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Abstract. In this article, we review physics-based models of collective cell motility. We
discuss a range of techniques at different scales, ranging from models that represent cells
as simple self-propelled particles to phase field models that can represent a cell’s shape and
dynamics in great detail. We also extensively review the ways in which cells within a tissue
choose their direction, the statistics of cell motion, and some simple examples of how cell-
cell signaling can interact with collective cell motility. This review also covers in more detail
selected recent works on collective cell motion of small numbers of cells on micropatterns, in
wound healing, and the chemotaxis of clusters of cells.

1. Introduction

Many isolated eukaryotic cells are able to move in a crawling fashion. This movement,
which can be either spontaneous or guided by an external cue, involves a number of critical
steps. First, the cell body needs to be extended in the direction of movement through the
polymerization of actin. Second, parts of the cell body away from the extensions need to be
retracted, facilitated by the motor protein myosin. Finally, there needs to be enough friction
between the cell and its environment to be able to generate net movement. How the cell
integrates these steps, how external cues are interpreted, and how noise may play a role in cell
motility are all active fields of experimental and theoretical research [1, 2, 3, 4, 5, 6].

Recently, the focus of motility research has broadened to include collective cell
migration. Examples of collective motility in biology are plentiful. One example, which
has enjoyed significant interest, is wound healing [7]. Here, cells move towards the wound
in order to remove harmful bacteria and to close the tissue [8]. Another example comes
from developmental biology where groups of cells migrate to distinct locations within the
embryo to carry out specific tasks [9, 10]. Not all examples are beneficial to the organism,
however. During cancer metastasis, groups of cancer cells migrate through tissue, resulting
in the spreading of tumors [11]; a broad range of recent studies suggest that metastasis by
clusters of cancer cells may be more dangerous than single-cell metastasis [12]. Clearly,
understanding how these groups migrate and coordinate their movement can be beneficial in
the development of therapies.
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In most examples, collective motility is not simply the result of many individually
moving cells. Instead, cells crawl together in a coordinated way, resulting in behavior
that is not seen in individual cells. For example, expanding cell monolayers often exhibit
the spontaneous formation of finger-like instabilities with specialized cells at their tips
[13, 14]. Also, several cell types exhibit emergent chemotaxis in the absence of individual
cell chemotaxis [15, 16, 17]; groups of cells can also be governed by a few leader cells [18].
How these collective behaviors arise is an continuing and active area of research [19, 20].

Where does physics, and more specifically, physical modeling enter the process of
collective cell motion? As already mentioned, cell motion requires protrusions, retractions,
and friction and thus rely on a balance of forces. Therefore, describing the motion of cells
in a quantitative manner requires solving equations that incorporate these forces [21, 22]. In
addition, some of these forces are generated through the action of signaling molecules which
are part of signaling networks [23]. Typical eukaryotic cell sizes are in the range of 10-100
µm. As a consequence, moving cells exhibit a distinct spatial asymmetry with some signaling
components localized in the front and others localized in the back of the cell. Modeling
this asymmetry, often called cell polarity, requires solving sets of coupled reaction diffusion
equations [6, 24]. Likewise, modeling the interactions between different cells can involve cell-
cell communication in the form of diffusive components and thus spatially extended systems.
In addition, noise in these signaling networks might play a significant role and addressing
its role requires tools from statistical physics [25, 26]. Finally, the morphology of the cell
changes as it is moving and an accurate representation of a moving, deforming boundary can
be formulated using techniques developed in physics [27, 28, 29].

This review focuses on modeling of collective cell motility and for a detailed overview
of experimental results in collective motility we refer to recent reviews, for example by Friedl
and Gilmour [11] or Mayor and Etienne-Manneville [30]. Furthermore, we also restrict
our review to eukaryotic biological systems and do not discuss bacterial systems nor do
we review synthetic active matter, which also displays collective motion. Readers primarily
interested in synthetic or bacterial collective motion should consult reviews by Ramaswamy
[31] and Marchetti et al. [32]. Our focus is also on models that resolve individual cells;
continuum models are discussed by Marchetti et al. [32]; agent-based models without
resolving individual cells are reviewed by Van Liedekerke et al. [33]. We will also primarily
discuss collective cell migration on substrates, where the links between two-dimensional
models and in vitro experiments are simpler.

We believe collective cell migration is an area where modelers can contribute a great
deal to new understanding in cell biology. Experimental interventions to alter molecular
mechanisms in cell motility often influence several features at once, leading to ambiguity in
analyzing results. Models allow us to have accurate and quantitative control over any proposed
mechanism, which is only rarely possible experimentally. Models can not only determine
whether a mechanism would be feasible, they can typically also generate predictions that can
be tested in experiments. In addition, in moving from verbal to mathematical models, we
often find that we must include additional assumptions, which can change our results. For
instance, we found that modeling contact inhibition of locomotion in [34] yielded strongly
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different results depending on whether this effect was isotropic around the cell, or localized
to its front. Testing these assumptions is also a source for new interesting experimental ideas.

Due to space limitations we are not able to cite all relevant studies and we apologize to
our colleagues for these omissions. Our review is organized as follows: we will first describe
the basic ingredients of collective motility, will discuss what a collective cell model should
incorporate, and will give an overview of the various modeling techniques that have been
applied to the problem (Section 2). In Section 3 we will present several examples where
modeling has resulted in a better understanding of the biology of collective motility and we
will conclude with some possible future directions in Section 4.

2. What is a collective cell motility model? Basic elements and models applied

Tissues are composed of interacting collections of cells – an ensemble of flowing, actively
crawling objects. Is a collective cell motility model then just merely an extension of the
physics of soft active materials [32]? We argue that this is not the case. Cells cannot
necessarily be thought of as generic active particles: they may be highly heterogeneous, with
different internal states, they can engage in long-range chemical communication, and actively
respond to mechanical forces exerted on them. Furthermore, cells are able to alter their
properties as a response of their environment, for example by changing their gene expression.

Our main focus are recent advancements in the modeling of collective cell migration,
and applications to wound healing, development, and in vitro model systems. In this section,
we will discuss more broadly what we view as the critical elements of any model of collective
cell migration. We argue there are four key elements that should be explicitly specified in
any collective cell motility model that spans from the single-cell to the collective level: 1)
the motility of single cells within the collective, including characteristic speed and orientation
distributions, 2) the representation of cell shape and consequent mechanical interactions (e.g.
cell-cell adhesion), 3) the polarity mechanism: how does a cell choose its direction?, and
4) potential biochemical signaling between cells. While in many models, these elements
are linked – e.g. the cell’s direction may arise from its shape – we believe these points
should be highlighted in any model. We address these elements, and give examples of
how they are handled in different simulations, in the following subsections (Section 2.1-2.4).
Our discussion here is not meant to be exhaustive; Van Liedekerke et al. present a more
complete review of agent-based models of cell motility, including some models that do not
resolve individual cells [33]. We also will not discuss cell division in detail, as many of
the experiments we discuss involve either a fixed number of cells, or can be modeled in the
absence of division.

2.1. Cell speed and orientation

Single cell motility and cell shape have been extensively characterized with both experiment
and modeling. As an initial step in any cell-level model of collective cell migration, it is
important to characterize how single cells would move in the absence of neighbors. This is, of
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course, a complex question in its own right, and provides a great deal of degrees of freedom in
modeling collective cell migration. Here, we wish to highlight some of the choices that have
to be made implicitly or explicitly by modelers in developing statistical models of a cell’s
speed, orientation, and shape.

First, we will consider the statistics of a cell’s velocity. The key aspects are: 1) the
distribution of the cell’s velocity, and 2) the cell’s persistence – the time scale over which its
velocity changes. In Fig. 1 we illustrate three common distributions of cell velocities in two
dimensions: a simple Gaussian, in which the velocities are peaked at zero, polarized, in which
the most common velocities have nonzero magnitude, and intermittent, in which cells switch
between states with low and high typical speeds. All three of these types can be observed in
single-cell trajectories [35]. The distribution of velocities is a useful tool to characterize any
single-cell model. However, for concreteness, in Fig. 1, we show trajectories simulated for
a simple self-propelled particle model, where an overdamped cell is driven by a fluctuating
active force. The Newtonian equation of motion for a cell in the overdamped, low Reynolds
number environment of the cell is Factive − γvcell = 0, where −γv is the frictional force
between the cell and the substrate. The active force is in the direction of the cell’s polarity p,
which obeys a stochastic differential equation. Together, this model is:

∂txcell(t) = vcell = p (1)

∂tp(t) = −∂W
∂p

+

∫ t

−∞
dt′K(t− t′)p(t′) + σξ(t) (2)

where ξ(t) is a Gaussian Langevin force with 〈ξi(t)ξj(t′)〉 = δijδ(t−t′) with δij the Kronecker
delta and the indices i, j run over the spatial dimensions of the model.. We have chosen in
Eqs. 1-2 to use units where v is exactly equal to the cell’s polarity p. Depending on the
polarity potential W (p) and the memory kernel K(t), this model can produce a wide variety
of different types of cell behavior – and this single-cell behavior can alter the dynamics of
collective cell migration. There is a great deal of literature on models of this sort: we note
in particular [36], who derive models related to Eq. 2 directly from cell data, and [37], who
review the broad literature on active Brownian particles as modeled by equations resembling
Eq. 2. Both of these references address many subtleties that we will gloss over. We will build
on the model of Eqs. 1-2 later in this review, introducing multi-cell models that extend it.

The model of Eq. 1-2 treats the velocity and polarity of the cell as exactly equal, and
we could have phrased it just as easily solely in terms of the velocity – as is done in [36].
However, distinguishing between velocity and polarity will be useful in models that have
many cells. In those models, it makes sense to view the velocity of the cell as a snapshot of
the present motion, but think of the polarity of the cell as indicating how the cell would travel
in the absence of other cells or forces acting on it, i.e. the direction it “wants” to go. Some
papers on collective cell migration do not make this distinction [13], but we find it important
for some of the examples we discuss later.

Cell velocity distributions. Collective cell motility simulations with zero-peaked
distributions of single cell velocities include [17, 38], where we applied a simple Ornstein-
Uhlenbeck-like model, leading to a Gaussian distribution of single cell velocities, and
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Figure 1. Examples of characteristic velocity distributions. These basic phenotypes can
be realized in many types of models. We have illustrated them in a simple Langevin model,
v = p, with ∂tp = −∂W

∂p + σξ(t), where W (p) = a1

2 |p|
2 + a2

4 |p|
4 + a3

6 |p|
6 and ξ(t) is a

Gaussian Langevin force with 〈ξi(t)ξj(t′)〉 = δijδ(t − t′) with δij the Kronecker delta. This
corresponds to Eq. 1-Eq. 2 with K(t) = 0 – i.e. no long-term memory. We use (a1, a2, a3)

= (2, 0, 0), (−2, 3, 0), and (3.2,−4, 1) for the Gaussian, polarized, and intermittent examples,
respectively.

[13], who also uses a model without spontaneous single-cell polarization. However, the
use of this type of models is significantly less common than the use of polarized models,
including models in which the cell takes on a constant or near-constant speed [39, 40, 41], or
cellular Potts model simulations with a polarity term promoting directed, persistent crawling
[42, 18, 43, 44].

Intermittency is also less commonly simulated. In the context of cell migration, we note
our work with the Levine group [45, 46, 47], in which cells transition between motile and
immotile stages. (We note that intermittent collective migration has also been simulated in
the very different context of locust swarms [48].)

Cell persistence. The persistence of motion of a cell is commonly characterized in
terms of the velocity autocorrelation function of the cell. In the simplest case, this may be an
exponential, 〈v(t) · v(t′)〉 = 〈|v|2〉e−|t−t′|. This result is exact for some models, including
Ornstein-Uhlenbeck single-cell dynamics and a cell with constant speed but undergoing a
rotational diffusion [36, 49, 50]. However, though single-cell tracking experiments were
originally thought to support a single-exponential correlation [51], more recent measurements
have found either multiple exponentials or more complicated features, including oscillations
[36, 52, 53]. These features may be incorporated into models like that of Eq. 2 by changing
the memory term K(t) [36].

2.2. Cell shape and mechanical interactions

One obvious distinction between cells and minimal active particles (e.g. active colloids and
rods [54, 55, 56, 57, 58]) is that cells undergo dynamic changes in shape. However, not all
models of collective cell migration capture this, and the extent to which it is necessary will
vary based on the application. For instance, [13] extensively characterize and fit their model
to describe the statistics of cell velocity and its correlation in large epithelial sheets without
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requiring a model for cell shape. However, in studying cell pair collisions (see 3.1), we have
found that models with cell shape included can have counterintuitive results where increasing
cell-cell adhesion can, at different levels, either increase or decrease the probability of cells
sliding past one another [59]. Simple models with cells interacting only by deforming each
others’ shapes is sufficient to generate collective motion [60, 61]. In addition, recent work has
highlighted the role of cell shape in jamming and rigidity transitions in the behavior of cell
monolayers [62, 63].

We highlight a range of representations of cells in Fig. 2; we will also discuss the
mechanical interactions between cells that these models can support. These representations
include 1) Isotropic particles, in which cells have a simple circular/spherical shape, 2) Simple
deformable particles allowing, e.g. elliptical deformation of the cell, 3) Voronoi models,
where the cell’s shape is defined by the Voronoi neighborhood of its center of mass, and vertex
models, with the cell shape defined by a polygon, 4) Subcellular element models, where a cell
is built out of interacting subcellular elements (e.g. springs), 5) cellular Potts models, where
the area of a cell is defined by a region with constant “spin” on a lattice, and 6) Phase field
models, where a cell’s area is defined by the region where a field φ(r) is large.

Isotropic particles A standard representation of cells is of interacting isotropic particles.
If the cells are considered to be overdamped, a typical way to write this would be to describe
the equation of motion for cell i’s center of mass, writing Newton’s equations with zero
acceleration:

0 = Ffriction
i + Factive

i + Fcell-cell interaction
i (3)

Commonly, Ffriction
i = −γ dxi

dt
is chosen as a frictional force, Factive is the motility force

(e.g. p in Eq. 1), and

Fcell-cell interaction
i = − ∂

∂xi
U(x1, · · · ,xN). (4)

The potential U is generally constructed of a pairwise interaction, U = 1
2

∑
i 6=j V (|xi − xj|)

with V having a short-range repulsion and a longer-range attraction, as in molecular dynamics.
The origins of these terms is very different than in molecular systems! The effective short-
range repulsion arises from an exclusion of cell-cell overlaps, while attraction represents a
cell’s adhesion to its neighbor. However, if this is representing a physical attraction, it is
mediated by, e.g. cadherins on the cell surface, and should be relatively short-range. Generic
models of self-propelled particles with long-range interactions [73] may not be as appropriate
to describe cells interacting without long-range chemical secretions.

Choosing Ffriction
i = −γ dxi

dt
in Eq. 3 is a common, but not universal choice. This is a

friction appropriate to low-Reynolds number flow relative to a substrate or extracellular matrix
– the friction is proportional to the velocity relative to a fixed background. Frictional forces
between cells may also be modeled, which will depend on the relative velocities of contacting
cells, e.g. vi−vj [74, 64]. A more complicated friction based on dissipative particle dynamics
has also been applied [45].

We also note that interactions beyond simple pairwise potentials have been included in
several recent papers; these interactions do not necessarily correspond directly to a many-
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Figure 2. Examples of common representations of cell shape in collective cell migration.
We show illustrations of isotropic particles [39, 13, 17], simple deformable particles [64, 61],
Voronoi models [65, 66], subcellular element models both composed of relatively simple
particle-particle coupling [67, 45] and more complex models with subcellular structure [68, 69]
(the figure shown is from [68]), cellular Potts models [42, 70], and phase field models
[71, 72, 34]. These references are not necessarily the first uses of the models; we have
highlighted papers we find interesting and relevant.

body potential, but are included as the equation of motion Eq. 3. These terms are often used
to alter the dynamics of cells at the boundary of a tissue. For instance, [75] include a term
for cells at the boundary to point toward the bulk of the tissue, which can be used to promote
cohesion in the absence of cell-cell adhesion. Tarle et al. describe a tissue with explicitly
included curvature-dependent forces on the border of several types [76]. We have also recently
simulated cells with a many-body term designed to promote cell-cell cohesion, by modulating
cell-cell interactions as a function of density [17]; this idea is adapted from studies of liquid-
gas coexistence in dissipative particle dynamics [77]. Some aspects of these terms could be
considered as natural consequences of simulating cell motion without including the details of
cell shape – “integrating out” variables is known to create effective many-body interactions
within equilibrium molecular dynamics [78].

Isotropic active particles are an appealingly minimal choice for collective cell simulations
where cell shape is not resolved. However, even if no explicit coupling between cell shape and
cell behavior is expected, isotropic models can fail to predict how tissue mechanics depends on
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cell-cell adhesion and density – most strikingly in the recently-studied unjamming transitions
in confluent monolayers [79, 62, 63]. This suggests that, at least near the jamming point, we
should be cautious in applying and interpreting models that do not resolve cell shape.

Active particles with simple shape deformations. The simplest step beyond
considering cells as completely isotropic particles is to include shape at a minimal level,
e.g. allowing small deviations from circularity/sphericity. This approach was taken early in
models of Dictyostelium [64, 80, 81], where cells were represented by deformable ellipsoids
of constant volume. More recent papers have also applied simple deviations from an
isotropic cell shape. This includes [61], who parameterize the cell shape by a tensor
Sαβ = s(n̂αn̂β − 1/2), where n̂ is the axis of deformation and s a measure of the distortion.
Others have implemented more detailed quasicircular cell shapes, including [82], who model
cells as circular with stochastically forming protrusions spiking out of the cell and [60], who
describe the cell shape as a polar function R(θ).

Cell-cell interactions in these models can be complex. The models of [64, 80] phrase
the interaction between the ellipsoids as a function of the distance between cell surfaces,
which is a natural generalization of the central forces applied in simple isotropic cell models.
However, this is not the case for the models of [82, 60], in which cell protrusions are collapsed
by contact.

These models are immediately valuable to the study of potential shape-motility
couplings, but may share some of the downsides of isotropic particle models. In particular,
it is not yet clear if the jamming transition [79, 62, 63] can be properly captured in models
with simple ellipsoidal shapes. We also suggest that the models in this section may be most
interesting when studying experiments that include both subconfluent and confluent layers
of cells, as in [82] – for purely confluent tissues, vertex and Voronoi models may be more
appropriate, as we discuss below. We do note, however, that [83] have recently combined a
vertex model with their cell-protrusion model of [60].

Voronoi models and vertex models. The active particle descriptions discussed above
are a good fit for systems where cells may exist both individually and within collectives, e.g.
a monolayer below confluence. However, for cells in a confluent layer, it is often valuable to
describe the cells by the geometry of their boundaries (Fig. 2). It is then possible to model the
energetics of the cell-cell interfaces, using terms such as [84, 65, 66, 85]

H =
∑

cells i

[
Karea(Ai − A0)

2 +Kperim(Pi − P0)
2
]

(5)

where Ai is the area of a cell and Pi its perimeter. This coarse-grained energy describes
cells with a preferred area A0 and preferred perimeter P0. Both vertex and Voronoi models
can be described with Hamiltonians of this or similar forms. Active driving of cells can
occur through regulating the contractility of different cell-cell junctions [86], or through active
forces [65, 66].

The key distinction between vertex models and Voronoi models is the representation
of the equation of motion of cells: in a vertex model, the cell is represented directly as a
polygon, and the equations of motion of these vertices are written by a force balance as in
Eq. 3. In a Voronoi-based model, equations of motion are written for the cell center, and
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a cell’s shape is defined as the Voronoi neighborhood of its center, i.e. the set of points
that are closer to the cell center than to any other cell’s center. This is often appropriate
for describing cells within a tissue [87], though it does require that cell shapes are convex
polygons. This shape may then feed back on the motion of the cell center, e.g. through
forces derived from an energy like Eq. 5. Voronoi models then avoid many of the problems
associated with handling element re-arrangments in vertex models [88], though they are more
limited in the shapes they can represent. Moreover, models that derive the cell area from the
Voronoi neighborhood of the cell center do not have a straightforward and natural way of
implementing a free boundary, as the cell edge is only defined in reference to the presence of
a neighbor or exterior boundary. Therefore, the Voronoi models of [65, 66] are more easily
implemented in completely confluent sheets in periodic boundary conditions or confinement.

Many aspects of vertex models are reviewed and compared in [88, 89]; we have only
sketched the barest surface of this topic. We also note that other models use Voronoi
tesselations to describe the shape of cells, but do not derive their forces from an energy of
the type in Eq. 5 [90]. In these models, the Voronoi neighborhood directly influences the
cell’s motion only through determining which cells are neighbors, and cell-cell interactions
depend only on the center-center distances.

Subcellular element models. Subcellular element models [91, 92, 67, 68, 69, 45] are,
in a sense, a straightforward generalization of the single-particle modeling of cells: instead of
being modeled as a single unit, each cell is described as several interacting particles (Fig. 2).
Then, instead of merely specifying a cell-cell interaction U(r) as described for center-
based models in Eq. 4, it is necessary to describe both inter- and intra-cellular interactions
Uintra(r), Uinter(r). Active forces in these models can be handled either as motility forces,
as in simplified models [45], or through differential rates of breaking and re-forming of
intracellular connections at the cell front/back [67]. Recent models have also extended this
approach by modeling the cell membrane and interior separately [68, 69].

Subcellular element models have the distinct advantage that they can capture some of
the details of single-cell response to forces e.g. power-law rheology [92], and are therefore a
natural starting point for studying the mechanical behavior of cellular aggregates and tissues.
However, the consequences of single-cell rheology for larger-scale flows remains mostly
uncertain, and it is not clear when the full mechanics of the cells are required to capture
reasonable qualitative or quantitative collective behavior.

Cellular Potts models. In cellular Potts models, initially introduced by Glazier and
Graner [93, 94], cells and their environment are represented by a lattice with “spin” or “cell
id” values at each site. As shown in Fig. 2, cell 1 is defined by the region of the lattice
where this spin is equal to one. In this case, the cell’s energy can be written in terms of the
interactions between these spin values:

H =
∑

neighboring sitesa,b
Jab(1− δσ(a),σ(b)) +

∑
cells i

λ(Ai − Ai,0)2 (6)

where the first sum is over all pairs of neighboring sites in the lattice. Jab is the energy of
interaction between these sites – which could depend on the cell types or other details. The
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term 1− δσ(a),σ(b) indicates that two sites with the same spin value σ (i.e. two sites belonging
to the same cell) do not have an energy cost for being next to one another.) Ai is the area of
cell i, i.e. the number of sites it takes up, and Ai,0 is a target area for that cell; λ penalizes
deformations from that area. Jab usually takes on one of a small number of values. For
instance, in simulating the sorting of initially mixed cells of two types (“dark” and “light”),
several energies are specified: Jdd, the interaction energy between two sites on different dark
cells, Jdl the energy for dark-light interactions, Jll, for light-light interactions, and the cell-
medium interactions Jlm and Jdm. Here the medium is the region of the lattice not occupied
by cells. Depending on the relative strengths of the five energies Jdd Jdl, Jll, Jlm and Jdm,
cells may either segregate or mix [93, 95].

This model is typically evolved forward in time by making attempts to copy the spin from
one lattice site to a neighboring site, accepted with a probability dependent on the change in
energy this change would make, e.g. min(exp(−∆H/T ), 1), with T an artificial temperature,
which will control the fluctuations around the equilibrium state.

Many extensions to this approach have been made, including the incorporation of
biochemical signaling mechanisms, chemotaxis, alternate updating rules, more detailed
modeling of cell-cell adhesions, and subcellular compartments [96, 97, 98, 99, 44]. In
particular, we should note that terms that bias the motion of the cells in a particular polarity
direction p can also be introduced [43, 42]. This can be done by adding a term proportional
to −pi ·

∑
a ra to the Hamiltonian for each cell i, where ra is the vector from the center of

mass of cell i to site a. This term promotes the protrusion of the front of the cell, where the
vector r is aligned with p, and the contraction of the back.

The CPM is a well-established and extensively studied modeling tool, with many freely
available implementations [100, 101]. Its relative computational simplicity allows for large
numbers of cells to be simulated, even on a single CPU, even though the CPM resolves cell
shape in fluctuating detail. These advantages make it one of the default models for describing
collective cell migrations. However, there are some significant drawbacks to the model.
Because its evolution occurs through Monte Carlo steps rather than an equation of motion
derived from Newtonian laws, time is not well-defined in the system, and interpreting a cell’s
motion in terms of forces can be difficult. For this reason, additional modeling is needed
in order to reconstruct the traction forces from cell simulations [102, 103, 104]. This is in
contrast to, e.g. subcellular element or active particle models, for which traction forces can
be derived straightforwardly [46, 47]. In addition, the CPM has been criticized because its
central assumptions require fluctuations in the cell boundary in order to move; this creates
links between cell mechanics (e.g. cell-cell adhesion or area modulus) and cell motility that
may not be realistic [105].

Phase field models. A more recent approach, developed by our group and others
[34, 71, 72, 106], is to model cell shape in collective migration via phase fields. Phase fields
are a standard technique to represent moving-interface problems by representing an arbitrary
region by a field φ(r) that smoothly transitions between zero outside of the region and one
inside the region. This technique has been applied to describe the motility of single cells
by many groups [28, 29, 27, 107]. In a multi-cell context, each cell i is given a phase field
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φ(i). Both single-cell and cell-cell energies can be included in a Hamiltonian form. In the
model of [34, 59], the equations of motion for the phase field arise as a minimization of the
Hamiltonian, with added active terms arising from the motility of the cell, i.e.,

∂tφ(r, t) + vactive · ∇φ = − 1

ζε

δH

δφ
(7)

ζ is a friction coefficient and ε the phase field width. Here, vactive is the velocity due to active
driving at the boundary, which can be set by a number of rules. These include choosing the
active velocity to be constant and in a direction corresponding to the cell’s polarity [106], or
to be normal, with a magnitude set by biochemical polarity within the cell [34]. Many terms
could be included in this sort of Hamiltonian, but in the past models have included terms such
as H = Hsingle +Hcell−cell, with the single-cell energies given by a Canham-Helfrich energy
for the membrane [108]

Hsingle = γ × [cell perimeter] + κ× [curvature integrated over membrane]

= γ

∫
d2r

[
ε

2
|∇φ|2 +

G(φ)

ε

]
+ κ

∫
d2r

1

2ε

[
ε∇2φ− G′(φ)

ε

]2
(8)

where ε is a parameter characterizing the phase field’s interface width. The Helfrich energy is
a widely-applied model for the energetics of a deformed fluid membrane. The first term is an
energy from tension on the membrane, which leads to the interface tending to shorten; γ is the
tension. The second term is the bending energy, which is an integral of the (mean) curvature
over the membrane, with κ the bending modulus of the membrane. Terms nonlinear in the
cell perimeter can also be straightforwardly included [59]. The cell-cell interactions are given
by

Hcell−cell =
∑
i 6=j

∫
d2r

[
g

2
φ(i)(r, t)φ(j)(r, t)− σε3

4
|∇φ(i)|2|∇φ(j)|2

]
. (9)

where the first term penalizes the overlap of two cells (as φ is only large in the interior of the
cells), and the second term promotes adhesion of the cell boundaries (where∇φ is large).

Phase field models have the advantage that they can be readily integrated with reaction-
diffusion mechanisms, and can model energies that include higher-order terms like the
membrane’s bending energy. However, they have a high computational cost, as a different
PDE must be numerically solved for each cell. In [34, 59], we reduce this cost by only solving
the PDE near the cell, as also performed by [71]. Another possibility to improve performance
is to extend techniques with multiple phase fields that have been applied in modeling grain
growth [109, 110], where the number of phase fields can be reduced by judiciously combining
multiple fields into one. [111] have also recently developed a simplified model that solves a
single phase field crystal equation to represent all of the cells; this may represent an interesting
compromise between the full detail of phase field models and continuum models of many
cells.

We view the phase field approach as a valuable framework that can incorporate a broad
range of submodels – a modular approach highlighted by [112]. We argue for its use in the
simulation of relatively small (< 100) collections of cells, where investigators are interested
in the relevance of simultaneous couplings between biochemistry, cell shape, and mechanics.
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2.3. Polarity mechanism: how cells choose their direction

A central aspect of any model is its explicit or implicit polarity mechanism – the rules that set
how a cell chooses the direction it would like to go – e.g. the active force term p in Eq. 3. We
want to emphasize that this is separate from the direction in which the cell actually travels,
which can be influenced by the forces applied to the cell. In many cases, we can describe
the polarity direction as a vector p. How does a cell decide where it wants to go? This can
be as simple as saying that the polarity p is a persistent random walk, as in [65, 106], or
include simulations of the biochemical mechanisms of cell-cell signaling and internal protein
distributions within the cell, as in [34].

We suggest two broad categories of these mechanisms (Fig. 3): cell-autonomous polarity
mechanisms, in which the cell integrates information about itself, and non-cell-autonomous
mechanisms, where cells integrate information from other cells. A classical example of a cell-
autonomous mechanism is velocity alignment [39, 113, 40], in which a cell’s polarity orients
itself to its own velocity. Physical interactions between cells mean that one cell’s velocity is
influenced by the presence of other cells – and the end result of this effect can lead to cells
aligning with one another. A common non-autonomous mechanism is neighbor alignment, in
which cells orient to follow the velocities of their neighbors [114, 115]; this generic type of
mechanism is also referred to as “Vicsek alignment” or “flocking.” Unfortunately, the term
“velocity alignment” can be ambiguous – does it mean aligning to a cell’s own velocity, or
a neighbor’s velocity? In fact, neighbor alignment is also sometimes referred to as velocity
alignment [37]. To be completely clear about this distinction, we will use “self alignment”
instead of velocity alignment. This also includes the possibility that a cell’s polarity aligns to
its displacement [42], which is qualitatively similar to velocity alignment.

We briefly mention papers that apply these different types of polarity mechanisms,
highlighting potential differences in the mechanisms applied; some papers have, either
implicitly or explicitly, more than one mechanism.

Self-Alignment and Velocity Alignment. In some early models of collective motion
which we now categorize as self-alignment, the polarity of a motile cell is simply reoriented
to follow its velocity [39, 113], leading to cells becoming aligned and developing strong
collective behaviors, including spontaneous persistent rotation. Many variants of this
approach have been developed. In particular, we highlight [42, 18], who apply a self-
aligning mechanism to the cellular Potts model. As motions in the cellular Potts model
occur through sudden changes in the boundary distribution, the velocity of a cell does not
have an unambiguous value without specifying the time (number of Monte Carlo steps) over
which the velocity is averaged. In consequence, both Ref. [42] and Ref. [18] effectively
align a cell’s polarity toward its past displacement, measured over a timescale T . This has
an important distinction from the velocity-aligning models applied in [39, 113] and later
studied in other contexts [116, 40]: altering the characteristic timescale of the alignment
T will, in the displacement-alignment models, change the persistence of individual cells.
This is explicitly studied by [42]. Interestingly, this consequence of displacement alignment
is also implied by models generated by detailed tracking of human keratinocytes [36], as
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Figure 3. Examples of common polarity mechanisms. Full explanations of these
mechanisms and examples of simulations that use them are listed in the text.

[42] notes. More recent papers have applied both velocity alignment and displacement
alignment [70, 117, 66, 118, 119]. A related model of “mechanotaxis” has been used by
[67], in which cells polarize in the direction of the time-averaged net force exerted on them..
These mechanisms are also occasionally integrated with others: [120] and [47] both combine
displacement alignment with a model of contact inhibition of locomotion, a mechanism
further detailed below.

Unfortunately, in comparing these papers, many model aspects have been varied at
once, making it difficult to determine the crucial influence of each element. For instance,
one potentially interesting difference between many of these papers is the different origins
of noise. In the velocity-alignment model of [39], the cell’s polarity angle θ, i.e. p =

(cos θ, sin θ), relaxes to the direction of its velocity θv, but with an added fluctuating Langevin
noise in the angular dynamics. By contrast, in cellular Potts model systems, the polarity is set
directly by the displacement of the cell, with no added noise [42, 18]; fluctuations arise from
the evolution of the cell boundary, leading to fluctuations in the displacement. An extreme
case of noisy dynamics in a self-aligning model is our approach in [45, 46, 47], where cells
switch between a motile state and a non-motile state with a rate that depends on the alignment
between the cell’s polarity and (averaged) velocity. Here, a cell’s orientation is completely
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randomized upon repolarization – but the bias in the rates still leads to a feedback between
flow and polarity. Comparing these various options within a single unified framework would
be a potentially valuable contribution.

Self-alignment mechanisms are a reasonable phenomenological suggestion for driving
collective cell migration, leading to coordination without requiring any explicit cell-cell
communication. However, they may be in conflict with experiment in some circumstances;
[121] observe that cells encountering a physical barrier halt, and do not reverse as predicted by
a velocity alignment mechanism [40]. In these cases, mechanisms specific to cell-cell contact,
e.g. contact inhibition of locomotion (described below) may be relevant.

Shape Alignment. In models that resolve the cell’s shape, the cell polarity can be
directly influenced by the cell shape – and thus cell-cell collisions and collisions between
the cell and objects can reorient polarity. This is perhaps most explicitly modeled in the
minimal approach of Ohta et al. [122], who study the dynamics of a deformable self-propelled
particle, and have later extended this to describing the dynamics of Dictyostelium cells [123].
In the simplest version of their model, cells are described by a velocity v and a single tensor
variable Sij indicating the cell’s shape deformation from a circle [122]; the most general
equations of motion coupling v and Sij to a given order can then be written down. These
models, though very minimal, can provide insight into dynamics of single cells, including
a turning instability we found in a model with a more complicated, biochemical polarity
mechanism [124]. When the single-cell model of [122] is extended to study multiple cells,
where cell-cell interactions create deformations, solely the physical cell-cell interactions and
the coupling of shape to cell velocity create collective motion, including long range alignment,
laning, and nematic alignment, depending on cell density, aspect ratio, and the strength of cell-
cell exclusion interactions [61]. A similar effect is modeled in [60], in which Coburn et al.
describe cells with a lamellipodium that collapses on contact, with these collapses changing
the cell’s directionality. A minimal variant of this sort of model, in which cell motility is
proportional to cell length, has also been proposed recently by Schnyder et al. [125].

Contact Inhibition of Locomotion (CIL). Of the polarity mechanisms we discuss, CIL
is the most biologically well-established, both in vitro and in vivo. Many cell types are known
to repolarize and reverse upon contact, and many potential biochemical regulators of this
process are known. See [126, 127] for recent reviews. However, modeling of this process is
at an early stage, and there are many distinct schemes created to model CIL. These include
cells developing a bias in polarity away from cell-cell contact [128, 17, 38], rotation away
from cell-cell contact [41], collapse of contacting lamellipodia [60] (also an example of shape
alignment), and explicit models of biochemical signaling arising from a generation of a Rac
inhibitor at cell-cell contact [34, 59]. The models of [120, 47] both combines a CIL bias away
from contact with self-alignment.

These subtle differences in modeling can create vastly different results. For instance, the
models of CIL in [128, 17, 38], where cells are repolarized away from cell contact, do not
develop a spontaneous collective polarity, and would not move in a directed fashion in the
absence of a guiding signal. By contrast, [41], who model CIL as an active rotation away
from contacting cells, observe spontaneous polarization and flocking, with cells moving in a
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coherent group despite the absence of any signal beyond confinement. This difference may
not be solely due to the CIL model, though, as [41] also includes a long-range attraction
from chemotaxis and a term tending to restore cells to constant speed; a similar combination
of effects can result in spontaneous polarization as well as rotating vortices even in the
absence of explicit aligning effects [73]. Our group has also focused on the consequences
of small changes in biochemical CIL models [34, 59]. The behavior of cell-cell collisions and
collective rotations can depend critically on whether CIL occurs at all points along the cell-
cell contact or merely at the cell front; details of when during the cell-cell collision process
CIL begins can also significantly alter the collision outcome. We will discuss these results in
more detail in Section 3.1.

Neighbor alignment Classical models for macroscopic animal herding or flocking
invoke neighbor alignment, where animals look to their nearest neighbors and align their
motion to what they see [129, 130]. Similar approaches have been proposed for cell motility,
leading to collective behaviors such as vortex formation and high coordination in good
agreement with experiments [115, 43, 13]. However, we know of no experiment indicating
that feedback between cell velocities is occurring, and we note that the neighbor alignment
mechanism does not produce reasonable results for pairs of cells rotating on a micropattern
[34]. Nonetheless, the good agreement between theory and experiment at large scales
[13] suggests that some large-scale effects may not be sensitive to the details of cell-cell
interaction, and that neighbor alignment can be a reasonable effective interaction.

Chemotaxis Cells may, of course, be oriented by signaling beyond direct cell-cell contact
or alignment to nearest neighbors. One example involves following a chemical gradient
imposed either externally or by cell neighbors. We will discuss this more in Section 2.4
below, and chemotaxis will play a large role in some of the studies we discuss in Section 3 as
well.

Implicit alignment mechanisms Even without explicit mechanisms designed to alter the
cell’s polarity as a function of its shape, neighbors, or velocity, many collective cell migration
models develop emergent aligning effects. We note, e.g., [72, 131], who have both found that
extending a detailed single-cell model to study cell-cell interactions can lead to an emergent
aligning effect. These effects may well arise from an effective coupling between cell shape
and directionality. In support of this idea, we have demonstrated that cell shape may have
important effects on reorienting cell polarity within a single cell model coupling reaction-
diffusion equations with a deformable cell shape [124]. However, we caution that these
aligning effects may depend on the details of the single-cell model: in [34] we found that
merely confining pairs of interacting cells did not lead to robust collective motion without an
explicit polarity mechanism.

2.4. Chemical signaling and cell-cell variation

One of the key distinctions between minimal active matter and collective cell migration is
that cells in a tissue may communicate chemically, and that different cells in tissue may have
different phenotypes. We highlight ideas and common motifs that are particularly relevant for
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Figure 4. Common motifs in chemical signaling and cell-cell variation in collective
migration. Cell-cell signaling and distinctions between cells with different phenotypes can
be relevant in collective cell migration. More details for each of these motifs are provided in
the text.

controlling the dynamics, coherence, and directionality of collective migration in Fig. 4.
Many applications of collective migration naturally involve chemical signaling and

chemotaxis, including wound healing [132, 133], cancer [134], and development [9, 135].
In particular, we mention two means by which collective migration may be controlled by
signals generated by local cells: co-attraction and self-generated gradients.

Co-attraction If cells secrete a signal that they also chemotax toward, cells tend to
move up the cell density gradient, and thus aggregate (Fig. 4). This co-attraction, and
related mechanisms of signal relay, are known to function in neural crest, Dictyostelium,
and neutrophil chemotaxis [136, 137, 135]. Co-attraction is a typical mechanism to mediate
aggregation and cohesion of a group of cells, especially ones like neural crest that lack strong
epithelial-like adhesion.

Self-generated gradients In contrast to co-attraction, which supports aggregation and
coherence of cell clusters, self-generated gradients can be used to create efficient dispersion
or directed migration of a cell cluster. If cells degrade or segregate a chemoattractant or
chemokine, a gradient of that signalling molecule will be generated, increasing away from the
bulk of the tissue (Fig. 4), leading to efficient outwardly-directed motion [138, 139, 140, 141,
142, 143].
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Cells of different phenotypes may also play a large role in collective migration (Fig. 4).
A critical example of this is the role of leader cells in wound healing and development
[7, 13, 144, 145]. In wound healing experiments, some cells at the border appear to take
on a different phenotype, with a larger size and highly active lamellipodium [7]; these cells
may then lead to the generation of fingerlike protrusions [13] being guided by these leaders.
Cranial neural crest migration can also be modeled by assuming that only leader cells follow
VEGF gradients [144, 145], and a similar leader-follower dynamic may be relevant in the
zebrafish posterior lateral line primordium [146].

Not all of the relevant phenotypes are as simple as “leader” or “follower.” For instance,
Dictyostelium cells show a highly varied set of responses to chemoattractant exposure (Fig. 4),
which may increase their ability to aggregate [147]. An interesting combination of the
coexistence of different cell types and chemical signaling in collective cell migration is the
chase-and-run mechanism [148, 149] in which directed motion arises from the coexistence of
two cell types (Fig. 4). Theveneau et al. [149] have shown that neural crest (NC) cells “chase”
a population of placodal cells by following a chemoattractant (Sdf1) secreted by the placodal
cells. Placodal cells have a contact-dependent repulsion from neural crest cells, leading to a
net migration.

3. Specific examples

In this section we will highlight some of the more recent modeling efforts in collective cell
motility with a special focus on the different insights that simple (e.g. self-propelled particle)
or more complicated (phase field) models can provide into the fundamental mechanisms of
group motion. Our choice of models is biased towards our own work but we attempt to
put these into a broad modeling and experimental context. We will start with examples of
collective motion that involves a small number of cells and conclude with simulations of large
confluent cell sheets.

3.1. Motion on micropatterned surfaces

In vivo cell motion is challenging to visualize and quantify and typically involves 3D motion
through complex environments. A standard experimental way to simplify the extra-cellular
environment is to investigate cell motion on flat substrates, thus constraining the motion to 2D.
A further simplification can be realized by micropatterning the substrate, creating adhesive
domains that are surrounded by non-adhesive surfaces. Cells are thus constrained to the
micropattern, not only facilitating visualization but also enabling the experimentalist to probe
the effects of containment. Furthermore, the relative low number of cells permits the use of
modeling studies in which cell shapes can be dynamically altered [150].

One of the simplest examples of the use of micropatterns in motility research comes from
studies of pairs of endothelial cells on islands of fibronectin. These pairs were observed to
robustly develop persistent rotational motion (PRM) in a yin and yang like shape, as shown
in Fig. 5A [151, 152]. In contrast, fibroblasts did not rotate, developing a straight, static
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Figure 5. Collective motion on micropatterned substrates. A. Collective motion of two
cells on a square 40 µm× 40 µm fibronectin-coated adhesive island, with arrow indicating
the direction of motion. (From [152]). B. Example of a rotating pair on a micropattern with
dimensions 30 µm× 30 µm obtained using the phase field [34]. The cell membrane is indicated
by a black line, the polarity protein by a red contour, the cell nucleus by a blue shape, and the
micropattern by a blue dashed line. C. Persistence time τ as a function of the number of
cells on a circular micropattern. Note the sharp drop between 4 and 5 cells, attributable to the
geometric rearrangement of cells (From [154]). D. Examples of simulated cell motion on a 1D
stripe. Depending on model parameters, cells either continuously reverse direction following
a collision (left three panels, time going down), or form a chain of cells (right three panels).
Adapted from [59].

interface between the two cells, demonstrating that cell specific mechanisms are responsible
for the observed motion. Leong addressed the motion of two cells in a square geometry using
a dissipative particle dynamics model [153]. In this model, the two cells were permanently
attached and developed PRM with shapes that were consistent with the experiments. However,
the cells did not contain a nucleus, potentially important for determining the cell’s shape, and
a single cell did not have a clear polarity.

In a separate study, we modeled this simple collective migration using the phase field
model [34]. Cells were modeled as objects with a preferred area and containing a nucleus,
exhibiting cell polarity, and exerting forces on the substrate and on neighboring cells. Four
different cell polarity mechanisms were included and their effect on rotational motion was
studied. Three of these mechanisms were already discussed in Section 2.3: neighbor
alignment, velocity alignment, and CIL (contact inhibition of locomotion). In addition, we
included cell front-front inhibition, a generalization of CIL in which only contact with the
cell front is inhibitory, was included. Implementing these different mechanisms revealed
that collective migration is highly sensitive to the polarity mechanism. Specifically, only
the velocity alignment mechanism robustly promotes the presence of PRM while the front-
front inhibition only allows persistent rotation if cells are sufficiently confined (Fig. 5B).
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Furthermore, our study revealed that, in addition to a polarity mechanism, PRM also requires
that the cell’s linear motion be sufficiently persistent and that cells that undergo pure random-
walk motility are not likely to develop rotation. The prediction that collective motion depends
sensitively on persistence might be experimentally testable by altering known modulators of
cell persistence [155, 156]. Furthermore, the study showed that the nucleus can have an
important effect on the shape of the cell-cell interface. This prediction can also be tested
experimentally, by studying cells with smaller or no nuclei [157].

In additional studies, collective migration of cells restricted to larger circular domains
was investigated [154, 158]. The experiments, using Madin-Darby canine kidney (MDCK)
cells, showed that for small enough circular domains, cells rotated in a coherent fashion [158].
Similar vortex-type motion has also been observed in other cell systems even in the absence
of confinement, where only cell-cell adhesion is sufficient for coherent motion [159, 160].
In even smaller sized circular domains, clusters of MDCK cells alternated between states
of disordered motion and states of coherent rotational motion [154]. The time spent in the
coherent state was measured as a function of cell number and showed a pronounced drop
between four and five cells (Fig. 5C), attributed to the difference in cell arrangement (a
conformation without a cell in the system center vs. one including a centered cell). These
experimental findings were addressed using a cellular Potts model (CPM), as described in
Section 2 [93], generalized to include internal polarization. The model distinguishes between
protrusions and retractions and couples the local dynamics of the internal polarization field
to the cell’s protrusions. This coupling produces a positive feedback between intracellular
events and mechanical stimuli and results in spontaneous polarization. After carrying out a
parameter sweep, Ref. [154] found that the model can replicate the abrupt drop in persistence
time for the rotational state when the cell number is increased from 4 to 5 (Fig. 5C). As in
the experiments, this drop could be attributed to the geometric rearrangement of cells: the
confirmation changes from no cell to a single cell at the center of the pattern. Thus, the model
showed that a coupling between cell polarity and cell-cell interaction is sufficient to explain
the experimental results.

A final example illustrating how models can shed light on cell-cell interaction
mechanisms involves the motion of cells on 1D stripes [161, 162]. Recently, micropatterned
substrates which contain 1D adhesive regions have been used to study what happens when
cells collide [121, 163, 164, 165]. By restricting cell motion to the stripe, these experiments
can efficiently generate collisions under consistent conditions. Experiments of head-on
collisions of neural crest cells revealed that the majority of cell collisions resulted in cell
reversals: after the collision, both cells reverse their direction [163, 121]. Some cell
pairs, however, stuck together after the collision or, in rare cases, walked past each other.
Importantly, these experiments were carried out for a sufficient number of collisions to
generate quantitative statistics.

The results of the collision assay can be compared to the outcome of models with
different potential mechanisms of cell-cell interactions, as we did in a recent study using the
phase field method [59]. In this paper, we described cells crawling on a quasi-one-dimensional
narrow adhesive stripe, and the deformable cells were given a polarity using a model which
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describes the dynamics of a polarity protein, assumed to be Rac [24]. CIL was implemented
by assuming that cell-cell contact results in the production of Rac inhibitor as in [34]. The
inhibitor field was assumed to include fluctuations, rendering the simulations stochastic. For
each set of parameters, we simulated a large number of head-on collisions. These simulations
were able to reproduce all experimentally observed outcomes but, as we have already seen
in the case of the rotating cell pair on the micropattern, the outcomes were sensitive to the
precise values of the parameters like the rates of inhibitor generation, the asymmetry of CIL
between front and back, and the cell-cell adhesion strength. This is also evident when multiple
cells are placed on the stripe, as was also carried out in a recent experiment [121]. For
model parameters that favor cell reversals, cells collide and reverse direction, without forming
clusters of more than two cells (Fig. 5D). Changing the parameters such that they promote
chains, on the other hand, result in a single and persistent train, as observed in the experiments
[121, 166].

3.2. Collective chemotaxis

One of the most striking examples that demonstrates that collective motion is not merely the
sum of the motion of many single independent cells comes from the field of chemotaxis. Here,
a chemical gradient results in an asymmetric distribution of bound receptors which leads to
the directed motion of cells up the gradient ‡. Chemotaxis is believed to play an important
role in would healing, as well as embryogenesis and, possibly, cancer metastasis [134, 167].
For reviews on single cell chemotaxis we refer to [168, 169, 170]. It has long been known that
clusters of cells can chemotax as well [171, 172]. Recent experiments, however, have shown
that single cells and clusters of cells can have dramatically different behavior when placed in
a chemoattractant gradient. For example, and illustrated in Fig. 6A, the motion of clusters of
lymphocytes was shown to migrate directionally and to better follow chemotactic gradients
than individual cells [16]. In fact, these lymphocyte clusters always followed the gradient,
independent of its steepness, while single cells reversed directionality for very steep gradients.
Clusters of neural crest cells were also shown to be attracted toward sources of chemokines
while single neural crest cells did not show any directionality in their movement [15]. Similar
examples of emergent taxes have been observed in electrotaxis of epithelial sheets [173],
durotaxis of epithelial sheets [174], and chemotaxis of Myxococcus xanthus swarms [175].
These surprising findings clearly highlight the effect of multiple cells on motility. (We also
note, at a much larger length scale, emergent phototaxis of fish schools [176].)

How can a cluster of cells respond to a gradient while a single cell does not? To
answer this question in experiments is challenging. Most likely, cell-cell communication is
responsible for the divergence of behavior. This communication can potentially be of different
origins. For example, it is possible that cells communicate through gap junctions which allows
chemical species to be shared between cells within the cluster [177]. It is also possible that
cells secrete chemicals that then diffuse extracellularly and can interact with neighboring cells.

‡ We will restrict ourselves to the case of chemoattractants although chemotaxis in the presence of a gradient of
chemorepellants is also possible.
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Figure 6. Chemotaxis of clusters. A. Lympocyte cells respond to a downward gradient only
if the cluster has a sufficient size. Shown here are snapshots at times indicated (minutes);
smaller cell clusters merge and form a larger one which migrates downward (From [16]). B.
Schematic representation of the model of Refs. [17, 38]. CIL is incorporated by assuming
that the cell’s polarity p is biased toward the vector q which is proportional to the average
over the positions of the cell’s neighbors and points away from the cluster. The strength of
this bias is regulated by the local chemoattractant value S(r), leading to cells being more
polarized at higher S. As a result, single cell trajectories show no bias towards the gradient
direction while a cluster shows an average direction motion towards higher chemoattractant
concentrations. For both cases, 100 trajectories of six persistence times in length are shown .
For more details, see [17]. C. Snapshot of a chemotaxing cluster bound by co-attraction that
is mediated by a secreted co-attractant field, shown in yellow. The chemoattractant gradient is
pointing downward. D. The chemotactic velocity of clusters bound by co-attraction shows a
gradual increase as the cluster size increases. Panels C and D are taken from [38].

Finally, it is also conceivable that mechanics, either through cell-cell contacts or cell-substrate
modifications play a role.

One possible mechanism that would explain an enhanced chemotactic ability for clusters
would involve cells that each independently sense the gradient, while the cluster has increased
accuracy by averaging over many independent measurements. Alternatively, the presence of
neighbors could induce cells to change their gradient-sensing behavior – e.g. single cells
amplify their response to shallow gradients when exposed to a quorum-sensing factor. The
experiments using lymphocytes, however, show that even when single cells move down the
gradient, clusters are still able to chemotax up the gradient. Thus, at least for these cells,
spatially averaging is not likely the most dominant mechanism, and the mechanisms of single-
cell and collective chemotaxis are likely to be fundamentally different.
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A number of models have been put forth to explain the difference between single cell
and cluster chemotaxis. A recent study was inspired by experiments using lymphocytes
which showed that 1) clusters were able to chemotax above a critical size of ∼20 cells,
2) the velocity of the clusters was largely independent of their size, 3) the variance of the
velocity decreases for increasing cluster sizes, and 4) the forward migration index (FMI)
(defined as cell displacement along the gradient direction/track length) increases as cluster
sizes increase [16]. In the model, clusters were modeled as 2D circular aggregates [16].
Through an unspecified mechanism, only cells at the perimeter were assumed to respond
to the chemoattractant and were assumed to exert normally outward forces, proportional to
the local concentration. In addition, cells were able to exert random traction forces. The total
outward force along the perimeter in this model scales with the size of the cluster (Fper ∼ R2).
Assuming that the friction between the cluster and the aggregate is simply proportional the
area results in a cluster velocity that is largely independent of its size, as observed in the
experiments [16]. For uncorrelated noise, the model predicts that the variance in the cluster
velocity scales inversely with the area, 〈v2〉 ∼ 1/R2, in good agreement with the experiments.
Combining these two findings results in a FMI that increases for increasing cluster sizes and
that can be fitted to the experimental results.

We also have recently proposed a model for the emergence of chemotaxis in collective
systems, motivated by the experimental results of neural crest cells [15, 178]. In this model,
schematically illustrated in Fig. 6B, cells are again modeled as rigid circular objects and
clusters as 2D aggregates [17, 38]. A key component of the model is CIL, in which cells move
away from neighboring cells and which we described in Section 2.3 [179, 121, 164, 180].
The model assumes that the strength of the CIL is proportional to the local chemoattractant
concentration resulting in a spatial bias of cell-cell interaction and cluster chemotaxis. We
note that since the gradient only affects cell-cell interactions, single cells will not chemotax
(Fig. 6B). Each cell i has a position xi and a polarity pi, which obey a variation of Eqs. 1,2,
and 3:

∂tx
i = pi +

∑
j6=i

Fij (10)

∂tp
i = −1

τ
pi + σξi(t) + βi

∑
j∼i

r̂ij (11)

where Fij are intercellular forces of cell-cell adhesion and volume exclusion, and ξi(t) are
Gaussian Langevin noises with 〈ξiµ(t)ξjν(t

′)〉 = 2δµνδ
ijδ(t − t′). Greek indices µ, ν run over

the dimensions x, y. The first two terms on the right of Eq. 11 are a standard Ornstein-
Uhlenbeck model: pi relaxes to zero with timescale τ , but is driven away from zero by the
noise ξ(t). This corresponds to a cell that is orientationally persistent over time τ . The term
βi
∑

j∼i r̂
ij is our simplest model for CIL – cell i polarizes away from its neighbors j.

The advantage of this model is that it can be used to generate analytical predictions.
Specifically, the mean velocity of a cluster can be shown to be [17]

〈V〉 ≈ β̄τM ·∇S (12)
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The matrixM only depends on the cells’ configuration,

Mµν =
1

N

∑
i

qiµr
i
ν (13)

where qi =
∑

j∼i r̂
ij . For rigid clusters, i.e. clusters in which the cells do not rearrange,

this matrix can be explicitly determined. We found that the mean velocity depends on the
orientation of the cluster, its shape and its size. For large near-circular clusters, it can be
shown that the velocity saturates as N →∞:

〈Vx〉 ∼
3N −

√
12N − 3

2N
(14)

This can also be understood by realizing that the velocity is proportional to the ratio of the total
protrusive forces and the friction forces. The latter should scale as N while the former should
scale as the size of the perimeter (

√
N ) times the difference in concentration between the front

and back of the cluster (also
√
N ). These results also allowed for explicit analytical expression

for the efficiency of chemotaxis. Furthermore, simulations revealed that the velocity of non-
rigid clusters also saturates for large cluster sizes.

In the minimal model described above cells only react to the local chemoattractant
concentration. What would happen if cells communicate with each other through chemical
signals as we already discussed in Section 2.4? We investigated this in an extension of the
model in which cells not only interact with their nearest neighbors but also interact on a
longer spatial scale through chemical secretions [38]. Specifically, a local excitation, global
inhibition (LEGI) scheme was implemented in which the chemoattractant induces production
of a long-range diffusive inhibitor and a local activator [181, 182]. This scheme has been used
extensively for single cells and adapts perfectly to changing uniform signals [182, 183]. For
very fast diffusion, it was found that the cluster velocity, as in the minimal model, saturates
for large cluster sizes. For more physically realistic values of the diffusion rate, however,
the cluster velocity depends non-monotonically on the cluster size. In this case, cells cannot
effectively communicate across the cluster and gradient sensing becomes non-linear, resulting
in a maximum velocity for a finite cluster size. This maximum velocity has also recently been
confirmed in a different model by combining a similar LEGI signaling model with the cellular
Potts model [44].

Our study also investigated the possibility of co-attraction mediated through chemical
secretions, as known to occur in neural crest cells [135, 41]. A snapshot of a simulation of a
cluster in which particles secrete a co-attraction species is plotted in Fig. 6C. The additional
species is shown in yellow and is assumed to be secreted in equal amounts by all cells, after
which it diffuses and decays. As a result, its concentration is highest at the center of the cluster,
which is now only loosely bound and displays significant cell re-arrangements. Nevertheless,
for suitable parameters, these clusters remain coherent and migrate up the chemoattractant
gradient. Interestingly, the velocity of larger clusters does not saturate but continues to
increase, as can be seen in Fig. 6D. This can be understood by recalling that in the rigid
cluster model the velocity saturates due to a balance of friction forces (∼N) and the CIL
forces which are exerted on the edge (∼

√
N cells) and increase linearly with the radius of
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the cluster (∼
√
N ). In the case of co-attraction, the CIL forces are no longer restricted to the

cluster perimeter but act at any cell-cell collision.

3.3. Modeling cell sheets

In many experimental studies of collective motion, cells are part of large confluent sheets. For
example, the commonly used “wound-healing” assay consists of a monolayer of cells that is
suddenly able to move into an area void of cells, created either by a scratch [184] or by using
more sophisticated methods [7, 185, 186]. Another example includes seeding a confluent layer
of cells and observing its growth [187, 188, 189]. These experiments revealed that cells within
the bulk display characteristic dynamics, with correlated motion across many cell lengths and
swirling motion [7, 187]. Also, fronts that invade empty space often do not remain planar but
exhibit an instability resulting in long finger-like protrusions (Fig. 7A) [7, 190]. Finally, by
measuring traction forces generated by the cell layers, it was shown that not only cells at the
edge of the sheet exerted forces but also cells in the middle of the sheet, many cell diameters
away from the boundary [189].

Attempting to model these sheets as collections of deformable objects is often
computationally too costly, although the cellular Potts model is able to simulate thousands
of cells [18]. Continuum models can be used to model the spreading of cell layers but do
not always incorporate all observed effects, including cell division and motility forces within
the bulk [191, 192]. Particle-based models, in which cells are treated as disks, can provide
an attractive alternative to both continuum models and to deformable cell models: they are
computationally efficient and allow for the explicit incorporation of specific mechanisms. By
introducing cell-cell interactions or by assigning different properties to different cells one can
then use these models to investigate potential mechanisms.

In one recent approach to particle-based models of monolayer expansion [13], the cell’s
position is described by its center of mass and its velocity obeys

∂tv
i = −αvi +

∑
nn

[
β

Ni

(vi − vj) + Fij

]
+ σηi (15)

Here, the first term describes dissipative damping while the second term, which represents
a sum over all nearest neighbors, incorporates a neighbor alignment mechanism as well as
short scale repulsion and long-range attraction (Fij). The neighbor alignment is controlled
by the parameter β and incorporates the idea that cells tend to move in the direction of their
neighbors, as we discussed in Section 2.3 [115, 193, 160]. The final term represents noise and
is typically modeled as a standard Ornstein-Uhlenbeck process. This stochastic particle model
is able to reproduce a number of experimental features. For suitable parameters, for example,
the bulk display large-scale flows that are similar to the experimental ones. Specifically, a
quantitative comparison using different statistical quantities, including the velocity field auto-
correlation and distributions of velocities, provided a good match between experiments and
models [13, 194]. We note that Eq. 15, unlike our model of Eq. 10-11, does not distinguish
between a cell’s velocity and its polarity; therefore, even though the cell’s environment is
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Figure 7. Collective motion simulated by particle-based models. A. Experimental (left) and
simulation (right) snapshot of an epithelial cell layer invading a void. The experimental picture
is shown 20h after after removing the barrier and clearly shows a finger-like protrusion. In the
simulation snapshot, cells are represented as black dots. For further details, see Ref. [13]. B.
Snapshot of the x component of the traction stress in a simulation of a spreading cell colony
using a two-particle-per cell model [47]. C. Average tension in the x direction calculated by
integrating average traction stress along the y axis within the region indicated by dotted lines
in B.

overdamped, there is an acceleration term on the left hand side of Eq. 15. This should be
interpreted as the time required to reorient a cell, and is not related to the cell’s physical mass.

This type of model can be extended in several ways. For example, it is possible to
introduce leader cells, i.e. cells that are at the edge of the sheet and that have different
motility properties. This extension is motivated by experimental observations that cells at the
boundary of the sheet have a distinct morphology [7]. When introducing leader cells that were
faster than cells in the bulk and that have a fixed outward predetermined velocity, the model
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showed a fingering instability consistent with the experiments (Fig. 7B) [13]. In a more recent
study, the model was extended even further by adding specific forces at the outer edge of the
cell layer, including a surface-elasticity restoring force and a curvature-dependent positive
feedback which assumes that cells at convex parts of the front exert larger forces [76]. In
addition, a purse-string mechanism was included which describe the experimentally observed
actin-myosin cable that can exert large tension forces on the boundary cells [195, 196]. By
systematically varying the relative strength of these forces it was possible to determine which
mechanism is essential for the fingering instability. [76] discovered that the positive feedback
between protrusions and motility is an essential ingredient for the formation of fingers in the
absence of explicit leader cells.

A variant of this model using ideas from dissipative particle dynamics has been used to
study the properties of 3D tissue aggregates like their growth, competition, rheology, surface
tension, cell sorting, and the diffusion of cells within the tissue [197, 198, 199]. In this model,
each cell is represented by two interacting particles, one representing the cell front and one
the cell back – making this also a variant of subcellular element models, as discussed above.
Cell growth is incorporated by setting a maximum distance between these two particles, above
which the cell divides. Cells can switch between a motile and a nonmotile state; only cells in
the motile state exert a force onto the substrate. An alignment mechanism can be implemented
by assuming that the transition rate depends on the orientation of the motility force relative to
the cell velocity of the neighbors. Such a model can also reproduce the swirling bulk dynamics
with long-range velocity correlations [45]. It is able to reproduce the finger-like protrusion
when simulating an invading front, although a systematic studies of the relevant parameters
and mechanisms has not yet been carried out.

We have also recently used a cell-pair model [45, 47] to study the closure of circular
wounds, motivated by recent experiments [191]. We found that the model dynamics and
tissue velocity profiles agree well with the experimentally observed ones [200]. This model
also showed that the alignment mechanism can speed up wound closure and the collective
migration is sufficient to close circular wounds. Thus, and consistent with earlier modeling
work [192, 13], wound closure does not require cell division or a purse-string (active
contractile cable at the tissue boundary) mechanism .

Finally, the cell-pair model has also been used to compare simulated traction forces
generated to the experimental results of spreading colonies [189]. We found that the stress
maps produced in the model agree well with the experimentally determined ones [45, 47]. In
particular, significant traction forces were not only present at the edge but existed throughout
the entire colony. Furthermore, the model was able to reproduce the build up of tensile
stress as observed in the experiments, even though the model did not include leader cells,
as illustrated in Fig. 7C and D. Leader cells were also not required to reproduce detailed
experimental results of collective motion in epithelial cell sheets [201], suggesting that in
some cases collective migration can be achieved without the presence of specialized cells at
the boundary. We should also point out that the model was used to validate a procedure of
obtaining the intercellular stress maps from measured traction forces on the substrate [202].
The model showed that the stress maps obtained from the simulations are in good agreement
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with the experimentally determined maps, provided that the traction forces are not too weak,
and thus validated the experimental method [46]. This is one of the additional strengths
of a modeling approach: stress maps, and other quantities that are not readily available in
experiments, can be directly computed and can be used to validate experimental procedures
at arbitrary precision.

4. Future directions

What directions can, and should, modeling of collective cell motility take in the future? We
highlight a few idiosyncratically chosen paths below.

4.1. Discrimination between polarity mechanisms vs searching for universality

The problems we discuss in Section 3 tend to have two different characters: investigation into
the precise methods by which cells interact with each other and sense signals, and the large-
scale dynamics of tissues comprised of hundreds of cells. We have found that performing strict
tests of specific cell-cell interaction models is often easier with small numbers of cells. Pairs
of cells undergoing a neighbor alignment do not rotate, while those using velocity alignment
do [34] – but both self- and neighbor-alignment can create rotations of large systems [43, 158].
Similarly, in studying the velocity and directionality of clusters guided by a chemical signal,
we found that single-cell gradient sensing and collective gradient sensing mechanisms could
produce highly similar results at large cluster sizes – but could be discriminated by studying
the behavior of pairs of cells [17].

Under what circumstances, then, should we expect different polarity mechanisms to give
similar results? This question of universality has been hinted at in earlier papers [18], but
not addressed extensively. One approach might be to study the systematic coarse-graining
of models that resolve the cell scale into continuum hydrodynamic equations. Steps have
been taken in this direction, both deriving hydrodynamic equations corresponding to minimal
models of active matter (e.g. the Vicsek model) [203, 204, 205, 206], and building continuum
elastic theories from vertex models [207]. Links between the cellular Potts model and
continuum models have also been developed [208]. Additional study in these directions may
provide some clarity on the question of universality.

4.2. Resolving important differences: multi-model comparisons on standardized problems

One aspect of modeling collective cell migration that we have tried to illustrate is that in
studying a given problem, there are many small decisions along the way which are not
necessarily determined by the experimental data. These decisions may not be highlighted
in modeling papers, but they can nonetheless be important. These include the level of
representation of the cell shape, the choice of polarity mechanism, and the statistics of single
cells. A natural way to address this would be to apply multiple simulation methodologies
to simultaneously characterize a single modeled behavior, as done in, e.g. [209, 210]. In
addition, studying multiple mechanisms simultaneously may be necessary [34]; we should
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expect that several reasonable explanations can exist simultaneously for cell behaviors (e.g.
[211] in single-cell dynamics), and work to propose potential tests to discriminate between
them.

We argue that applying several modeling frameworks to a single problem is a valuable
first step toward seeing how generalizable a simulation’s results are, determining the
generality and robustness of a proposed mechanism, and finding the minimal necessary
ingredients for a model. When we use models to make predictions for a biological experiment,
we have to translate between changes in simulation parameters and experimental interventions
– e.g. assuming that the strength of a cell-cell interaction potential U(r) is proportional
to a cadherin expression level. Comparing simulations in two different frameworks is a
miniature version of developing experimental predictions, and can highlight difficulties in
generalizing simulations. For instance, because cells in the CPM must protrude in order to
move successfully, increasing their effective compressibility λ slows the motion of cells, both
individually and collectively; this connection between compressibility and cell speed does
not necessarily arise in other models. Another potential trouble point in generalizability
is characterizing the multiple roles of cell-cell adhesion. We would expect that pairs of
cells with increased cadherin expression require force to separate, e.g. a larger cell-cell
potential U(r), but increased adhesion also could increase frictional drag when cells move
past each other. Comparing models with frictional forces between cells [74, 64, 45] and
without can show these contrasting potential roles of adhesion. These questions become even
more complicated when mechanical models are combined with chemistry: we found that
increasing adhesion strength can have highly counter-intuitive effects on the collision of cell
pairs when biochemical modeling of cell polarity is combined with modeling of the cell shape
[59]. Comparison between different models is a useful test of robustness, and a good way of
discovering hidden assumptions that can be checked experimentally.

We suggest several key questions that could serve as test problems for comparing models,
and illustrate them in Fig. 8.

Wound healing We have discussed examples of wound healing and tissue expansion
in Sec. 3.3 above. We view this as a natural testbed for many different models, given
the large amount of experimental data, ranging from the rates of expansion, to fingering
instabilities, to the mechanical forces applied on the substrate. In addition, when comparing
different modeling approaches, tissue expansion and wound healing has the advantage of
many analytical tools developed to better understand the dynamics of the experimental data,
e.g. [212, 213].

Cell sorting by differential adhesion The sorting out of two cell populations arising
from a constrast in relative adhesion strengths is one of the classical applications of many
simulation methods, including the cellular Potts model [94], self-propelled particle models
[214], and many others [210]. This has a broad relevance to the physics of sorting in
developmental systems like Hydra regeneration and Dictyostelium spore formation. However,
it is also a particularly interesting question for multi-model comparisons, because it depends
on many different features: the final state depends critically on the adhesion energies, while
the dynamics can strongly depend on both cell-cell alignment and cell motility.
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Rheology of tissue Tissues composed of many cells can be viewed as a complex material,
and their mechanical properties like elasticity and viscosity can be studied in this context
[215, 216]. Simulation and theory can play a role in understanding the sensitivities and biases
of different methods of probing these properties. One particularly interesting approach to
measuring tissue material parameters is microrheology [217], in which the motion of small
probes are tracked as they move through the material, either by passive thermal fluctuations, or
by active probing. This approach has been applied experimentally to tissues [218], though on
a shorter timescale than is typically relevant for cell motility and rearrangements. One paper
that we know of has simulated the mechanical response of tissue to an active microrheological
probe [67]. However, we should mention some caveats in analyzing this sort of data. There
are well-established techniques for deriving the linear viscoelasticity of a material to the
displacement of a probe driven by a fixed or fluctuating force [217], which require a formula
for the mobility of the probe as a function of the tissue viscosity. In a three-dimensional
tissue with a spherical probe, this is given by the classical Stokes result: the mobility is
µStokes = 1/6πηR, with η the tissue viscosity and R the probe radius. However, in typical
two-dimensional simulations and in epithelial monolayers, the relationship is more complex;
for a two-dimensional tissue with a cell-surface friction, it is appropriate to apply the Evans-
Sackmann mobility [219], which is more complicated, and, depending on the tissue viscosity,
can be only logarithmically dependent on the probe radius and on the tissue-surface friction.
Ref. [67] applies the Saffman-Delbrück equation [220] to analyze their data, which can
approximate Evans-Sackmann in some limits. We also caution that we would expect these
quasi-two-dimensional measurements to have strong system size effects, which could be
corrected using hydrodynamic theories [221].

Cell displacements and tissue flow One of the simplest measurements possible to
characterize collective cell migration is to look at the displacement of single cells within
the tissue, and to compute correlations in these motions [222, 201, 42]. Measuring single-cell
mean-squared displacements MSD(t) = 〈|r(t + t0) − r(t0)|2〉 allows the characterization of
how persistently a cell can move within a tissue, as well as its effective diffusion coefficient
over long times [42]. In addition, calculating the correlation in tissue velocity, or the mean
tissue velocity relative to a cell [18, 42] provides a sense of the length over which cell
velocities are correlated. These measurements allow for direct simultaneous comparison with
experiment and comparison between models [201].

Comparing different models on the same test problem is made easier when code is
publicly available. We are aware of many open-source implementations of various collective
cell motility models, including vertex models and others in Chaste [88, 210], CompuCell3D
[100] and Morpheus [101] for the cellular Potts model, CellSys for center-based models [74]
and SEM++ for the subcellular element method [223]. Many other codes are discussed in a
extensive review of agent-based methods [33]. We note, however, that these models may not
include all of the features we have discussed in this review – in particular, some lack explicit
handling of terms like neighbor or velocity alignment or self-propulsion forces.
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Wound healing Cell sorting [differential 
adhesion]

Tissue rheology
Pulling force

Tissue flow fieldsCell displacements

Figure 8. Potential test problems for characterizing differences between models. Wound
healing illustration taken from self-propelled particle simulations of [13]. Cell sorting image
from self-propelled particle simulations of [214]. Active microrheology simulation is from the
subcellular element models of [67]. Cell displacements and tissue flow shown from [42].

4.3. Increased mechanical fidelity of cell models

The mechanical response of single cells has been extensively characterized [224], as well as
the flow of actin within cells [225]. Some of these elements have been integrated into single-
cell models including modeling of the flow of the actin cytoskeleton [29, 211, 226, 227] or
application of minimal active fluid models [228], but the impact on collective migration is not
yet clear. However, given the clear role of cytosolic hydrodynamics in development [229] and
the recent suggestion that some collective cell motility may be limited by hydrodynamic flow
in the surrounding tissue [230], extension of models to greater mechanical detail would be
highly relevant. An initial step in this direction was recently published by Marth and Voigt,
who used collective phase field models to extend a minimal active fluid cell model to handle
multiple hydrodynamically-interacting cells [131].

4.4. Role of the mechanical environment

We have mainly focused on the modeling of two-dimensional collective cell migration on
rigid substrates. However, in vivo cell migration occurs with strong interactions with the
extracellular matrix (ECM). The rigidity and porosity of the matrix is known to regulate
motility, while the forces exerted by the cells reshape the matrix [231, 232, 233]. In
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order to understand collective invasion in vivo, it is necessary to understand this feedback.
While the role of the extracellular matrix has certainly been modeled before, especially in
developmental biology contexts [234, 103, 235], new techniques in traction force microscopy
have highlighted long-range correlations in the stress within two-dimensional monolayers
[189]. However, collective cell migration models that reproduce this stress buildup have only
recently been developed [47]. Designing models that take the lessons of quantitative traction
force microscopy from two dimensions into three is an ambitious, but important goal.
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[43] Rappel W J, Nicol A, Sarkissian A, Levine H and Loomis W F 1999 Physical Review Letters 83 1247
[44] Varennes J, Han B and Mugler A 2016 Biophysical Journal 111 640
[45] Basan M, Elgeti J, Hannezo E, Rappel W J and Levine H 2013 Proceedings of the National Academy of

Sciences 110 2452
[46] Zimmermann J, Hayes R L, Basan M, Onuchic J N, Rappel W J and Levine H 2014 Biophysical Journal

107 548
[47] Zimmermann J, Camley B A, Rappel W J and Levine H 2016 Proceedings of the National Academy of

Sciences 113 2660–2665
[48] Bazazi S, Romanczuk P, Thomas S, Schimansky-Geier L, Hale J J, Miller G A, Sword G A, Simpson S J

and Couzin I D 2011 Proceedings of the Royal Society of London B: Biological Sciences 278 356
[49] Campos D, Méndez V and Llopis I 2010 Journal of Theoretical Biology 267 526
[50] Peruani F and Morelli L G 2007 Physical Review Letters 99 010602
[51] Gail M H and Boone C W 1970 Biophysical journal 10 980–993
[52] Li L, Cox E C and Flyvbjerg H 2011 Physical biology 8 046006
[53] Amselem G, Theves M, Bae A, Bodenschatz E and Beta C 2012 PloS ONE 7 e37213
[54] Palacci J, Sacanna S, Steinberg A P, Pine D J and Chaikin P M 2013 Science 339 936
[55] Bricard A, Caussin J B, Desreumaux N, Dauchot O and Bartolo D 2013 Nature 503 95
[56] Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E and Sen A 2006 Journal of the American

Chemical Society 128 14881
[57] Brown A and Poon W 2014 Soft Matter 10 4016
[58] Jiang H R, Yoshinaga N and Sano M 2010 Physical Review Letters 105 268302
[59] Kulawiak D A, Camley B A and Rappel W J 2016 PLOS Computational Biology 12 e1005239
[60] Coburn L, Cerone L, Torney C, Couzin I D and Neufeld Z 2013 Physical Biology 10 046002
[61] Menzel A M and Ohta T 2012 EPL (Europhysics Letters) 99 58001
[62] Bi D, Lopez J, Schwarz J and Manning M L 2015 Nature Physics
[63] Park J A, Kim J H, Bi D, Mitchel J A, Qazvini N T, Tantisira K, Park C Y, McGill M, Kim S H, Gweon



Modeling collective cell motility 33

B et al. 2015 Nature Materials 14 1040
[64] Palsson E and Othmer H G 2000 Proceedings of the National Academy of Sciences 97 10448
[65] Bi D, Yang X, Marchetti M C and Manning M L 2016 Physical Review X 6 021011
[66] Li B and Sun S X 2014 Biophysical Journal 107 1532
[67] Sandersius S, Weijer C J and Newman T J 2011 Physical biology 8 045007
[68] Nematbakhsh A, Sun W, Brodskiy P A, Narciso C, Xu Z, Zartman J J and Alber M S 2016 bioRxiv

037820
[69] Gardiner B S, Wong K K, Joldes G R, Rich A J, Tan C W, Burgess A W and Smith D W 2015 PLoS

Comput Biol 11 e1004544
[70] Albert P J and Schwarz U S 2016 PLoS Comput Biol 12 e1004863
[71] Nonomura M 2012 PloS ONE 7 e33501
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[97] Szabó A and Merks R M 2013 Frontiers in oncology 3 87
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