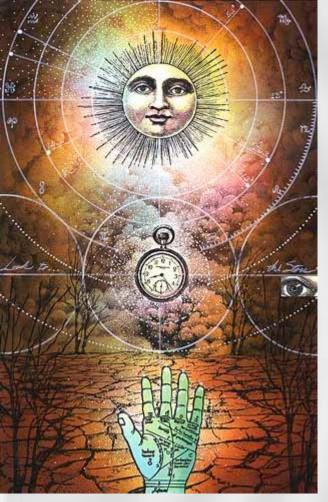


Decoherence and The Collapse of Quantum Mechanics

A "Modern" View


It's time to make decoherence mainstream

- QM is ~90 years old
 - But it is still taught like the 1930s
 - Modern textbooks still ignore measurement theory

- Worse, they still teach hand-wavy "collapse" without precise definitions
- A surprising amount of current *scientific* literature is devoted to "interpretations" of QM
 - A surprising amount of decoherence literature is defending basic scientific principles, such as predictions and testability
- Decoherence has been around since the 1980s
 - It has been surprisingly neglected
 - It's not that hard

1/31/2014 Heisenberg c. 1925

What is quantum mechanics?

- Is it mystic?
- Or is it science?

It's this one

Outline

- Motivation for decoherence
- First summary
- Probabilistic reality
- Interference
- The "measurement problem"
- Complementarity: 4 effects
- Second summary

Thanks to Eve Armstrong for very helpful comments and suggestions

Main paper

- M. Schlosshauer, *Decoherence*, the *measurement problem*, and interpretations of quantum mechanics
 - Reviews Of Modern Physics, Volume 76, 10/2004
 - 39 page review
- Scully, Marlan O., Berthold-Georg Englert, Herbert Walther, *Quantum* optical tests of complementarity
 - Nature, 9 May 1991
- Decoherence
 - Maybe: Zurek, Wojciech H., Decoherence and the Transition from Quantum to Classical - Revisited, Los Alamos Science, number 27, 2002
 - I have mixed feelings about this

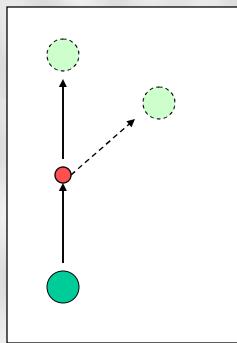
1/31/2014

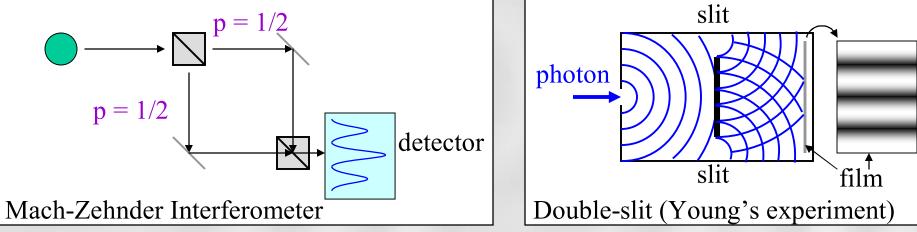
Motivation for decoherence

- The measurement problem
 - Where is the transition from quantum to classical?
 - No observed macroscopic superpositions
- What is a measurement?
 - I.e., when does the quantum state collapse?
 - Can a cat collapse it?

- For me, the transition from quantum to classical is "easier"
 - The transition from quantum field theory to quantum mechanics is "harder"

First summary


- The decoherence model explains everything from two principles:
 - Time evolution, according to Schrödinger Equation
- <u>"Mini-collapse</u>" when a result is observed (by me!)
 My words
 - Decoherence is the simplest, most intuitive QM model
 - Most consistent with other laws of physics
 - It predicts the outcomes of experiments
 - Much of the literature discussion around decoherence is meaningless
 - "Decoherence is wrong because it contradicts my preconceived notions of what reality should be like."

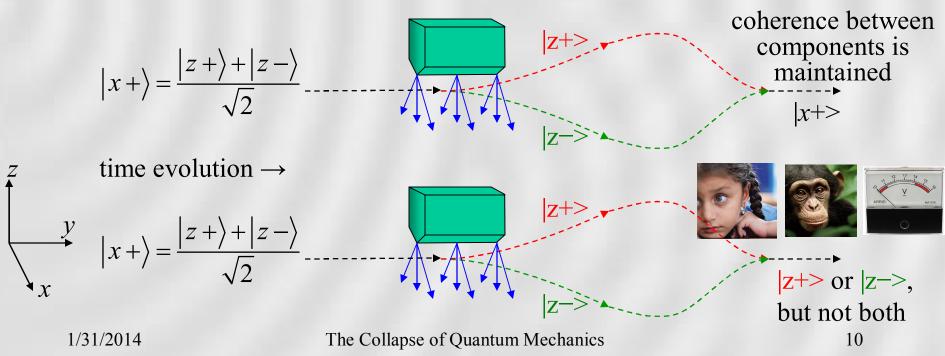

1/31/2014

Reality is probabilistic

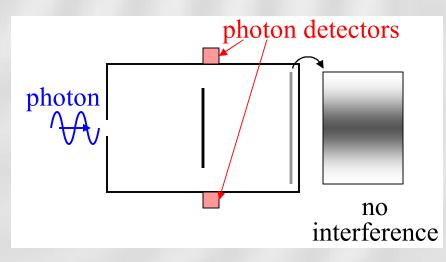
- The *exact* same setup, measured multiple times, produces different results
- If two possible outcomes never cross paths, they are indistinguishable from a coin toss
 - A particle scatters, or it doesn't
 - Classical probability (nothing weird)
- If two possible outcomes are recombined, we get **interference**, even from one particle at a time

Interference is the hallmark of quantum mechanics

- If it interferes, it's quantum
 - If it doesn't, it's classical



- Quantum interference requires two things:
 - Recombining two components of the quantum state
 - Many "trials," each of a single particle


But it's not just interference

- It's phase coherence between components of a superposition
- E.g., Stern-Gerlach is not a measurement
- Unless we look at the result
 - Or any other macroscopic device gets entangled with the result

Prevention of interference

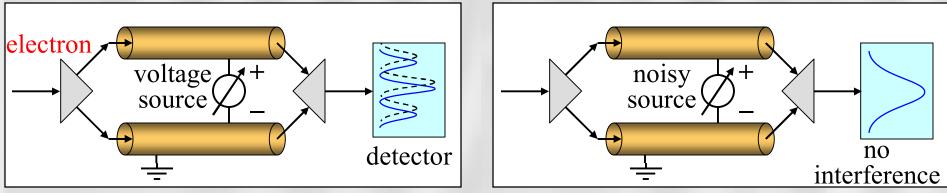
- If we try to see "which way" (welcher Weg) the photon went, we prevent interference
 - Only one photon detector triggers at a time
 - Suggests "complementarity": it's either a wave, or a particle, but not both at the same time
 - But how does it know which to be?

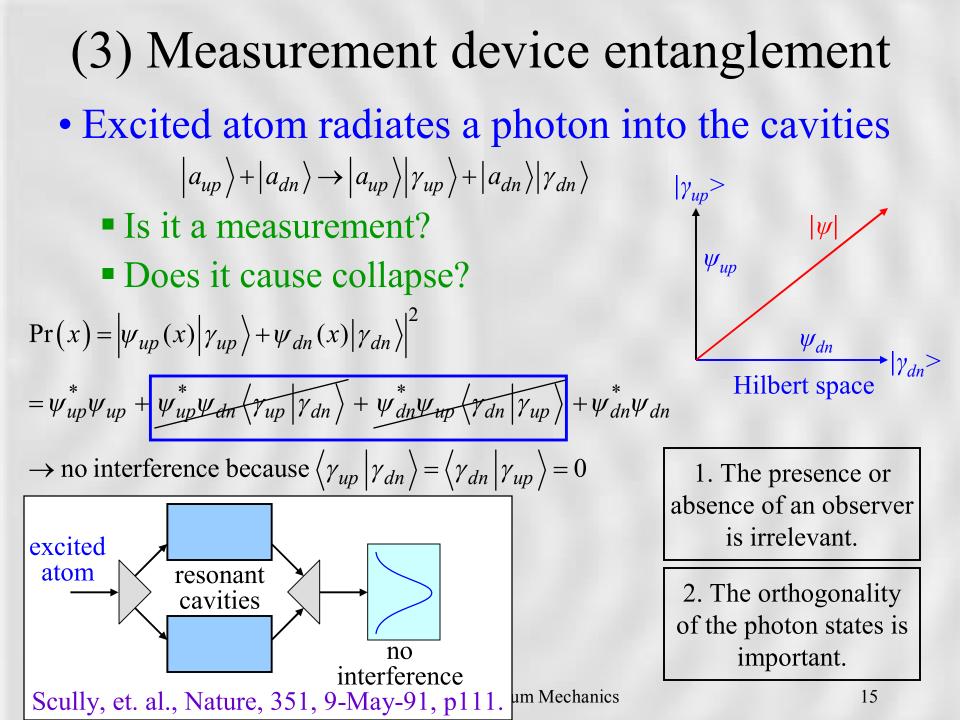
Complementarity

- Prevention of interference led to "Wave-particle duality," aka "complementarity"
 - Particles behave like either a wave or a particle, but not both
 - Which one depends on the experiment
- There are 4 completely different phenomena that have all been called examples of "complementarity"
 - Bohr microscope
 - "Fake" decoherence
 - Measurement entanglement
 - "Real" decoherence

The Collapse of

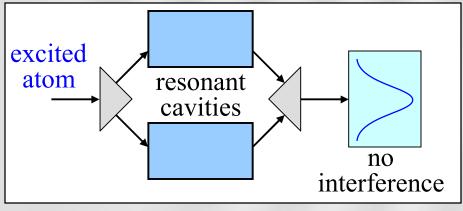
(1) Bohr microscope

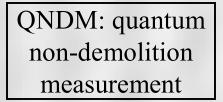

- Position-momentum uncertainty is from measurement clumsiness
 - Measurement "bumps" the particle out of a consistent state
 - Prevents an interference pattern
- I never liked this
 - Belies the nature of wave-functions
 - It's not: a particle has a well-defined momentum and position, but nature is mean, and won't let you know them both
 - It is: A particle cannot have a well-defined position and momentum
 - Motivates a search for a "kinder, gentler" measuring device
 - Such a device exists, and disproves "clumsy measurement"! (More soon.)



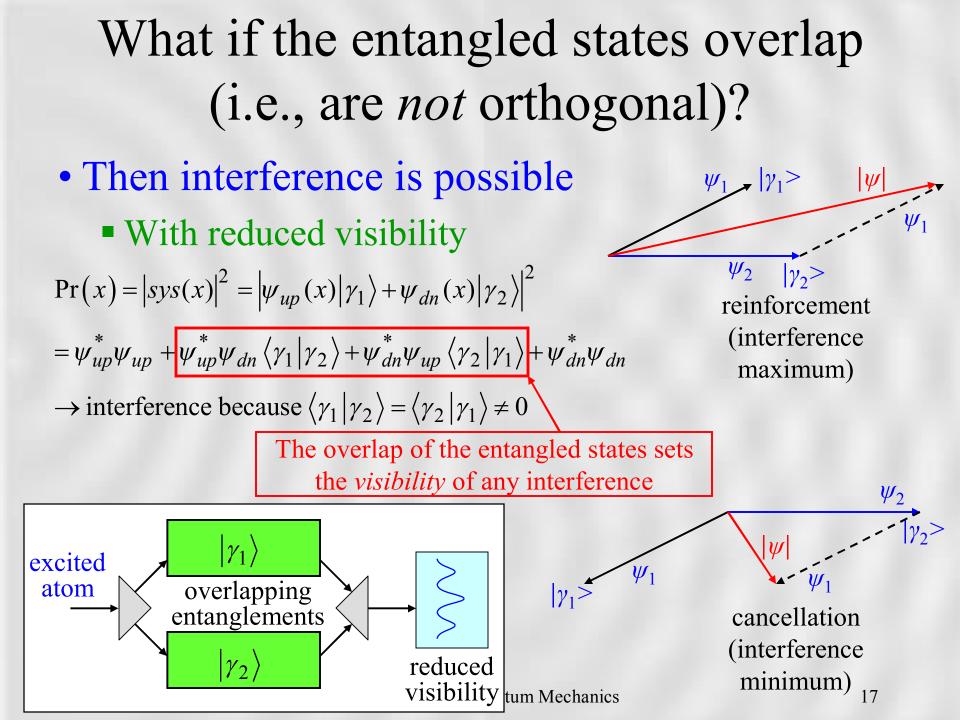
(2) "Fake" Decoherence

- Consider a 2-slit experiment where the energy of one path is controllable
 - Position of interference pattern is then controllable
- What if energy is uncontrollable and unrepeatable, i.e. **noise**?
 - Interference pattern moves randomly, washes out
- Uncontrolled and unrepeatable energy transfer leads to classical probabilities
 - Loss of coherence ~10⁻¹² s

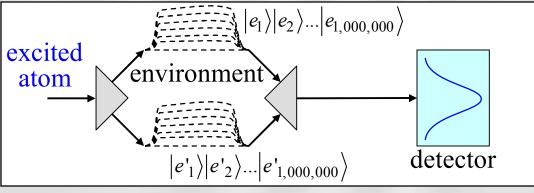

1/31/2014



Measurement device entanglement (cont.)

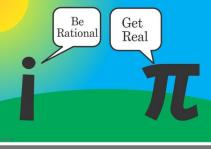

• This is a kinder, gentler measurement

- The radiated photon has insignificant effect on the atom's center-of-mass wave-function
- Disproves the Bohr microscope "clumsy measurement" idea


1/31/2014

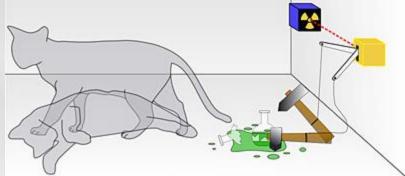
(4) "Real" decoherence

- The two components of the split particle interact with their macroscopic environment
 - Evolving through as cascade of progressively more entanglement with time
 - Even though the environmental states have significant overlap
 - The product of millions of numbers $< 1 \approx 0$


$$\psi = \psi_{up} + \psi_{dn} \rightarrow \psi_{up} |e_1\rangle |e_2\rangle \dots |e_{1,000,000}\rangle + \psi_{dn} |e_1\rangle |e_2\rangle \dots |e_{1,000,000}\rangle$$

interference terms $\propto \langle e_1 |e_1\rangle \langle e_2 |e_2\rangle \dots \langle e_{1,000,000} |e_{1,000,000}\rangle \approx 0$

"Real" decoherence (cont.)

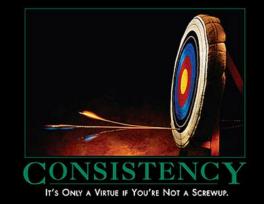


- Real experiments are inevitably connected to their surrounding environment
- Macroscopic ones are connected to billions of particles ("subsystems") in the environment
 - This means they decohere on extremely short timescales, $\sim 10^{-18}$ s??
- The decoherence model still requires a collapse:
 - After I see a measurement, all other components of the superposition disappear (the wave function collapses)
 - In the decoherence model, this is the only "weird" phenomenon of quantum mechanics
 - The rest is just a deterministic time evolution of the quantum state according to the Schrödinger equation

1/31/2014

Total loss of coherence is equivalent to collapse

- Doesn't matter what causes loss of coherence (fake or real decoherence)
- Both total loss of coherence *and* collapse lead to classical probabilities
 - Equivalent to: the particle is in *one* definite state, we just don't know which state it is
- But the collapse model has problems:
 - Cannot explain partial coherence
 - Collapse is binary: it happens or it doesn't
 - Decoherence is continuous: relative phase of components becomes smoothly more statistically diverse


Consistency and collapse

- The "consistency postulate" requires a collapse somewhere along the line (even in the decoherence model)
 - Once I observe a result, all other possible outcomes disappear: nonunitary collapse
- To allow for partial coherence, a physical model must defer the collapse to the last possible moment
 - All other time evolution simply follows the Schrodinger equation

Observers are macroscopic

- When I look at a measurement device, my macroscopic body totally decoheres the possible measurement outcomes long before my brain can interpret the results
- Therefore, the decoherence model implies that "minicollapse" can only occur *after* total decoherence
 - This is more complete than old-fashioned collapse, because it connects the measurement all the way to the observer with just entanglement and the Schrödinger Equation

Second summary

18

- A **measurement** is *defined* to be irreversible (for all practical purposes)
- The decoherence model is (IMHO) the simplest, most intuitive quantum model
 - Is just the Schrödinger Equation + mini-collapse
 - Eliminates any confusion about when is a measurement, when is collapse, etc.
- I don't think "interpretations" of QM have any scientific basis (angels on the head of a pin)

Gravity Induced Neutron Interference (GINI)

- Phys. Rev. A 21, 1419–1438 (1980), Gravity and inertia in quantum mechanics
 - J. -L. Staudenmann and S. A. Werner

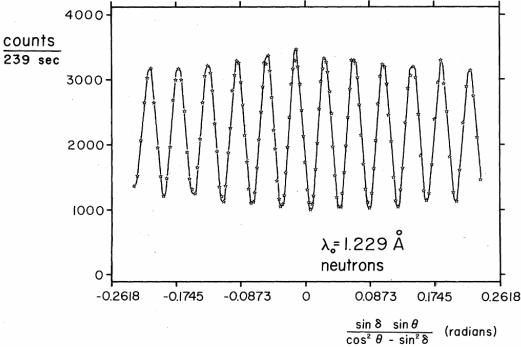
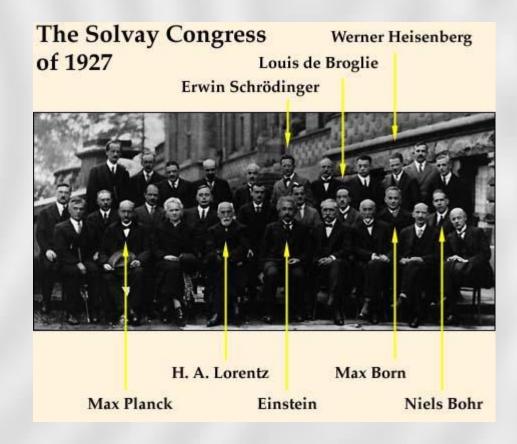



FIG. 7. Example of data obtained by rotating an Si slab in the interferometer (Fig. 6). The counts in detector C_3 are shown. 1/31/2014

