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Astronomical random numbers for quantum foundations experiments
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Photons from distant astronomical sources can be used as a classical source of randomness to improve
fundamental tests of quantum nonlocality, wave-particle duality, and local realism through Bell’s inequality and
delayed-choice quantum eraser tests inspired by Wheeler’s cosmic-scale Mach-Zehnder interferometer gedanken
experiment. Such sources of random numbers may also be useful for information-theoretic applications such as
key distribution for quantum cryptography. Building on the design of an astronomical random number generator
developed for the recent cosmic Bell experiment [Handsteiner et al. Phys. Rev. Lett. 118, 060401 (2017)], in
this paper we report on the design and characterization of a device that, with 20-nanosecond latency, outputs
a bit based on whether the wavelength of an incoming photon is greater than or less than ≈700 nm. Using the
one-meter telescope at the Jet Propulsion Laboratory Table Mountain Observatory, we generated random bits from
astronomical photons in both color channels from 50 stars of varying color and magnitude, and from 12 quasars
with redshifts up to z = 3.9. With stars, we achieved bit rates of ∼1 × 106 Hz/m2, limited by saturation of our
single-photon detectors, and with quasars of magnitudes between 12.9 and 16, we achieved rates between ∼102

and 2 × 103 Hz/m2. For bright quasars, the resulting bitstreams exhibit sufficiently low amounts of statistical
predictability as quantified by the mutual information. In addition, a sufficiently high fraction of bits generated
are of true astronomical origin in order to address both the locality and freedom-of-choice loopholes when used
to set the measurement settings in a test of the Bell-CHSH inequality.
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I. INTRODUCTION

Quantum mechanics remains extraordinarily successful
empirically, even though many of its central notions depart
strongly from those of classical physics. Clever experiments
have been designed and conducted over the years to try to
test directly such features as quantum nonlocality and wave-
particle duality. Many of these tests depend upon a presumed
separation between experimenters’ choices of specific mea-
surements to perform and features of the physical systems to
be measured. Tests of both Bell’s inequality and wave-particle
duality can therefore make stronger claims about the nature of
reality when the measurement bases are determined by events
that are separated by significant distances in space and time
from the rest of the experiment [1–7].
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Bell’s inequality [8] sets a strict limit on how strongly
correlated measurement outcomes on pairs of entangled
particles can be if the particles’ behavior is described by
a local-realist theory. Quantum mechanics does not obey
local realism and predicts that for particles in certain states,
measurement outcomes can be correlated in excess of Bell’s
inequality. (In a local-realist theory, no physical influence can
travel faster than the speed of light in vacuum, and objects
possess complete sets of properties on their own, prior to
measurement.) Bell’s inequality was derived subject to several
assumptions, the violation of any of which could enable a
local-realist theory to account for correlations that exceed the
limit set by Bell’s inequality. (For recent discussion of such
loopholes, see Refs. [9–11].) Beginning in 2015, several ex-
perimental tests have found clear violations of Bell’s inequality
while simultaneously closing two of the three most significant
loopholes, namely, locality and fair sampling [12–15]. To close
the locality loophole, one must ensure that no information
about the measurement setting or outcome at one detector
can be communicated (at or below the speed of light) to
the second detector before its own measurement has been
completed. To close the fair-sampling loophole, one must
measure a sufficiently large fraction of the entangled pairs that
were produced by the source, to ensure that any correlations
that exceed Bell’s inequality could not be accounted for due to
measurements on some biased subensemble.

Recent work has revived interest in a third ma-
jor loophole, known as the measurement-independence,
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settings-independence, or freedom-of-choice loophole. Ac-
cording to this loophole, local-realist theories that allow for
a small but nonzero correlation between the selection of
measurement bases and some hidden variable that affects
the measurement outcomes are able to mimic the predictions
from quantum mechanics, and thereby violate Bell’s inequality
[1,2,4,5,16–23].

A cosmic Bell experiment was recently conducted that
addressed the freedom-of-choice loophole [1]. A statistically
significant violation of Bell’s inequality was observed in mea-
surements on pairs of polarization-entangled photons, while
measurement bases for each detector were set by real-time
astronomical observations of light from Milky Way stars.
(This experiment also closed the locality loophole, but not
fair-sampling.) The experiment reported in Ref. [1] is the first
in a series of tests, which aim to use the most cosmologically
distant sources of randomness available, thus minimizing the
plausibility of correlation between the setting choices and
any hidden-variable influences that can affect measurement
outcomes.

Random bits from cosmologically distant phenomena can
also improve tests of wave-particle duality. Wheeler [24–26]
proposed a delayed-choice experiment in which the paths of an
interferometer bent around a distant quasar due to gravitational
lensing. By making the choice of whether or not to insert
the final beamsplitter at the last instant, the photons end up
behaving as if they had been particles or waves all along. (For
a recent review, see Ref. [27].) In Sec. III, we will discuss how
to feasibly implement an alternative experiment with current
technology that retains the same spirit and logical conclusion
as Wheeler’s original gedanken experiment.

Beyond such uses in tests of the foundations of quantum
mechanics, low-latency astronomical sources of random num-
bers could be useful in information-theoretic applications as
well. For example, such random bits could be instrumental for
device-independent quantum-cryptographic key-distribution
schemes (as also emphasized in Ref. [5]), further solidifying
protocols such as those described in Refs. [7,28–37].

In this paper, we describe the design choices and construc-
tion of a low-latency astronomical random number generator,
building on experience gained in conducting the recent cosmic
Bell experiment [1]. While previous work has successfully
generated randomness from astronomical images by reading
out the pixels of a CCD camera [38], our unique nanosecond-
latency, single-photon instrumentation and our analysis frame-
work make this scheme well suited for conducting experiments
in quantum foundations. In Sec. II we formalize and quantify
what is required to close the freedom-of-choice loophole in
tests of Bell’s inequality. This sets a minimum signal-to-noise
ratio, which in turn dictates design criteria and choices of
astronomical sources. In Sec. III we describe how astronomical
random number generators may be utilized in realizations of
delayed-choice gedanken experiments, to dramatically isolate
the selection of measurements to be performed from the rest
of the physical apparatus. In Sec. IV we compare different
ways to turn streams of incoming astronomical photons into
an unpredictable binary sequence whose elements were de-
termined at the time of emission at the astronomical source
and have not been significantly altered since. After discussing
the instrument design in Secs. V–VI, we characterize in

Sec. VII the response of the instrument when observing a
number of astronomical targets, including ≈50 bright Milky
Way stars selected from the HIPPARCOS catalog having
different magnitudes, colors, and altitudes. We also describe
our observation of 12 quasars with redshifts ranging from
z = 0.1–3.9. Finally, in Sec. VIII we quantify the predictability
of the resulting bitstreams, and demonstrate the feasibility of
using such quasars in the next round of cosmic Bell tests.
Concluding remarks follow in Sec. IX.

II. CLOSING THE FREEDOM-OF-CHOICE
LOOPHOLE IN BELL TESTS

To address the freedom-of-choice loophole in a cosmic Bell
test, the choice of measurement basis on each side of the
experiment must be determined by an event at a significant
space-time distance from any local influence that could affect
the measurement outcomes on the entangled particles [1,4,7].
As we demonstrate in this section, an average of at least ≈79%
of detector settings on each side must be generated by infor-
mation that is astronomical in origin, with a higher fraction
required in the case of imperfect entanglement visibility. We
will label detector settings that are determined by genuinely
astronomical events as valid, and all other detector settings as
invalid. We will use this framework to analyze random numbers
obtained from both stars and quasars. As we will see in later
sections, invalid setting choices can arise for various reasons,
including triggering on local photons (sky glow, light pollution)
rather than astronomical photons, detector dark counts, as well
as by astronomical photons that produce the wrong setting due
to imperfect optics.

Experimental tests of Bell’s inequality typically involve cor-
relations between measurement outcomes A,B ∈ {−1, + 1}
for particular measurement settings (ak,b�), with k,� ∈ {1,2}.
Here a and A refer to the measurement setting and outcome
at Alice’s detector (respectively), and b and B refer to Bob’s
detector. We follow the notation of Ref. [1] and write the
Clauser-Horne-Shimony-Holt (CHSH) parameter, S [39], in
the form

S ≡ |E11 + E12 + E21 − E22|, (1)

where Ek� = 2p(A = B|akb�) − 1, and p(A = B|akb�) is the
probability that Alice and Bob measure the same outcome
given the joint settings (ak,b�). Bell’s inequality places a
restriction on all local-realist theories. In terms of the quantity
S, the Bell-CHSH inequality takes the form S � 2 [39].

The value of S that one measures experimentally may be
expressed as a linear combination of Svalid, due to astronomical
setting choices, and Sinvalid, due to nonastronomical setting
choices. We may write

Sexp = qSvalid + (1 − q)Sinvalid , (2)

where q is the probability that both setting choices are gen-
erated by a given pair of astronomical sources for a given
experimental run. We conservatively assume that a local-realist
theory could exploit the freedom-of-choice loophole to maxi-
mize Sexp by engineering each invalid experimental run to yield
the mathematical maximum of Sinvalid = 4, while we assume
that each valid run would be limited to Svalid � 2 by the usual
Bell-CHSH argument. A relaxed version of the Bell-CHSH
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inequality is then Sexp � 4 − 2q. This makes the statistical
significance of any experimental Bell violation highly sensitive
to the fraction of valid settings generated. Since quantum
mechanics predicts a maximum value SQM = 2

√
2 [40], and

since Sexp � 4 − 2q � SQM, we conclude that for a cosmic
Bell experiment to distinguish between the predictions of
quantum mechanics and a local-realist alternative that exploits
the freedom-of-choice loophole, we must be able to conduct
a sufficiently high fraction q of our experimental runs using
valid astronomical photons:

q � 2 −
√

2 . (3)

In this framework, there are local-realist models in which
only one detector’s setting choice needs to be influenced or pre-
dicted by a hidden-variable mechanism in order to invalidate a
given experimental run and produce S = 4. We conservatively
assume that corrupt settings do not occur simultaneously,
allowing the local-realist alternative to maximally exploit each
one. If we denote by q(i) the probability that a setting at the ith
detector is valid, with i = (Alice, Bob), then (1 − q(i)) is the
probability that the ith detector setting is invalid. The fraction
of valid settings therefore must be at least q = 1 − (1 −
qAlice) − (1 − qBob) = qAlice + qBob − 1. Eq. (3) may then be
written

qAlice + qBob � 3 −
√

2 . (4)

For simplicity, if we assume that the experiment is symmetric
with qAlice = qBob = q∗, we find that q∗ � (3 − √

2)/2 �
79.3%. Thus, for a symmetric setup, roughly eight out of ten
photons incident on each random number generator need to be
of astronomical origin. When choosing a scheme for generating
random numbers, it is necessary to keep this signal-to-noise
threshold in mind.

It is also important to consider that it is very difficult
in practice to achieve a value of S close to the quantum-
mechanical maximum of 2

√
2 ≈ 2.83, due to imperfections

in the experimental setup. For example, the first cosmic Bell
test obtained values of Sexp = 2.43 and Sexp = 2.50 [1]. Under
such conditions, q would need to be correspondingly higher to
address the freedom-of-choice loophole. Also, the closer the
measurement of Sexp is to the validity-modified local-realist
bound, the more experimental runs are required to achieve a
statistically significant Bell violation. Hence the eight-out-of-
ten rule derived here represents the bare minimum to close
the freedom-of-choice loophole for pure entangled states and
robust statistics with many experimental runs. In later sections
we measure different sources of invalid detections and find
quasars that are on both sides of this usefulness bound with
our telescope.

III. DELAYED-CHOICE EXPERIMENTS

Another application of an astronomical random number
generator is to use it in an experiment to test wave-particle
duality. The concept of testing wave-particle duality with a
Mach-Zehnder interferometer was first proposed by Wheeler
[24,25] and has been realized in several laboratory-scale exper-
iments using single photons and single atoms [41–43]. In such
an experiment, each photon that enters the first beamsplitter
exhibits self-interference if the second beamsplitter is present,

Mach-Zehnder 
Interferometer

S

50:50 Beamsplitter (B.S.)

Single Photon Detector

Rapidly Removable B.S.

S Single Photon Source

E Entangled Photon Source

Astronomical Photon Source

Adjustable Phase

H Half Wave Plate 

FIG. 1. Wheeler’s original delayed-choice proposal on a tabletop
where the second beamsplitter can be rapidly inserted or removed
after a single photon from S passes the first beamsplitter. The legend
here applies for Figs. 1–4.

and the pattern of single-photon detections observed after
aggregating many trials is in correspondence with a classical
wave picture. However, if the final beamsplitter is absent,
the light from each path would not recombine, and single
photons would appear at one output or the other, revealing
which path was taken. In Wheeler’s original proposal [24],
the experimenter would be able to choose whether to insert
or remove the second beamsplitter after the photon had
entered the interferometer. Such a scenario was dubbed a
delayed-choice experiment because the photon’s trajectory—
one path, the other, or both—was determined after it passed
the first beamsplitter. If one rejects wave-particle duality, the
logical conclusion is that either the choice of removing the
final beamsplitter in the final moments of the light’s journey
somehow retrocausally affected the light’s trajectory, or that
the experimenter’s choice of removing the final beamsplitter
was predictable by the light before it embarked on its journey.
(See also Ref. [27].) See Fig. 1.

Wheeler next proposed [26] a cosmological version of this
test, with the source of interfering photons being a cosmo-
logically distant quasar and the first beamsplitter being an
intervening gravitational lens that produces at least two images
of the quasar on Earth. If the two images are recombined at a
final laboratory beamsplitter, the quasar photons would exhibit
interference between distinct paths of cosmological scale. If
the final beamsplitter were removed, the photons would not
exhibit interference and one could presumably identify unique
trajectories for such photons from emission at the quasar to
detection on Earth. If one insists on rejecting wave-particle
duality in this case, it would appear as if the experimenter’s
choice on Earth had determined whether the photon took one
path or both, billions of years ago. See Fig. 2.

The feasibility of realizing Wheeler’s quasar experiment
has been explored [44]. The central difficulty is maintaining
the quantum coherence of the light traveling over cosmological
distances. Rather than try to interfere astronomical photons
with a gravitational lens, we can realize a related experiment
that leads to the same logical conclusion. Instead of testing
the wave-particle duality of an astronomical photon, we may
use a standard tabletop Mach-Zehnder interferometer, and use
astronomical setting choices to determine whether to insert or
remove the beamsplitter after a laboratory-produced photon
has entered the interferometer. In such a setup, the choice of
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Mach-Zehnder 
Interferometer 
(MZI)

Gravitational 
Lens

FIG. 2. Wheeler’s cosmic delayed-choice proposal: using a grav-
itational lens as an interferometer with a quasar photon taking one or
both paths.

which measurement to perform would be made in a causally
disconnected way from the particulars of the behavior of
the photon in the interferometer, billions of years before the
interferometer photon had even been created. See Fig. 3.

In this experiment as well as Wheeler’s original gedanken
experiment, a cosmologically long time interval is realized
between when a photon enters the first beamsplitter, and
when the presence or absence of the second beamsplitter is
determined. In Wheeler’s experiment, the photon enters the
gravitational lens and the second beamsplitter’s presence is
determined billions of years later by experimenters on Earth.
In our proposed experiment, a quasar photon emitted billions
of years ago determines the state of the second beamsplitter,
while laboratory-generated single photons are sent into a
tabletop interferometer. Separating the choice of inserting the
beamsplitter from both the creation of the photon and its
journey makes alternate explanations of wave-particle duality
implausible.

In addition to such delayed-choice experiments, a related
line of experiments probe so-called quantum erasure [27],
which likewise draw inspiration from Wheeler’s original

ARNG

E
Heralding channel

MZI

FIG. 3. One way to perform a delayed-choice experiment that
keeps the spirit of Wheeler’s cosmic proposal, using an astronomical
random number generator to determine whether to insert or remove
the second beamsplitter in the Mach-Zehnder interferometer. Like in
Wheeler’s original proposal, the space-time location where the choice
is made is separated from the interferometer’s first beamsplitter by
astronomical distances. However, unlike in Wheeler’s gravitational
lens proposal, the astronomical photon does not go through the
interferometer nor does it exhibit any wavelike properties. It is instead
used to generate a classical random number that determines whether
to insert or remove the beamsplitter while a locally generated single
photon is in flight. It is helpful to use a photon pair source E to
generate single photons and to postselect coincidence events.

EEOM

ARNG

W

MZI

a

b

Polarizing B.S. Polarizing B.S.

se H

FIG. 4. A proposed cosmic eraser experiment. A two-photon
entangled state is produced at E, sending one entangled partner
(the environment photon) towards W and the other (the signal
photon) toward a Mach-Zehnder interferometer (MZI). An astronom-
ical random number generator (ARNG) activates an electro-optical
modulator (EOM) in order to rapidly set the measurement basis
for the environment photon at W , potentially revealing which-path
information about the signal photon. The signal photon at the MZI
acts as a particle or a wave accordingly, even though the decision
point of whether to reveal which-path information is made potentially
billions of years before the experiment has been run, out of the past
light cone of the interferometer.

proposal (see also Refs. [45,46]). In modern delayed-choice
quantum-eraser experiments [3], wave-particle duality is tested
by interfering one entangled partner (the signal photon) of a
two-photon entangled state in a Mach-Zehnder interferometer.
Rather than removing the beamsplitter in the Mach-Zehnder
interferometer, a measurement of the other entangled partner
(the environment photon) is made outside the light cone
of the signal photon to erase which-path information. This
can be done at the same time or after the signal photon
propagates through the interferometer [3,27]. Here again, we
can realize Wheeler’s original ambition to manifest the features
of quantum mechanics on cosmic scales in a cosmic eraser
experiment. In our proposed test, light from an astronomical
source would determine whether which-way information is
erased. See Fig. 4.

In the framework of quantum mechanics, these quantum
eraser experiments begin with a polarization-entangled state
of signal and environment photons. Following the discussion
in Ref. [3], we may write such a state as

|ψ〉 = 1√
2

(|H 〉s |V 〉e + |V 〉s |H 〉e). (5)

When the signal photon enters the interferometer, the polariz-
ing beamsplitter maps the polarization information of the sig-
nal photon onto which path it takes through the interferometer,
with horizontally polarized photons taking patha and vertically
polarized photons taking path b. A half-wave plate rotates path
a’s horizontal polarization into vertical polarization, erasing
which-way information encoded in the polarization of this
photon: |H 〉 → |a,V 〉 = |a〉 and |V 〉 → |b,V 〉 = |b〉. If we
assume the b path picks up an adjustable phase φ, the state
afterward may be written as

|ψ〉 → 1√
2

(|a〉s |V 〉e + eiφ|b〉s |H 〉e) (6)

= 1

2
[(|a〉s + ieiφ |b〉s)|L〉e + (|a〉s − ieiφ |b〉s)|R〉e]. (7)
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After the final 50:50 beamsplitter in the interferometer,
the two signal paths will recombine. The signal’s which-way
information is still potentially available in the polarization of
the environment photon. If the environment photon is measured
in the |H 〉e,|V 〉e basis, which-path information about the
signal photon is nonlocally revealed, and no phase-dependent
interference is observed. We can see this in the joint probability
of any pair of signal and environment detectors firing simul-
taneously: the probability that both upper detectors register a
coincidence when measuring in the |H 〉e,|V 〉e basis is

PHV = 1
2 |〈V |e〈a|s |ψ〉 + 〈V |e〈b|s |ψ〉|2 = 1

4 (8)

and no interference fringes are observed in the coincidence
probability. On the other hand, if the electro-optic modulator
(EOM) rotates the environment photon such that incoming |R〉e
photons enter the upper detector and incoming |L〉e photons
enter the lower detector, information about the signal photon’s
path is lost. Then the coincidence probability is given by

PLR = 1
2 |〈R|e〈a|s |ψ〉 + 〈R|e〈b|s |ψ〉|2 = 1

4 (1 + sin φ) (9)

and interference fringes are observed in the coincidence
probabilities. We emphasize that for both linear and circular
basis choices, the signal photon enters each detector with
equal probability, so as with any entangled state, information
cannot be sent simply by nonlocally choosing a measurement
basis. Interference fringes or the lack thereof can only be seen
when one sorts the signal photon’s detections into categories
based on the basis choice and measurement result of the
environment photon. As in tests of Bell’s inequality, any
apparent nonlocality is only nonlocality of correlations.

Any local explanation of the nonlocal correlations in this
experiment would rely on being able to predict whether the
measurement of the environment photon erases or reveals
which-path information of the signal photon, dictating the
wavelike or particlelike behavior of the signal photon. Setting
the environment photon’s measurement basis with a single
astronomical random number generator can be used to dra-
matically constrain the potential origins of this predictability.

IV. GENERATING ASTRONOMICAL RANDOMNESS

We consider two potential schemes for extracting bits of
information from astronomical photons to use as sources of
randomness for use in experiments such as those described in
Secs. II–III. In general, it is important that the information
extracted be set at the time of the astronomical photon’s
emission, rather than at the time of detection or any intervening
time during the photon’s propagation. We deem the setting
corrupt if this condition is not met, and we evaluate two
methods with particular emphasis on the mechanisms by which
corruption may occur.

A. Time of arrival

The first method is to use the time of arrival of the
astronomical photons to generate bits [4,5]. We can choose
to map time tags to bits based on whether some prespecified
decimal place of the time stamp is even or odd. For example,
a 0 could correspond to the case of a photon arriving on an
even nanosecond, and a 1 for arrival on an odd nanosecond.

The main advantage of this scheme is its simplicity: since time
stamps need to be recorded to close the locality loophole, there
is no need for additional hardware to generate random settings.
In addition, it will always be possible to ensure a near-50:50
split between the two possible setting choices at each side
of the experiment regardless of the source of astronomical
randomness. Indeed, our time tags, when mapped to random
bits by their time stamp, pass every test of randomness in the
NIST Statistical Test Suite for which we had sufficient bits to
run them [47].

The primary disadvantage of this scheme is that it is very
difficult to quantify galactic and terrestrial influences on the
recorded time stamp of the photon’s arrival. It is necessary that
we be able to quantify the fraction of photons that are corrupt,
as discussed in Sec. II. In the remainder of this section, we
consider the constraints on which decimal place in the detection
time stamp should be used to generate random bits.

It is tempting to condition setting choices on the evenness
or oddness of a subnanosecond decimal place, making use of
deterministic chaos and apparent randomness. However, the
time stamp of a given photon’s arrival at this level of precision is
sensitive to corruption from myriad local influences, which are
difficult (perhaps impossible) to quantify, such as effects in the
interstellar medium, time-dependent atmospheric turbulence,
and timing jitter in the detectors or time-tagging unit, which
may affect the even-odd classification of nanosecond time
stamps. The atmosphere has an index of refraction n ≈ 1 +
2.9 × 10−4, which in a 10 km-thick atmosphere corresponds
to the photons arriving ∼ 10 ns later than they would if traveling
in a vacuum [48]. Thus, relying upon any decimal place less
significant than the tens-of-nanoseconds place to generate a
bit admits the possibility of the atmosphere introducing some
subtle delay and corrupting the generated bits.

Choosing a setting by looking at the evenness or oddness of
microsecond time stamps, on the other hand, makes it difficult
to close the locality loophole in tests of Bell’s inequality. To
close the locality loophole, a random bit must be generated
on each side of the experiment within a single timing window,
whose duration is set by the distance between the source of
entangled particles and the closer of the two measurement
stations (≈3 μs in the first cosmic Bell experiment [1]). The
coincidence rate between the two RNGs is proportional to the
bit generation rate on each side, increasing the number of Bell
runs achievable within a certain experiment runtime. However,
if the bit generation rate increased, the bits lose their apparent
randomness: generating bits at any rate faster than 1 μs−1

would simply yield strings of consecutive 0’s and 1’s. This
creates a difficult scenario where the experimenter can only
increase the rate of successful runs by sacrificing the statistical
unpredictability of the random bits, in a scenario where it is
already desirable to maximize the rate of successful runs due
to practical constraints on observatory telescope time.

In addition, for rates that are slow compared to the causal
validity time, the remote setting choice on each side of the
experiment is a deterministic function of time. Using even
or odd time stamps to determine the setting choice admits
the possibility that a local hidden variable theory, acting at
the entanglement source, emits photon pairs to coincide with
a particular setting choice. For these reasons, using the time
stamp of astronomical photons’ arrivals does not appear to be
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an optimal method for generating unpredictable numbers of
astronomical origin.

B. Colors

An alternate approach, developed for use in the recent
cosmic Bell test [1], is to classify astronomical photons by
designating a central wavelength λ′ and mapping all detections
with λ < λ′ to 0 and detections with λ > λ′ to 1 using dichroic
beamsplitters with appropriately chosen spectral responses.
The advantage of the wavelength scheme is that possible
terrestrial influences on photons as a function of wavelength
are well studied and characterized by empirical studies of
astronomical spectra, as well as studies of absorption and
scattering in the atmosphere. In contrast to effects that alter
arrival times, the effects of the atmosphere on the distribution of
photon wavelengths varies over the course of minutes or hours,
as astronomical sources get exposed to a slowly varying air
mass over the course of a night-long Bell test. The air mass, and
therefore the atmosphere’s corrupting influence on incoming
astronomical photons, can be readily quantified as a function
of time.

One important advantage of using astronomical photons’
color stems from the fact that in an optically linear medium,
there does not exist any known physical process that could
absorb and reradiate a given photon at a different wavelength
along our line of sight, without violating the local conservation
of energy and momentum [1]. While photons could scatter off
particles in the intergalactic media (IGM), interstellar media
(ISM), or Earth’s atmosphere, a straightforward calculation of
the column densities for each medium indicates that among
these, the number of scatterers per square meter is highest in
the Earth’s atmosphere by more than two orders of magnitude
compared to the ISM in the Milky Way, and several orders of
magnitude greater than in the IGM [49]. Hence, treating the
IGM and ISM as transparent media for photons of optical fre-
quencies from distant quasars is a reasonable approximation.

For photons of genuinely cosmic origin, certain well-
understood physical processes do alter the wavelength of
a given photon between emission and detection, such as
cosmological redshift due to Hubble expansion. Such effects,
however, should not be an impediment to using astronomical
photons’ color to test local-realist alternatives to quantum
mechanics.

The effects of cosmological redshift are independent of a
photon’s wavelength at emission, and hence treat all photons
from a given astronomical source in a comparable way [50,51].
Gravitational lensing effects are also independent of a photon’s
wavelength at emission [52], though lensing accompanied by
strong plasma effects can yield wavelength-dependent shifts
[53]. Even in the latter case, however, any hidden-variable
mechanism that might aim to exploit gravitational lensing to
adjust the detected wavelengths of astronomical photons on
a photon-by-photon basis would presumably need to be able
to manipulate enormous objects (such as neutron stars) or
their associated magnetic fields (with field strengths B > 108

Gauss) with nanosecond accuracy, which would require the
injection or removal of genuinely astronomical amounts of
energy. Thus, whereas some of the original hidden-variable
models were designed to account for (and hence be able to

affect) particles’ trajectories [54,55]—including, thereby, their
arrival times at a detector—any hidden-variable mechanism
that might aim to change the color of astronomical photons on
a photon-by-photon basis would require significant changes to
the local energy and momentum of the system.

The chief disadvantage of using photons’ color in an
astronomical random number generator is that the fluxes of
red (λ > λ′) and blue (λ < λ′) photons will almost never be
in equal proportion, and hence will yield an overall red-blue
statistical imbalance. Such an imbalance in itself need not be a
problem: one may conduct Bell tests with an imbalance in the
frequency with which various detector-setting combinations
are selected [1,11]. However, a large red-blue imbalance
does affect the duration of an experiment—whose duration
is intrinsically limited by the length of the night—because
collecting robust statistics for each of the four joint setting
choices (ak,b�) would prolong the experiment.

A second disadvantage comes from imperfect alignment. If
the detectors for different colors are sensitive to different loca-
tions on the sky, atmospheric turbulence can affect the paths of
photons and the relative detection rates. We see evidence of this
effect at the subpercent level in the measurements described
in Sec. VII: the probability of the next photon being the same
color as the previous few photons slightly exceeds what is
expected from an overall red-blue imbalance. We quantify this
effect in terms of mutual information in Sec. VIII. This effect
could have been mitigated through better alignment since our
aperture was smaller than the active areas of our detectors, but
the sensitivity profiles of our detectors’ active areas would have
to be identical to eliminate it entirely.

We devote the remainder of this paper to the photon-color
scheme, given its advantages over the time-stamp scheme. We
point out that any time-tagging hardware that outputs bits based
on color can also output bits based on timing.

V. DESIGN CONSIDERATIONS

As became clear during the preparation and conduct of the
recent cosmic Bell experiment [1], in designing an instrument
that uses photon colors to generate randomness, it is necessary
to begin with a model of how settings become corrupted by
local influences and make design choices to minimize this.
In this section we build on the discussion in Ref. [1] to
characterize valid and invalid settings choices.

One obvious source of potential terrestrial corruption is
from background noise, due to thermal fluctuations in the
detector (or dark counts), as well as background light from the
atmosphere (or sky glow). We designate the sum of these two
rates as n

(i)
j , where j labels the two detector arms (red and blue)

and i labels the two random number generators (Alice and Bob)
in a test of Bell’s inequalities. If we measure a count rate of r

(i)
j

when pointing at an astronomical source, then the probability
of obtaining a noise count is simplyn

(i)
j /r

(i)
j . In selecting optics,

it is important to select single-photon detectors, which have low
dark count rates and a small field of view on the sky, in order
to minimize this probability.

A second source of terrestrial corruption is misclassification
of photon colors. A typical way to sort photons by color is to use
a dichroic beamsplitter. However, due to imperfections in the
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dichroic beamsplitter’s spectrum, there is a nonzero probability
that a photon in the red wavelength range is transmitted towards
the arm designated for blue photons and vice versa. We need
to select dichroic beamsplitters with high extinction ratios and
steep transitions such that crosstalk is minimized.

To quantify the contribution from imperfect dichroic mir-
rors, we define j ′ to be the color opposite to j , that is, red
if j refers to blue and vice versa. Depending on the source
spectrum, some fraction f

(i)
j ′→j of photons end up in the j th

arm, despite being of the j ′th color. If s
(i)
j astronomical photons

per second of color j are intended for the ith detector, photons
leak into the j ′th arm at a rate of fj→j ′s

(i)
j . Knowing r

(i)
j , n

(i)
j ,

as well as the mixture rates fj ′→j ,fj→j ′ allows us to unmix
the observed count rates rj to back out the true fluxes s

(i)
j . We

will discuss the computation of f
(i)
j ′→j for our instrument in a

later section.
In summary, the rate that the j th detector arm in the ith

detector yields a corrupt setting is at most the sum of the
noise rate, n

(i)
j , and the rate of misclassifications from the j ′th

arm, fj ′→j s
(i)
j ′ . Since the total observed count rate is r

(i)
j , the

probability of obtaining an incorrect setting is

p
(i)
j = n

(i)
j

r
(i)
j

+ s
(i)
j ′ fj ′→j

r
(i)
j

. (10)

The overall probability of corruption for a bit is conservatively
estimated by maximizing over its red and blue detector arms.
Since the overall probability of corruption is not necessarily the
same for Alice and Bob, we denote this invalid-bit probability
p(i), where

p(i) = max
(
p

(i)
red,p

(i)
blue

) = 1 − q(i) , (11)

where the average of the two valid-bit probabilities q(i) needs
to be at least 79.3%, as discussed in Sec. II. Note that the
j index labels individual detector arms, whereas the i index
labels different observers’ detectors after maximizing over
each detector’s arms.

To minimize an individual detector arm’s corruption prob-
ability pj , it suffices to minimize the quantities nj by min-
imizing the dark count and sky-glow rates, and to choose
high-quality dichroic beamsplitters to minimize fj ′→j . The
total count rate, rj , is maximized when the atmosphere is
most transparent: thus, we will designate our red and blue
observing bands to roughly coincide with the near-infrared
(700 nm–1150 nm) and optical (350 nm–700 nm), respectively
[1,4].

Several other design considerations are equally important.
The instrument must be able to point to dim and distant
target objects, which are typically high-redshift quasars. The
dimness of even the brightest high-redshift quasars in optical
and near-infrared (NIR) wavelengths not only makes it difficult
to establish the high signal-to-noise ratio required, but also
makes tracking objects nontrivial over the duration of a Bell
test, which can last for hours. At the same time, the instrument
must generate settings at a sufficiently high rate to perform
the experiment. Each run of a Bell inequality test only closes
the locality and freedom-of-choice loopholes if valid settings
from quasars arrive on both sides within a time window whose

duration is set by the light-travel time between Alice and Bob.
Thus having a high collection efficiency of the quasar light is
doubly important.

VI. INSTRUMENT

Our astronomical random number generator incorporates
several design features that were developed in the course of
preparing for and conducting the recent cosmic Bell experi-
ment [1]. A schematic of our new instrument, constructed at
the Harvey Mudd College Department of Physics, is shown
in Fig. 5 and a photo in Fig. 6. It is housed in a box made of
black Delrin plastic of dimensions 30 × 30 × 10 centimeters
and weighs 5.5 kg, most of which is the weight of two
single-photon detectors and the astronomical pointing camera.
The instrument was mounted at the focus of a 1-meter aperture,
15-meter focal-length telescope at the NASA Jet Propulsion
Laboratory’s Table Mountain Observatory. The light from the
telescope is coupled directly into our instrument’s aperture
without using optical fibers to reduce coupling losses.
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FIG. 5. This figure shows the intended optical paths of our
astronomical random number generator (not to scale). Astronomical
light from multiple objects in the field of view of the telescope enters
at the top right of the schematic. This light is brought to a focus
by the telescope onto the plane of the pinhole mirror. Most of the
light is reflected by the mirror (yellow) and refocused onto a CCD.
However, light from an object of interest (purple) passes through the
pinhole, and is then collimated and sorted by color via a system of
one short-pass and one long-pass dichroic beamsplitter. These beams
(red and blue) are refocused onto the active area of our two avalanche
photodiodes for detection and timestamping. The placement of the
dichroics is similar to the fiber-coupled scheme used in Ref. [1].
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FIG. 6. Photo of our astronomical random number generator in
the laboratory with the lid off and dichroic beamsplitters exposed.

A. Optics

The telescope light is focused onto a 200 μm pinhole on
a Lenox Laser 45◦ pinhole mirror. The size of this pinhole
was chosen to minimize sky-glow background (and therefore
the predictability due to sky glow) by matching the 2–3
arcsecond astronomical seeing at the Table Mountain site.
The pinhole diameter corresponds to 2.75 arcseconds on our
15 m focal-length telescope. The incoming light that does
not pass through the pinhole is reflected by the mirror and
reimaged through a Canon EF-S 60 mm F2.8 macro lens onto
a ZWO ASI 1600 MM cooled 4/3 CMOS camera, which aids in
finding and positioning the source into the pinhole. Real-time
monitoring of this camera was used to guide the telescope in
some observations and to capture long exposures as in Fig. 7
and Fig. 8.

The light from the object of interest that passes through
the pinhole gets collimated by a 25 mm diameter, 50 mm
focal-length achromatic lens (Edmund 49-356-INK). This
collimated light gets split by a system of two dichroic beam-
splitters, with shorter-wavelength light (denoted blue) being
transmitted and longer-wavelength light being reflected. The
beams are focused onto one IDQ ID120 Silicon Avalanche
Photodiode detector through a 25 mm diameter, 35 mm focal-
length achromatic lens (Edmund 49-353-INK) mounted on a
two-axis translation stage attached to the detector. The image
of the pinhole is reduced to 140 μm in diameter, which is
well within the ID120’s 500 μm active area, making for
stable alignment and minimal concern about aberrations and
diffraction. The efficiency of the whole system — from the
top of the atmosphere to an electronic pulse — is on the order
of 30%, dominated by loss from the detectors and Rayleigh
scattering in the atmosphere.

FIG. 7. Using the date of observation (3 July 2016) and the
coordinates of Table Mountain Observatory, it is possible to compute
the angular diameter of Saturn. This enables us to estimate the size
of the pinhole as an ellipse with semimajor axes of 2.01 and 3.15
arcseconds. The horizontal and vertical lines running through the
pinhole are cross hairs to guide the eye. The field of view calculated via
Saturn is consistent with the field of view computed using telescope
and camera parameters.

B. Detectors and time tagging

The ID120 Silicon Avalanche Photodiode Detectors
(APDs) have up to 80% quantum efficiency between 350 and
1000 nm and a low (<100 Hz) specified dark count rate.
These have an artificially extended dead time of 420 ns to
prevent after-pulsing. They have a photon-to-electrical-pulse
latency of up to 20 ns. The detectors’ active area was cooled to
−40 ◦C and achieved a measured dark count rate of ≈40 Hz.
Signals from the APDs are recorded by an IDQ ID801 Time
to Digital Converter (TDC). The relative precision of time tags
is limited by the 80.955 ps clock rate of the TDC, and by
the 300 ps timing jitter on the APD. As a timing reference,
we also record a stabilized one-pulse-per-second signal from
a Spectrum Instruments TM-4 GPS unit. (Absolute time can

FIG. 8. Dim objects such as the quasar PG 1718 + 481 (shown
here) were identified by comparing the local field to astronomical
catalogs. Dark counts were typically recorded by keeping the object
a few spot sizes away from the pinhole, for example, as the telescope
is positioned here.
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FIG. 9. The total count rate over time for various sources fluc-
tuates dramatically due to 2–3 arcseconds of seeing and telescope
pointing, which are on the order of our pinhole size. The legend entries
appear in the same vertical ordering as on the plot. The small spike in
the Darks + Sky-glow trace is likely from an object such as a plane
or satellite that briefly passed through our field of view, or headlights
from a car.

also be recorded using this GPS unit’s IRIG-B output.) The
GPS timing solution from the satellites is compensated for the
length of its transponder cable, which corresponds to a delay
of 77 ns.

C. Dichroic beamsplitters

Building on the analysis in Ref. [1], we formulate a model of
the instrument’s spectral response in each arm to characterize
its ability to distinguish red from blue photons. The aim of this
section is to compute the fj→j ′ parameters for our instrument,
defined as the probability that photons of type j are detected as
photons of type j ′. As described in Sec. V, such misclassified
photons contribute to invalid detector-setting choices in the
same way that noise does.

The parameter fj→j ′ depends on the choice of what cutoff
wavelength λ′ we choose to distinguish the photons we call red
(λ > λ′) from blue (λ < λ′). It also depends on the emission
spectra of the astronomical source. Note that since this color
cutoff is completely arbitrary, we may choose λ′ differently for
each astronomical source such that the crosstalk probability
is minimized. These probabilities can be computed from
the atmospheric scattering and absorption, detector quantum
efficiencies, and transmission and reflection probabilities of
the optics in each detector arm (see Fig. 10). We define the
following quantities, which all are dependent on wavelength:

Nsource(λ): Number distribution of astronomical photons per
wavelength that impinge on the top of Earth’s atmosphere
towards the telescope. We treat the interstellar-intergalactic
medium as transparent because the column density of the
ISM/IGM is lower than that of the Earth’s atmosphere by at
least a factor of 400, even over cosmological path lengths.

Nin(λ): Number of photons per wavelength that are trans-
mitted through the atmosphere and impinge on the pinhole
mirror.

(a)

(b)

(c)

(d)

FIG. 10. (a) The atmosphere-attenuated spectrum of a typical
quasar. (b) The cumulative transmission curves of two lenses and
the detectors. (c) The splitting of photons down the blue or red arms
induced by the dichroic beamsplitters. (d) The product of curves in
(a)–(c) gives the number distribution of photon colors at each arm,
from which fj→j ′ can be computed.

ρlens(λ): Probability of transmission through the collimating
or focusing lens.

ρdet(λ): Probability of detection by the APD (quantum
efficiency).

R(λ),B(λ): Probability of entering the red or blue arm due
to the dichroic beamsplitters.

In terms of these quantities, we can compute the overall
spectral response of the red and/or blue arms of the instrument:

ρblue = B × ρ2
lens × ρdet

ρred = R × ρ2
lens × ρdet

as well as the parameters fj→j ′ :

fb→r =
∫ λ′

0 NinRdλ∫ ∞
0 NinRdλ

, fr→b =
∫ ∞
λ′ NinBdλ∫ ∞
0 NinBdλ

. (12)

For bright stars such as the ones we observe, the quantity
Nsource(λ) is well approximated by a blackbody [56]. For dim,
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TABLE I. A list of quasars observed, their corresponding redshifts z, and light travel times τ . We report their B and V magnitudes from the
SIMBAD Astronomical Database and our observed 75th percentile count rates. The table is sorted by the fraction of valid settings q (i) for each
quasar observation, based on both off-target counts measured at each observation’s airmass and rates for quasar photons to go the wrong way
through our imperfect dichroics calculated from each quasar’s emission spectrum. Predictability, as measured by I = maxm IN (m; m + 1), is
the small mutual information we measured in each quasar’s bitstream and corresponds to a negligible reduction in q (i). Even using a small (1
m) telescope at a light-polluted Los Angeles observing site, we find that the first quasar (3C 273) paired with either of the next two would yield
qAlice + qBob in excess of the limit set by Eq. (4) for addressing the freedom-of-choice loophole.

Name Redshift (z) τ (Gyr) B V blue (cps) red (cps) valid fraction q (i) max info I × 104

3C 273 0.173 2.219 13.05 12.85 672 1900 0.884 87.8
HS 2154+2228 1.29 8.963 15.2 15.30 227 503 0.774 9.91
MARK 813 0.111 1.484 15.42 15.27 193 633 0.703 7.62
PG 1718+481 1.083 8.271 15.33 14.6 176 473 0.682 3.07
APM 08279+5255 3.911 12.225 19.2 15.2 684 1070 0.647 5.39
PG1634+706 1.337 9.101 14.9 14.66 121 285 0.572 3.38
B1422+231 3.62 12.074 16.77 15.84 123 358 0.507 4.22
HS 1603+3820 2.54 11.234 16.37 15.99 121 326 0.501 4.78
J1521+5202 2.208 10.833 16.02 15.7 106 309 0.476 2.39
87 GB 19483+5033 1.929 10.409 unknown 15.5 98 241 0.464 0.32
PG 1247+268 2.048 10.601 16.12 15.92 111 333 0.453 2.92
HS 1626+6433 2.32 10.979 unknown 15.8 87 213 0.398 1.81

redshifted quasars, we apply the appropriate Doppler shift
to the composite rest-frame spectrum computed in Ref. [57].
Once Nsource is obtained, we compute Nin(λ) via the equation

Nin/Nsource = ρatm(λ) exp[−Xτ (λ)], (13)

where ρatm(λ) is taken from the atmospheric radiative transfer
code MODTRAN [58] and takes into account the Rayleigh
scattering and atmospheric absorption at zenith. In order
to correct for off-zenith observations, we insert a factor of
exp[−Xτ (λ)] where X is the observation air mass and τ (λ)
is the optical depth due to Rayleigh scattering. In doing so,
we make the approximation that the contribution to fj→j ′ due
to the optical density of absorption is negligible compared to
Rayleigh scattering.

In preparing for the recent cosmic Bell experiment [1], it
was determined that two dichroics were necessary because a
single dichroic’s optical density was low enough such that a
non-negligible fraction of the light could go either way and
would not be determined by the astronomical object. With this
model, we selected our two dichroic beamsplitters to minimize
the total amount of crosstalk while splitting the detector’s
sensitivity band in roughly equal halves. We determined that
putting the short-pass dichroic beamsplitter first yielded lower
crosstalk than the other way around. We used a 697 nm short-
pass dichroic beamsplitter (Semrock F697-SDi01-25x36) and
an additional 705 nm long-pass dichroic beamsplitter (Sem-
rock FF705-Di01-25x36) to reduce the number of wrong-way
photons in the reflected (red) arm.

For the quasars listed in Table I, we compute fj→j ′ values
in the ranges 0.16% < fb→r < 0.20% and 0.17% < fr→b <

0.23%, an order of magnitude better than the values of fj→j ′

achieved with the instrumentation used for the original cosmic
Bell experiment in Ref. [1]. We plot in Fig. 10(d) the products
ρblueNin and ρredNin, where Nin is computed for the quasar PG
1718+481 at an observation altitude of 67 degrees.

VII. OBSERVATIONS

We observed roughly 50 stars of varying B-V color roughly
at zenith, generating astronomical random bits at rates from
∼1 × 104 Hz −1 × 106 Hz. Count rates for these, along with
12 different quasars, are plotted in Fig. 11 as a function of
astronomical V-band magnitude, denoted mV . The V band is
defined by a broad filter centered at 551 nm with a FWHM of
88 nm.

Count rates as a function of time for dark counts and several
stars and quasars are shown in Fig. 9. To characterize the
dark-count rates of the instrument, we close the telescope dome

FIG. 11. For 50 bright stars in the HIPPARCOS catalog observed
at zenith and twelve high-redshift quasars (z < 3.911), we plot the
total (red+blue) background-subtracted count rate against the V-band
magnitude (551 ± 88 nm). Though the V magnitude is well into our
blue band, it is the only data available for all observed objects and
turns out to be a good predictor of the observed photon flux, as seen
by the best-fit line that relates the two. We see subtle evidence of
detector nonlinearity at high count rates, as discussed in the text.
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and obstruct its aperture with a tarp, and measure the count rate
for about 500 s. We find that the variability in count rates, when
integrated over 1 s, is consistent with a Poisson process with
variance

√
N : in the blue arm we see 41 cps, and in the red

arm we see 93 cps. At zenith, the background rates due to
sky glow were roughly 20 Hz and 60 Hz in the blue and red
arms, respectively. (For comparison, the quasars we observed
had rates of 100 to 1000 Hz in each channel.) The reason
for this asymmetry results from a combination of different
optical coupling efficiencies in each arm and the spectrum of
the background sky glow, which tends to be brighter in the
near-infrared than in the visible band.

A comprehensive list of our star observations is available
upon request. We find that the astronomical bit rate per
telescope area is given approximately by

log10(countrate[Hz/m2])

= (8.22 ± 0.02) − (0.3631 ± 0.0002)mV (14)

after subtracting sky glow and dark counts. The deviation from
the expected slope of −0.4 is likely due to detectors becoming
significantly saturated at count rates higher than ∼1 × 105 Hz.

In addition, we generated random bits from a number of
quasars, with V-band magnitudes ranging from 12.9 to 16,
and redshifts up to z = 3.911, with bit rates ranging from
∼1 × 102 Hz −2 × 103 Hz. Light travel times τ are calculated
from the maximally constrained cosmological parameters from
the Planck satellite [60]. The two most distant quasars we ob-
served emitted their light over 12 × 109 years ago, a significant
fraction of the 13.8 × 109-year age of the universe. A summary
of our quasar observations, and two measures quantifying the
physical and information-theoretic predictability of bits (p(i)

and I ), are presented in Table I. Time-stamped random bits
generated from these quasars are available [59].

VIII. QUALITY OF RANDOMNESS

In addition to quantifying the fraction of valid runs as was
done in Ref. [1], we may assess the quality of randomness
statistically to yield a measure of predictability. The NIST Sta-
tistical Test Suite [47] provides a device-independent statistical
approach to evaluate the quality of the output of any random
number generator given a sufficiently large number of bits.
When using time stamps to generate random bits based on
whether photons arrive on an even or odd nanosecond, we find
that our random numbers pass the NIST test suite, consistent
with the findings in Ref. [5]. When using photon colors to
generate random bits, our data fail the NIST tests, largely due
to the existence of an overall imbalance in red-blue count rates.

To quantify imperfect statistical randomness in a bitstream,
we may consider the mutual information between a moving
window of m bits and the (m + 1)th bit, which we denote as
I (m; m + 1). If each bit were truly independent, this mutual
information would be zero, even if the probability to get a 0 or
1 was not 50%. To define I (m; m + 1), let Xm denote the set
of all length-m binary strings, and let p(x) be the probability
that an m-bit string within our bitstream is x ∈ Xm. Similarly,
let p(y) be the probability that the next bit is y ∈ {0,1}. If we
define p(x,y) to be the probability that a string of m + 1 bits
are x followed by y, then the mutual information in our data

is defined to be

I (m; m + 1) =
∑
x∈Xm

∑
y∈{0,1}

p(x,y) × log2

(
p(x,y)

p(x)p(y)

)
.

(15)

Note that if the next bit is independent of the m bits preceding it,
then p(x,y) = p(x)p(y) and the mutual information vanishes.

Estimating the true mutual information in a sample of
length N , denoted IN (m; m + 1), is in general a highly non-
trivial problem. Precise knowledge of the true probabilities
p(x,y),p(x), and p(y) is required. While statistical fluc-
tuations in counting the numbers of zeros and ones in a
particular data set has an equal chance of overestimating or
underestimating the finite-sample estimates p̂(x,y), p̂(x), and
p̂(y), any statistical fluctuations in these probability estimates
cause an upward bias in the estimated mutual information in the
data set [61] if we simply plug in the experimental probability
estimates p̂ into Eq. (15), which takes as input the true proba-
bilities p. An intuitive explanation for this bias in the mutual
information is that our mutual information estimator cannot
distinguish between a true pattern in the collected data and a
random statistical fluctuation. We emphasize that it is statistical
fluctuations in the count rates that cause overestimation of the
mutual information. For example, a random realization of a
50:50 bitstream composed of 0’s and 1’s is unlikely to have
exactly the same number of 0’s and 1’s (or the exact same
number of occurrences of 01’s and 00’s), but regardless of
whether there are more 01’s or 00’s, the mutual information
will increase.

We denote this upward-biased estimator by ÎN (m; m + 1).
However, in the limit that the data set is large (N � 1), and if
m is fixed, the amount of positive bias in the estimated mutual
information ÎN (m; m + 1) is dependent only on N and can
be represented as a perturbation away from the true mutual
information I (m; m + 1). To construct an unbiased estimator
that removes these finite-size effects, we adopt the ansatz [61]

ÎN (m; m + 1) = I (m; m + 1) + a

N
+ b

N2
, (16)

where I (m; m + 1), a, and b are fixed, unknown constants,
with finite-size effects being captured in values of a and b. To
determine these constants, we first compute ÎN (m; m + 1) for
the entire data set. By splitting the data set into two chunks of
size N/2, we may estimate ÎN/2(m; m + 1) by averaging the
naive estimate from both chunks. Repeating this procedure for
four chunks of size N/4 gives us a system of three equations
linear in the unknowns I (m; m + 1), a, and b.

From this procedure, we compute an unbiased estimate of
the mutual information in the bits we generate when taking
on-quasar data as well as data taken when pointing at the sky
slightly off-target. We compute I (m; m + 1) for m = 1,2, . . . 6
look-back bits on our data sets of sufficient length N > 216

to run. To determine whether our estimates are consistent
with zero mutual information, we compare our estimates of
IN (m; m + 1) against fifty simulated data sets, each with the
same length and the same red-blue imbalance but with no
mutual information. Examples of a quasar bitstream with
almost no mutual information (PG 1718+481) and a quasar
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FIG. 12. We plot for two different quasars our estimate of the
mutual information between a bit and the m bits preceding it, for m =
1, . . . ,6, for bitstreams generated when the quasar light is both present
(circles) and absent (crosses). To test the hypothesis that the mutual
information in our on-target data is consistent with zero, we analyze
the mutual information of 50 pseudorandom bitstreams with the same
length and red-blue bias as our astronomical bitstreams. The statistical
distributions of the mutual information in the simulated bitstreams
are shown for simulated on-target data (shaded, purple fill) and
simulated off-target noise (dotted lines). For the quasar PG1718+481,
we find that the experimentally observed mutual information in the
on-target as well as the off-target data is consistent with zero, while the
mutual-information deviates significantly from zero when observing
the exceptionally bright quasar 3C 273 (≈2500 cps). In both cases,
data taken off target never exceeds 200 cps. This illustrates how
increased bit rates lead to slightly increased statistical predictability,
as discussed in the text.

bitstream with nonzero mutual information (3C 273) are shown
in Fig. 12.

For the quasars in Table I, we observe that the random
bits generated from colors in 8 out of 12 data sets exhibit
mutual information that is statistically significantly different
from zero, though still very small. This hints at the possibility
of some nontrivial structure in the data, which may be induced
by physical effects or systematic error. For the exceptionally
bright quasar 3C 273 (V = 12.9), we measure I ≈ 0.009,
while in the remaining 11 data sets, the maximum mutual
information I = maxm I (m; m + 1) never exceeds 0.001. One
way to realize a mutual information of 0.001 is to have
one in every 1000 bits be a deterministic function of the
previous few bits instead of being random. Even in the worst
case of 0.009, the amount of predictability is only increased
negligibly compared to the effect from sky glow, and is well
below the threshold needed to address the freedom-of-choice
loophole in a Bell test. For example, in the recent cosmic
Bell experiment [1], violations of the Bell-CHSH inequality
were found with high statistical significance (>7 standard
deviations) for an experiment involving ∼105 detected pairs
of entangled photons, even with excess predictability in each
arm of each detector of order p(i) ∼ 0.1.

Upon examining the experimental probability estimates
p̂(x,y) that went into the mutual information calculation, we

identified two systematic sources of nonrandomness, both of
which are exacerbated at high bit rates. The first mechanism
for nonrandomness is detector saturation. After a detection,
the detector has a hard-coded 420 ns dead-time window during
which a detection is improbable. Hence for sufficiently high
count rates (such as those experienced when observing stars),
it is much more likely to observe a blue photon following a
red one and vice versa than multiple photons of the same color
in a row. While we see this effect in our calibration data with
HIPPARCOS stars, the count rates necessary for this effect to
be important (105–106 counts per second) far exceed what is
observed with quasars. These are eliminated by imposing the
same dead-time window in the other channel and removing (in
real time or in postprocessing) any detection that is within the
dead time of any previous detection from either channel.

The second mechanism is a consequence of imperfect align-
ment combined with random atmospheric seeing. The exact
extent of a slight geometric misalignment is extremely difficult
to measure and changes slightly day to day. We checked the
optical alignment before each night of observation, and the
device’s alignment remained quite stable from night to night for
over a week — a practical boon for a cosmic Bell test. However,
due to our device’s imperfectly manufactured pinhole, we
know there exists a sweet spot for optimal coupling to the
blue detector, and a slightly different sweet spot for optimal
alignment with the red detector. As the image of the quasar
twinkles within the pinhole on timescales of milliseconds,
its instantaneous scintillation pattern overlaps differently with
these sweet spots. The result is that when photon fluxes increase
to rates approaching one per millisecond (∼1000 cps), the
conditional probability p(x → y) of receiving detection y

given previous detections x begins to exceed the average
probability of obtaining y if the last few bits in x are the same
as y. For example, for quasar 3C273 we see p(10111 → 1) =
p(101111)/p(10111) = 0.751 > p(1) = 0.726. We suspect
that this effect is responsible for the nonzero statistical pre-
dictability in our data and leads to an increased predictability
of a few parts in 104 for high count rates.

Since atmospheric seeing is a consequence of random atmo-
spheric turbulence, it is a potential source of local influences
on astronomical randomness. It can be mitigated by careful
characterization of the optical alignment of the system, making
sure that the sweet spots of both detector arms overlap to the
greatest extent possible, using detectors with a large, identical
active detector area, and observing under calm atmospheric
conditions. For a larger telescope in a darker location where the
signal-to-background ratio is higher, this would be a relatively
larger effect on the fraction of valid runs.

IX. CONCLUSION

Building on the design and implementation of astronom-
ical random number generators in the recent cosmic Bell
experiment [1], we have demonstrated the capabilities of a
telescope instrument that can output a time-tagged bitstream
of random bits based on the detection of single photons from
astronomical sources with tens of nanoseconds of latency. We
have further demonstrated its feasibility as a source of random
settings for such applications as testing foundational questions
in quantum mechanics, including asymptotically closing the
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freedom-of-choice loophole in tests of Bell’s inequality, and
conducting a cosmic-scale delayed-choice quantum-eraser
experiment. Beyond such foundational tests, astronomical
sources of random numbers could also be of significant use in
quantum-cryptographic applications akin to those described in
Refs. [5,28–33].

Other interesting applications of this device may be found
in high-time-resolution astrophysics. For example, it might be
possible to indirectly detect gravitational waves and thereby
perform tests of general relativity with the careful observa-
tion of several optical pulsars using future versions of our
instrument and larger telescopes, complementing approaches
described in Refs. [62–66].
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[11] J. Kofler, M. Giustina, J.-Å. Larsson, and M. W. Mitchell, Re-
quirements for a loophole-free photonic bell test using imperfect
setting generators, Phys. Rev. A 93, 032115 (2016).

[12] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M.
S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C.
Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham,
D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R.
Hanson, Loophole-free bell inequality violation using electron
spins separated by 1.3 kilometres, Nature (London) 526, 682
(2015).

[13] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Hand-
steiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-Å.
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