we convert the innermost sum to products of exponentials: 

1

1 1

1 1 1

( ) ... exp

N

N

N i i

i

Z B J

 

      +

= = =

= +     . 
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It’s hard to see in the above form, but the exponential can be written as an inner product of vectors around a 

matrix operator.  We define our kets, bras, and state vectors: 

( ) ( )
1 0

1 and 1 0 , 1 and 0 1
0 1

i i i i i i     
   
   = + → =       = = − → =      =
   
   

, 

and similar for σi+1.  Then we can write the exponential in linear algebra form: 

1 1 1exp

B J B J

i i i i
B J B J

e e
B J

e e

   

   
      

+ −

+ +
− − − +

 
 +   =  
 
 

P P . (10.6) 

P is called the transfer matrix, and is independent of i.  Note that we’re using a notation reminiscent of 

quantum mechanics, but P is not a quantum operator.  It’s just the matrix we need to get the exponential of 

the i-th particle energy, exp(–βEi).  The system partition function now takes the form: 

1

1 2 2 3 1 1

1 1

( ) ... ...

N

N N N NZ

 

        −

= =

=   P P P P . 

Each inner product is a number.  Notice that the sum over the factors |σ2><σ2| is a sum over a complete set of 

states, which is just the identity operator: 

2

2 2

1

op



 

=

= 1 . 

This is also true for σ3 through σN.  Therefore, all the summations disappear, except σ1: 

1 diagonal
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1 1

f

1

( ) Tr
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N N
NZ



  

 

=

 

= =

P

P P . 

Now, the trace is the sum of the eigenvalues of PN.  If the eigenvalues of P are λ1 and λ2, then the 

eigenvalues of PN are λ1
N and λ2

N.  Let us find the eigenvalues of P.  Using the standard eigenvalue approach, 

for an arbitrary 22 matrix, we have the characteristic equation: 
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Using the definition of P, (10.6): 
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Then the eigenvalues of PN are λ1
N and λ2

N.   Hence: 

1 2( ) N N
NZ   = + . 

λ1 must be greater than λ2, so in the thermodynamic limit (large N), λ1 overwhelmingly dominates the partition 

function.  As an example, even if λ2 is 99% of λ1, it only takes N > 459, for λ1 to contribute < 1% to the 

partition function.  In other words, 0.99459 < 0.01.  For bulk materials, with N ~ 1020, λ1 is utterly negligible. 

Now that we have ZN, we find the free energy F = –kT ln ZN, and any other properties from standard 

thermodynamic relations. 

Weakly Interacting Gases 

Many (if not most) real gas systems involve significantly nonideal gases.  The molecules interact, often 

becoming more attractive as the particles get closer, up to a point, and then strongly repulsive as they get 

even closer (Figure 10.3).  This is why most gases can liquify.  The thermodynamic properties of such a 

system depend on the details of the interaction.  Computing the exact properties is almost always impossible, 

so we use approximations.  Weakly interacting gases are defined as those that deviate a small amount from 

ideality. 
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u(r)

attractiverepulsive

force

kT >> |u(r)|

equilibrium separation

separation, 
r

f (r)

attractiverepulsive
equilibrium separation(a) (b)

-1

0

 
Figure 10.3  (a) Qualitative view of a typical weak interaction for gas particles.  (b) Qualitative 

view of the Mayer f-function. 

Cluster Expansion Approximation 

  A common approach for math problems such as the equation of state for weakly interacting gases is to 

make an expansion in powers of a dimensionless small parameter; such an expansion has a good chance of 

converging rapidly, so the approximation simply takes the first few terms of the expansion.  A tractable (but 

nontrivial) such approximation is the cluster expansion.  The cluster expansion can then be used to compute 

the virial expansion, which is an expansion of the gas equation of state in powers of its (small) particle 

density. 

Recall that all the thermodynamic properties of a system can be found from its partition function, which 

gives the relevant free-energy, and derivatives of the free-energy give all the other properties.  E.g.: 

( , , , ...) ln ( , , , ...), and

partial derivatives of A( ) all thermodynamic properties .

A T V N kT Z T V N = −  

     →    
 

Therefore, we start by finding the partition function.  Before we include interactions, recall that a partition 

function for a gas starts with the translational kinetic energy of the particles, and could also include the 

internal energies (excited molecular states, rotations, vibrations), or even interactions with external fields.  

These “extra” energies are not relevant to a cluster expansion, so we illustrate with the simplest system we 

can (just translational kinetic energy, e.g., monatomic gas). 

The cluster approximation uses just 2-particle interactions, ignoring effects such as distortion when 3 or 

more particles get close.  It further approximates that the interactions depend only on the 2-particle positions, 
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ignoring effects such as dipole orientation dependence from polar molecules like steam.  Finally, it 

approximates that the interaction potential depends only on the particle separation, i.e. the interactions are 

“central” (see Figure 10.3): 

( , ) ( ),ij i j ij ij i ju u r r     −r r r r . (10.7) 

The system energy is then: 

12

1 2 2 2 1

( , )
2

jN N N N
i

ij i j

i i j i j j i

U u where
m

−

=  =  = = =

 +    
p

r r . 

The interaction summation is over all unique pairs, i, j.  For weakly interacting gases (Figure 10.3), for all 

r > equilibrium distance, the |u(r)| << kT (which is also roughly the typical particle kinetic energy). 

Using the classical continuum approximation, the system partition function separates into a product of 

integrals: 
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 (10.8) 

Zc is called the configuration integral, because it depends only on the system configuration (positions of the 

particles).  We normalize it with VN, so it is dimensionless.  With no interactions, Zc = 1, and the partition 

function is simply that of an ideal gas.   

The momentum integral is the same as for an ideal gas, and is simple to evaluate: we split it into 3N 

independent 1-dimensional integrals, over x, y, z, for all the N particles: 
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As always, the partition function is dimensionless. 

So far, we’ve made the three approximation described above eq. (10.7).  We now consider weak 

interactions, defined as |u(r)| << kT.  In (10.8), we defined the configuration integral Zc: 
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( )3 3 3 3
1 1

2 2

1 1
... exp ( ) / ... exp ( ) /

NN

c N ij N ijN NVol Vol
i j i j

Z d r d r u r kT d r d r u r kT
V V

 =  =

 
    =   −
 
 
   . 

For small |u(r)| << kT, the exponentials are near 1, so it is convenient to expand them in terms of small 

deviations from 1.  So we define these deviations as the functions fij(ri, rj): 

( )( , ) exp ( ) / 1 or exp( ( ) / ) 1ij ij i j ij ij ijf f u r kT u r kT f  − −    −  +r r . 

Formally, each function fij is a function of ri and rj.  Figure 10.3b qualitatively illustrates a typical Mayer f-

function.  Then: 

( ) ( ) ( ) ( )3 3
1 12 13 1,

2

1
... 1 1 1 ... 1

N

c N ij N NN Vol
i j

Z d r d r f f f f
V

−

 =

=   + = + +     + . (10.9) 

This form of Zc is called the cluster expansion.  Evaluating this product is difficult.  If fij << 1, then we can 

approximate it, but even then, the approximation is complicated.  To help compute this approximation, a 

graphical tool is used (similar to Feynman diagrams).   

To recap all the approximations we’ve made in Zc: 

• The interactions are pair-wise (involve only two particles at a time). 

• The interactions depend only on particle positions (not orientations, or speeds, etc.). 

• The interactions are central (depend only on particle separation). 

• The interactions are weak: |u(r)| << kT. 

The configuration integral (10.9) has N(N – 1)/2 binomial factors, because there are N(N – 1)/2 unique 

pairs of particles.  If we multiply it out into a sum of terms, we can sort the terms by orders of the fij: 

3 3
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2 2 2 2 2 2
, , , , , ,

or ,

1
... 1 ...

N N N N N N
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      . 

There are now N(N – 1)/2 terms in the square brackets.  Importantly, each term is unique because each of the 

fij in (10.9) appears only once.  Since the fij are << 1, we might hope that the first-order terms would be 

smaller than the second-order, and so on.  It turns out to be not that simple, as we now explore.  We will find 

that it is more convenient to group the terms differently than as above. 

Consider the first term in Zc above.  For each particle position ri, the integral over the container volume 

is just V: 

(1) 3 3
1

1 1
... 1

N
c NN NVol

Z d r d r V
V V

=   = = . 

The second term in Zc above is: 

(2) 3 3
1

2

1
...

N

c N ijN Vol
i j

Z d r d r f
V

 =

=      . 

For a given (i,j) pair, we have an integral that includes the N–2 positions other than ri and rj, each of which 

integrates to just the container volume V.  This simplifies to: 
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2
(2) 3 3 3 3

2
2 2

1

j j

N NN

c i j ij i j ijN Vol r Vol r
i j i j

V
Z d r d r f d r d r f

V V

−

→ →
 =  =

=   =        . 

Since the fij fall off rapidly with distance, then in the surviving 2-particle integral above, we can replace the 

limits on rj with infinity, which makes the integral easier to evaluate.  This is valid in the thermodynamic 

limit where surface effects of the container are negligible.  Because the limits are now at infinity, we can 

change variables on the inner integral to r’j = rj - ri, to eliminate dependence on ri (this is equivalent to taking 

the current value of ri as the origin of coordinates for our new integration variable r’j).  This means the 

integral over ri produces a simple factor of V: 

(2) 3

'
2

1
' ( ', )

j

N

c j ij
r

i j

Z d r f
V →

 =

=    vr 0 . 

In our cluster diagrams, we will use this device to eliminate one position variable from each term in Zc. 

More TBS.   

The Virial Expansion 

When written per particle, the ideal gas equation of state is: 

/ is the specific volumepv kT where v V N=         . 

For nonideal gases, i.e. interacting particles, we can include some corrections to the equation of state as an 

expansion in a small parameter: 

( )  
1

1
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1
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corrections ( ) / Pat310.2.1p307b

( ) 1; is the so-called "thermal wavelength".
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This is an expansion in the dimensionless small parameter (λ3/v) = (λ3ρ).  At low density, ρ = 1/v is small, 

and the equation of state reduces to the ideal one.  As the density increases, so do the corrections to ideality.  

Note that a1 ≡ 1, and the second virial coefficient goes with the first power of the expansion parameter (λ3/v).  

Also, the virial expansion explicitly includes a temperature dependence for the corrections. 

More TBS. 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

6/6/2023  18:41 Copyright 2002 - 2023 Eric L. Michelsen.  All rights reserved. Page 112 of 116 

11 Appendices 

Future Statistical Mechanifesto Topics 

1. Why change in free energy is the maximal useful work to be gotten from change in system state 

(and that’s why it’s called “free” (available) energy). 

2. Show how for bosons, multiple quantum states of the same energy affect the microscopic statistics.  

Since all energy levels can have any number of particles, show how having two levels at the same 

energy matters.  It is due to distinguishability. 

3. How can we treat Coulomb repulsion as just collisions, but not interactions?  Because, over 99.9% 

of the volume, δV << kT. 

4. Derive the Fermi-Dirac and Bose-Einstein energy distributions. 

5. Grand potential (Schroeder), including chemical examples where particles (molecules) are not 

conserved. 

6. Endothermic reactions: N2O → N2 + ½O2    S → 1.5S 

7. Legendre transformations 

8. Greg’s example of a system of 3 doubly degenerate energy levels. 

9. Note: avg over time = avg over ensemble.  Ergodicity. 

10. Photon gas: E ~ VT4 (extensive).  Related to P = σT4 ?  For any ultra-relativistic particle, pV = E/3.  

For classical gas, pV = 2E/3.  Photon eq. of state: photon reflects off wall, solid angle of impact is 

2 steradians. 
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11. Fermi level of non-interacting ultra-relativistic electrons: 
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12. 3 24d k k dk→  

13. Gaussian integral approximation (saddle point method) 

14. S = -k sum(pi ln pi)  [Wan p87] 

15. Isothermal work done on a system decreases its entropy [Wan p103] 
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Glossary 

Definitions of common Statistical Mechanics terms: 

<x> the average (sometimes called “expectation”) value of ‘x’ 

absolute probability a number in [0,1] (inclusive) that quantifies how likely an event is to occur.  Given 

a large sample of trials, the fraction of occurrences of the event approaches its absolute 

probability.  Zero means the event will never happen; one means the event happens with 

certainty.  See also relative probability. 

adiabatic without heat transfer 

arg max  arg max ( )
x

f x  is the value of x that maximizes f(x). 

Boltzmann distribution Given a system in thermal equilibrium with a heat bath (i.e. at some fixed 

temperature), the Boltzmann distribution gives the relative probability of the system being 

in a single microstate of known energy. 

Bose-Einstein distribution The average occupation number of a single quantum state in a system of many 

bosons, which may be > 1.  Cf “Bose-Einstein distribution” and “Maxwell-Boltzmann 

occupation number.” 

chemical potential an unfortunate name for the free-energy of a particle.  It need not have anything 

to do with chemistry. 

classical system a hypothetical system obeying classical mechanics.  This is useful as an approximation to 

real (i.e. quantum) systems.  In the high energy limit, classical mechanics gives real results. 

combinatorics the mathematical study of permutations and combinations of things (elements of sets). 

density of states In SM, usually means “phase-space density of states.”  This is the number of states per unit 

“volume” (really hyper-volume) of phase space.  Can also mean “energy density of states”: 

# states per unit energy. 

dynamic variable generalized coordinate or momentum. 

http://elmichelsen.physics.ucsd.edu/


elmichelsen.physics.ucsd.edu Statistical Mechanifesto emichels at physics.ucsd.edu 

6/6/2023  18:41 Copyright 2002 - 2023 Eric L. Michelsen.  All rights reserved. Page 114 of 116 

energy state ambiguous: may be a single-particle state, microstate, or macrostate. 

energy eigenstate ambiguous: may be a single-particle state, or a microstate. 

ensemble a real or imaginary set of “systems.”  Typically, the set is very large. 

entropy  the multiplicity of a macrostate measured on a logarithmic scale.  Entropy is a function of 

the macrostate of a system which helps compute thermal equilibrium parameters.  

Intuitively, entropy measures uniformity throughout a system (not disorder or chaos). 

extensive (briefly) a property that is proportional to system size (e.g., mass). 

factor an element of an expression that is multiplied or divided: in “a/b”, a and b are factors. 

Fermi-Dirac distribution The average occupation number of a single quantum state in a system of many 

fermions, which must be < 1.  Cf “Bose-Einstein distribution” and “Maxwell-Boltzmann 

occupation number.” 

free energy Where entropy is a measure of a system’s ability to defy energy, free energy incorporates 

that defiance in units of energy, and is the actual quantity minimized by a system in 

equilibrium.  There are several kinds of free energy, because each set of constraints on a 

system requires its own definition of free energy.  

gases plural of the noun “gas”. 

gasses third person singular form of the verb “to gas”. 

gazillion technical term for “a very large number”. 

Gibbs distribution = Boltzmann distribution = Maxwell-Boltzmann distribution [Wan ch. 4.??] 

heat random energy which can be transferred between different elements of the system.  

Commonly, heat is random kinetic energy of particles transferred by collisions. 

ideal particles have insignificant interactions over most inter-particle distances, and significant 

interactions (i.e., collisions) only at tiny fractions of the average inter-particle distance. 

intensive (briefly) a property that does not scale with the system size (e.g., T). 

isobaric constant pressure 

isochoric constant volume 

isothermal constant temperature 

macrostate An observable state of a system, which could conceivably be measured in a lab.  The 

macrostate includes observables such as temperature, pressure, volume, magnetization, etc.  

See also microstate. 

Maxwell-Boltzmann speed distribution The distribution of particle speeds in a gas in thermal 

equilibrium. 

Maxwell-Boltzmann energy distribution The distribution of particle energies in a gas in thermal 

equilibrium. 

Maxwell-Boltzmann occupation number The approximate average occupation number of a given 

quantum state in a sparse system (average occupation number << 1). 

microstate A single state of a system, including the states of all of the system’s constituent particles.  

Classically, a microstate includes each particle’s position and momentum.  Quantum 

mechanically, a microstate is an N-particle energy eigenstate.  It is a wave function that 

describes the state of every particle in the system.  In either case, a microstate usually 

cannot be observed or determined in a laboratory.  However, a knowledge of microstates 

from physical theories is essential to applying Statistical Mechanics to predict observable 

phenomena. 

multiplicity the number of microstates consistent with a given macrostate 
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normalization factor a number by which you can divide (or perhaps multiply) relative probability to 

get absolute probability. 

occupation number The average number of particles in a state, for some fixed N total particles.  The 

occupation number is a relative probability of occupancy for the energy. 

PDF Probability distribution function: ( )Pr ( )Xx X x dx pdf x dx  + =  . 

phase-space a 6N dimensional space of coordinates and their conjugate momenta.  Each particle has 3 

position coordinates (e.g., x, y, z), and 3 momenta (e.g., px, py, pz). 

probability absolute probability. 

quantum system a system obeying quantum mechanics, as all real systems do. 

relative probability a number that quantifies how likely an event is to occur, out of a pool of N 

samples.  Given N, absolute probability = (relative probability) / N.  Even without N, you 

can compare the relative probabilities of two events, to determine the ratio of their absolute 

probabilities.  See also absolute probability. 

smidge an infinitesimal amount 

spin-state the spin part of a quantum state, a vector of dimension 2s + 1. 

term an element of an expression that is added or subtracted: in “a + b”, a and b are terms. 

usually for macroscopic systems: always.  In SM, saying a macroscopic system is “usually” in the 

most-likely macrostate pretty much means it is “always” in that state. 

wave-function the spatial part of a quantum state. 

Formulas 

Generalized factorial: 
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Entropy of monatomic ideal gas (Sackur-Tetrode equation (3.7)): 
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Helmholtz free energy: ( , , ) ln

Gibbs free energy: [Car 9.11 p154, & inside cover]
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