
Spontaneous knotting of an agitated string
Dorian M. Raymer* and Douglas E. Smith*

Department of Physics, University of California at San Diego, 9500 Gilman Drive, Mail Code 0379, La Jolla, CA 92093

Edited by Leo P. Kadanoff, University of Chicago, Chicago, IL, and approved July 30, 2007 (received for review December 21, 2006)

It is well known that a jostled string tends to become knotted; yet
the factors governing the ‘‘spontaneous’’ formation of various
knots are unclear. We performed experiments in which a string was
tumbled inside a box and found that complex knots often form
within seconds. We used mathematical knot theory to analyze the
knots. Above a critical string length, the probability P of knotting
at first increased sharply with length but then saturated below
100%. This behavior differs from that of mathematical self-avoid-
ing random walks, where P has been proven to approach 100%.
Finite agitation time and jamming of the string due to its stiffness
result in lower probability, but P approaches 100% with long,
flexible strings. We analyzed the knots by calculating their Jones
polynomials via computer analysis of digital photos of the string.
Remarkably, almost all were identified as prime knots: 120 differ-
ent types, having minimum crossing numbers up to 11, were
observed in 3,415 trials. All prime knots with up to seven crossings
were observed. The relative probability of forming a knot de-
creased exponentially with minimum crossing number and Möbius
energy, mathematical measures of knot complexity. Based on the
observation that long, stiff strings tend to form a coiled structure
when confined, we propose a simple model to describe the knot
formation based on random ‘‘braid moves’’ of the string end. Our
model can qualitatively account for the observed distribution of
knots and dependence on agitation time and string length.

Jones polynomial � knot energy � knot theory � random walk �
statistical physics

Knots have been a subject of scientific study since as early as
1867, when Lord Kelvin proposed that atoms might be

described as knots of swirling vortices (1). Although this theory
fell into disfavor, it stimulated interest in the subject, and knots
currently play a role in many scientific fields, including polymer
physics, statistical mechanics, quantum field theory, and DNA
biochemistry (2, 3). Knotting and unknotting of DNA molecules
occurs in living cells and viruses and has been extensively studied
by molecular biologists (4–6). In physics, spontaneous knotting
and unknotting of vibrated ball-chains have recently been stud-
ied (7–9). In mathematics, knot theory has been an active field
of research for more than a century (3).

Formation of knots in mathematical self-avoiding random
walks has been extensively studied (10–16). In the 1960s, Frisch
and Wasserman (10) and Delbruck (11) conjectured that the
probability of finding a knot would approach 100% with an
increasing walk length. In 1988, Sumners and Whittington (15)
proved this conjecture rigorously by showing that exponentially
few arcs would remain unknotted as the length tends to infinity.
Numerical studies of finite-length random walks find that the
probability of knotting and the average complexity of knots
increase sharply with the number of steps (16).

Here, we describe a simple physical experiment on knot
formation. A string was placed in a cubic box and the box was
rotated at constant angular velocity about a principle axis
perpendicular to gravity, causing the string to tumble. We
investigated the probability of knotting, the type of knots
formed, and the dependence on string length. Before tumbling,
the string was held vertically above the center of the box and
dropped in, creating a quasirandom initial conformation. After
tumbling, the box was opened and the ends of the string were

lifted directly upward and joined to form a closed loop. A digital
photo was taken whenever a complex knot was formed. The
experiment was repeated hundreds of times with each string
length to collect statistics.

Results
Most of the measurements were carried out with a string having
a diameter of 3.2 mm, a density of 0.04 g/cm, and a flexural
rigidity of 3.1 � 104 dynes�cm2, tumbling in a 0.30 � 0.30 �
0.30-m box rotated at one revolution per second for 10 sec (see
Materials and Methods). Photos of the string taken before and
after tumbling are shown in Fig. 1, and movies of the tumbling
are provided as supporting information (SI) Movies 1–5. The
measured dependence of knotting probability P on string length
L is shown in Fig. 2. No knots were obtained for L � 0.46 m,
where SI Movie 1 shows that the confinement and tumbling did
not induce sufficient bending to allow knot formation. As L was
increased from 0.46 to 1.5 m, P increased sharply. However, as
L was increased from 1.5 to 6 m, P saturated at �50%. The
photos and movies show that when the string is confined in the
box, the finite stiffness of the string results in its tending to form
a coil (not perfectly, but to some degree) with a radius similar
to the box width. During and after tumbling, this coiled structure
is preserved, often with some compression of its radius perpen-
dicular to the rotation axis (Fig. 1 and SI Movie 2).

A series of additional experiments were done to investigate the
effect of changing the experimental parameters, as summarized
in Table 1. Tripling the agitation time caused a substantial
increase in P, indicating that the knotting is kinetically limited.
Decreasing the rotation rate by 3-fold while keeping the same
number of rotations caused little change in P. SI Movie 3 shows
that effective agitation still occurs because the string is period-
ically carried upward along the box wall. A 3-fold increase in the
rotation rate, on the other hand, caused a sharp decrease in P.
SI Movie 4 shows that in this case, the string tends to be flung
against the walls of the box by centrifugal force, resulting in less
tumbling motion.

Doubling the box width increased P slightly, but decreasing it
by 33% caused P to drop sharply. SI Movie 5 shows that the
tumbling motion was reduced because the finite stiffness of the
coiled string tends to wedge it more firmly against the walls of
the box. We also did measurements with a stiffer string (see
Materials and Methods) in the 0.15-m box and observed a
substantial drop in P. Observations again revealed that the
tumbling motion was reduced due to wedging of the string
against the walls of the box. Conversely, measurements with a
more flexible string found a substantial increase in P. With the
longest length studied of this string (4.6 m), P reached 85%,
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suggesting that P tends to 100% in the limit of long agitation
time, long length, and high flexibility.

Topological Analysis and Knot Classification
A string can be knotted in many possible ways, and a primary
concern of knot theory is to formally distinguish and classify all
possible knots. A measure of knot complexity is the number of
minimum crossings that must occur when a knot is viewed as a
two-dimensional projection (3). In the 1920s, J. Alexander (17)
developed a way to classify most knots with up to nine crossings
by showing that each knot could be associated with a specific
polynomial that constituted a topological invariant. In 1985, V.
Jones (18) discovered a new family of polynomials that constitute
even stronger topological invariants.

A major effort of our study was to classify the observed knots
by using the concept of polynomial invariants from knot theory.
When a random knot formed, it was often in a nonsimple
configuration, making identification virtually impossible. We
therefore developed a computer algorithm for finding a knot’s

Jones polynomial based on the skein theory approach introduced
by L. Kauffmann (3, 19).

This method involves enumerating all possible states of a
diagram in which each crossing is ‘‘smoothed,’’ meaning cut out
and reconnected in one of two possible ways: a � � or b � ,
resulting in �S� closed loops. All crossings were identified, as
illustrated in Fig. 3, each being either ‘‘over’’ or ‘‘under’’ and
having a writhe (3) (or ‘‘handedness’’) of �1 or �1. This
information was input into a computer program that we devel-
oped. The Kauffman bracket polynomial, in the variable t, was
then calculated as

� t�3w �
S

t�Na�Nb���t2 �t�2� �S��1, [1]

where the sum is over all possible states S, Na, and Nb are the
numbers of each type of smoothing in a particular state, and w
is the total writhe (3). The Jones polynomial is then obtained by
the substitution t3 t�1/4 and compared with polynomials in the
enumerated Table of Knot Invariants.†

Strikingly, we were able to identify �96% of all knots formed
(1,007 of 1,127)‡ as known prime knots having minimum crossing
numbers ranging from 3 to 11. The prevalence of prime knots is
rather surprising, because they are not the only possible type of
knot. Computer simulations of random walks find an increasing
fraction of nonprime ‘‘composite knots’’ with increasing length
(14, 20). Here, only 120 of the knots were unclassifiable in 3,415
trials. Anecdotally, many of those were composite knots, such as
pairs of 31 trefoils.

As shown in Fig. 4 A and B, the number of different types of
knots observed (per number of trials) and the mean minimum
crossing number c(K) increased sharply with increasing string
length for L � 0.46 to 1.5 m. However, for L 	 1.5 m, both
quantities saturated, along with the total knot probability. Knots
with c(K) � 3 to 11 were observed and the mean c(K) increased
from �3 to 6. As shown in Fig. 4C, all possible prime knots with
c(K) � 3, 4, 5, 6, and 7 were observed. Above c(K) � 7, the
fraction of possible knots observed dropped dramatically be-
cause the number of possible knots grows faster than exponen-
tially, rapidly exceeding the number of experimental trials.

Discussion
Although our experiments involve only mechanical motion of a
one-dimensional object and occupation of a finite number of well
defined topological states, the complexity introduced by knot
formation raises a profound question: Can any theoretical frame-
work, beside impractical brute-force calculation under Newton’s
laws, predict the formation of knots in our experiment?

Many computational studies have examined knotting of ran-
dom walks. Although the conformations of our confined string
are not just random walks (being more ordered), some similar-
ities were observed. Specifically, computational studies find that
the probability 1 � P of not forming a knot decreases exponen-
tially with random walk length (13, 14). In our experiments with
the medium-stiffness string, we find the same trend for lengths
ranging from L � 0.46 to 1.5 m, but P approached a value of �1
as the length was increased further. As mentioned above, we
attribute this to the finite agitation time.

In numerical studies of confined random walks (13, 20), P was
found to increase with increasing confinement, and this effect
has been proposed to explain the high probability of knotting of

†Livingston, C., Cha, J. C., Table of Knot Invariants (Indiana University; www.indiana.edu/

knotinfo). Accessed December 2006.

‡In a small fraction of cases, the Jones polynomial alone did not determine the knot. In 6
cases the knot was distinguished by visual inspection, in 19 cases it was distinguished by
calculating the Alexander polynomial, and in 7 cases it was distinguished by calculating the
HOMFLY polynomial (3).

Initial After tumbling

Fig. 1. Three examples of photos of the conformation of the string in the box
before and after tumbling.

Fig. 2. Measured probability of forming a knot versus string length. The line
is a least-squares fit to a simple sigmoidal function N � N0/(1 � (L/L0)b), with
N0 � 0.55, L0 � 3.4, and b � �2.9.
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DNA confined in certain viruses (6). However, this trend is in
contrast to that observed in our experiment. Our movies reveal
that in our case, increasing confinement of a stiff string in a box
causes increased wedging of the string against the walls of the
box, which reduces the tumbling motion that facilitates knotting.
Interestingly, a similar effect has also been proposed to restrict
the probability of knotting of the umbilical cord of fetuses due
to confinement in the amniotic sac (21).

Calculations on numerical random walks also find that the
probability of occurrence of any particular knot decreases ex-

ponentially with its complexity, as measured by the minimum
crossing number (16). We find that such behavior holds quite
strikingly in our experiment as well (Fig. 5A). This finding

Table 1. Dependence of knot probability on physical parameters

Box width

Condition 0.1 m 0.15 m 0.3 m

3-m length of #4 string, tumbled at one
revolution per second for 10 sec

26% 50% 55%

Slower tumbling (0.33 revolutions per second) 29% 52% 57%
Faster tumbling (three revolutions per second) 8% 17% 20%
Longer tumbling time (30 sec) 30% 74% 63%
More flexible string, 3 m — 65% —
More flexible string, 4.6 m — 85% —
Stiffer string, 3 m — 20% —

The physical properties of the strings are given in Materials and Methods. The percentages were determined
from 200 trials.

Fig. 3. Determinations of the knot identities by using polynomial invariants
from knot theory. Digital photos were taken of each knot (Left) and analyzed
by a computer program. The colored numbers mark the segments between
each crossing. Green marks an under-crossing and red marks an over-crossing.
This information is sufficient to calculate the Jones polynomial, as described in
the text, allowing each knot to be uniquely identified. The simplified drawings
(Right) were made by using KnotPlot [R. Scharein (December 2006),
www.knotplot.com].

Fig. 4. Properties of the distribution of observed knot types. (A) Number of
unique knots observed (per trial) vs. string length. The line is a fit to a simple
sigmoidal function N � N0/(1 � (L/L0)b), with N0 � 0.16, L0 � 5 ft, and b � �2.6.
(B) Mean minimum crossing number vs. string length. The line is a fit to a
simple exponential function P � P0(1 � exp(�bL)), with P0 � 5.6 and b � 0.54.
(C) Fraction of total possible types observed vs. minimum crossing number
(points), compared with the total number of types possible (bars).
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suggests that, although our string conformations are not random
walks, random motions do play an important role.

Another measure of knot complexity is ‘‘knot energy.’’ To
investigate whether optimal spatial forms exist for knots, math-
ematicians have associated energy functions with knotted curves
and sought minimizers (22–24). A class of functions studied in
detail was inverse-power potentials, mimicking loops with uni-
form charge density. A regularized potential �1/r2 was found to
be advantageous as the energy could be made scale-invariant and
invariant under Möbius transformations. Freedman, He, and
Wang (24) proved the existence of minimizers for such functions
and set certain upper bounds on possible knot energies. Kusner
and Sullivan (25) used a gradient descent algorithm to numer-
ically calculate minimum energy states for many different knots
and showed that they could distinguish different knots having the
same minimum crossing number. Although our string shows no
significant static charge (see Materials and Methods), its f lexural
rigidity would penalize complex knot formation in a qualitatively
similar manner as the Möbius knot energy (23). In fact, we
observe a strong correlation (an approximately exponential
decrease) of the probability PK of forming a certain knot with the
minimum energies calculated in ref. 25 (Fig. 5B), although the
51 knot deviated notably from the trend.

Comparison with Previous Studies. Several previous studies have
investigated knots in agitated ball-chains. Ben-Naim et al. (8)
tied simple 31 knots in the chains and studied their unknotting
on a vibrating plate. They found that the knot survival proba-
bility followed a universal scaling function independent of the
chain length, and that the dynamics could be modeled by three
random walks interacting via excluded volume in one spatial
dimension.

Belmonte et al. (7) observed spontaneous knotting and un-
knotting of a driven hanging ball-chain. Various knots were

formed, but only 31 and 41 knots were specifically identified. It
was found that although 41 is more complex, it occurred more
frequently than 31. Additional studies showed that the 31 knot
(and other ‘‘torus knots’’; e.g., 51 71, 91, 111) slips more easily off
the bottom of the hanging chain (26). These experiments indicate
that unknotting can have a strong influence on the probability of
obtaining a certain knot after a fixed agitation time and may help
to explain our observation of a lower probability for the 51 knot
relative to the trend in Fig. 5B (although we note that 31 occurred
with higher probability than 41 in our experiment).

Hickford et al. (9) recently examined the knotting and un-
knotting dynamics of a ball-chain on a vibrating plate. The chain
was short enough that almost all of the knots were simple 31
knots and the tying and untying events could be detected by
video image analysis. They found that the knotting rate was
independent of chain length but that the unknotting rate in-
creased rapidly with length. It was shown that the probability P
of finding a knot after a certain time depended on the balance
between tying and untying kinetics. Although our experimental
geometry is different, our measured dependence of P on length
(Fig. 2) is quite similar to that observed by Hickford et al.,
suggesting that a similar mechanism may apply. In our study,
however, the string is much longer, much more complex knots
are formed, and we focus on characterizing the relative proba-
bilities of formation of different knots.

Simplified Model for Knot Formation. Because the segments of a solid
string cannot pass through each other, the principles of topology
dictate that knots can only nucleate at the ends of the string.
Roughly speaking, the string end must trace a path that corresponds
to a certain knot topology in order for that knot to form. This
process has been directly visualized for simple 31 knots in the studies
of vibrated ball-chains (9). In principle, knots may form indepen-
dently at both ends of the string, but principles of knot theory
dictate that this would result in the formation of ‘‘nonprime’’ knots
(3). For example, if a separate 31 knot is formed at each end of a
string, they can be slid together at the center of the string but cannot
merge to form a single prime knot. That the majority of the
observed knots were prime suggests that knotting primarily occurs
at one end of the string in our experiment. Therefore, in developing
our model, we restricted our attention to the dynamics at one end
and ignored the other end.

The photos and movies of our tumbled string show that string
stiffness and confinement in the box promote a conformation
consisting (at least partly) of concentric coils having a diameter
on the order of the box size. Based on this observation, we
propose a minimal, simplified model for knot formation, as
illustrated schematically in Fig. 6. We assume that multiple
parallel strands lie in the vicinity of the string end and that knots
form when the end segment weaves under and over adjacent
segments. Interestingly, our model corresponds closely to the
mathematical representation of knots in a ‘‘braid diagram,’’ and
the weaving corresponds to ‘‘braid moves,’’ which provides
additional insights (3). The relationship between a braid diagram
and a knot is established by the assumed connectivity of the
group of line segments, as indicated by the dashed lines in the
figure. One may ignore the local motions of these sections of the
string because they cannot change the topology. In our simple
model, we assume that the end segment makes random weaves,
with a 50% chance of moving up vs. down and a 50% chance of
moving under vs. over an adjacent segment. This model allows
for both knotting and unknotting to occur.

Although this is a minimal, simplified model, we find that it
can account for a number of the experimental results. First,
according to a basic theorem of knot theory (27), all possible
prime knots may be formed via such braid moves, consistent with
our observation that all possible knots (at least up to seven
crossings) are formed in our experiment. Second, the model can
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Fig. 5. Dependence of the probability of knotting on measures of knot com-
plexity. (A) Natural log of PK plotted versus theoretically calculated knot energy
(25). (B) Natural log of the probability PK of forming a certain knot plotted vs.
minimum crossing number c(K). Each value was normalized by the probability P0

of forming the unknot. The filled circles are results with string lengths L 	 1.5 m
and the open circles are with L � � 1.5 m. The point styles are as in A except that
the results with the 51 knot, which notably did not follow the overall trend, were
plotted as triangles.
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account for the occurrence of a threshold length for forming
knots. A mathematical theorem proved by Milnor (28) states that
the minimum curvature required to form a knot is 4� versus 2�
for an unknotted closed loop. Similarly, to form a knot in our
model, the string must have more than one coil, so that at least
one segment lies adjacent to the string end. If we assume coils
with a diameter equal to the width of the box (d), the circum-
ference is �d, or �0.5 m for the 0.15-m box, which is similar to
the observed threshold length for forming knots (Fig. 2). For the
0.1-m box, the threshold also decreased to �0.4 m. At the
opposite extreme, the longest strings correspond to having
�10–20 adjacent segments in our model.

We wrote a computer simulation that generated knots ac-
cording to our model and determined their identities by calcu-
lating the Jones polynomials for the braid diagrams.§ The model
has only two adjustable parameters: the number of parallel
segments (NS) and the number of braid moves (NM). Based on
the considerations discussed above, we varied NS from 2 to 20.
NM corresponds to ‘‘time’’ in our model, because we expect the
number of braid moves to scale with agitation time in the
experiment. The simulations show that the model can qualita-
tively account for several additional experimentally observed
features.

First, it predicts a broad distribution of knot types and
complexities, as observed experimentally. For example, for NS �
10 and NM � 10, the distribution (Fig. 7A) is similar to that
observed experimentally with the long strings—knots ranging
from crossing number 3 to 10 were observed with overall
decreasing probability. The agreement was not perfect because,
for example, the 41 knot had notably lower probability in the
model, whereas 51 had notably lower probability in the experi-
ment, but a similarly wide distribution of complexities were
observed in both cases. Second, the model predicts that the
overall probability of knotting P increases with time (i.e., with
NM) and with string length (NS) (Fig. 7 B and C), as observed in
the experiment. Finally, it predicts that the average complexity
of knots (average minimum crossing number) increases with
time and string length (Fig. 7 D and E), as observed.

Materials and Methods
A computer-controlled microstepper motor spun the boxes,
which were made of smooth acrylic plastic and purchased from
Jule-Art. The boxes were cubic, of widths 0.1, 0.15, and 0.3 m.
The string used in most experiments was solid #4 braided string
(catalog no. 021008010030; Samson, Ferndale, WA), which had

§These calculations were done by using computer code in Bar-Natan, D., Morrison, S., et al.,
The Mathematica Package KnotTheory (University of Toronto; http://katlas.math.
toronto.edu). Accessed July 2007.

Fig. 6. Schematic illustration of the simplified model for knot formation.
Because of its stiffness, the string tends to coil in the box, as seen in Fig. 1,
causing a number of parallel string segments to lie parallel adjacent the end
segment. As discussed in the text, we model knots as forming due to a random
series of braid moves of the end segment among the adjacent segments
(diagrams at bottom). The overall connectivity of the segments is indicated by
the dashed line.

Fig. 7. Predictions of the random braid move model discussed in the text. An
ensemble of 1,000 conformations were generated for each condition and
analyzed. (A) Distribution of minimum crossing numbers of knots generated
with NS � 10 and NM � 10, where PK is the probability of forming a knot with
minimum crossing number c(K). (B) Probability of knotting P vs. number of
random braid moves (NM) (proportional to agitation time) for NS � 10 seg-
ments (proportional to length). (C) P vs. NS for NM � 10. (D) Average minimum
crossing number �c(K)� vs. NM for NS � 10 segments. (E) �c(K)� vs. NS for NM � 10.
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a diameter of 3.2 mm, a density of 0.04 g/cm, and a flexural
rigidity of 3.1 � 104 dynes�cm2. In some experiments, a more
flexible string was also used (nylon #18 twine) (catalog no.
NST1814P; Lehigh Group, Macungie, PA), which had a diam-
eter of 1.7 mm, a density of 0.0086 g/cm, and a flexural rigidity
of 660 dynes�cm2. A stiffer rubber tubing was also used (catalog
no. 141782AA; Fisher Scientific, Waltham, MA), which had a
diameter of 8 mm, a density of 0.43 g/cm, and a flexural rigidity
of 3.9 � 105 dynes�cm2. The flexural rigidity was determined by
cantilevering one end of the string off the edge of a table, such
that the end deflected downward a small amount �y due to the
string bending under its own weight. According to the Euler

small displacement formula: �y � mgL3/(8EI), where L is the
length, mg is the weight, and EI is the flexural rigidity (29). In
principle, tumbling in the plastic box may induce static electric
charge in our string, which could influence the dynamics.
However, no perturbation of a hanging string was observed when
a second segment was brought into close proximity after tum-
bling, indicating that electrostatic repulsion effects are negligible
compared with gravitational weights in our system.

We thank Parmis Bahrami and Joyce Luke for assistance with data
collection.
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