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ABSTRACT

The use of gamma-ray burst (GRB) energetics for cosmography has long been advanced as a means to probe out
to high redshifts, to the epoch of deceleration. However, although relatively immune to systematic biases from dust
extinction, the prompt energy release in GRBs, even when corrected for jetting geometry, is far from being a
standard candle. In this work we explore the cosmographic potential of a GRB standard candle based on the newly
discovered relation by Ghirlanda and coworkers between the apparent geometry-corrected energies (E�) and the
peak in the rest-frame prompt-burst spectrum (Ep). We present an explicit, self-consistent formalism for correcting
GRB energies with a thorough accounting for observational uncertainties. In contrast to other work, we demon-
strate that the current sample of 19 GRBs is not yet cosmographically competitive with results from Type Ia
supernovae (SNe Ia), large-scale structure, and the microwave background. Although the Ep-E� relation is a highly
significant correlation across a range of cosmologies [0 � �M , �� � 2], the goodness of fit of the data to a power
law (Ep / E�

�) depends strongly on input assumptions. The most important of these assumptions concern the un-
known density (and density profile) of the circumburst medium, the efficiency of converting explosion energy to
gamma rays, data selection choices for individual bursts (some of which were not included in similar work), and
assumptions in the error analysis. Independent of assumptions, with very few low-z bursts, the current sample is
most sensitive to �M but essentially insensitive to �� (let alone the dark energy equation of state w). The relation
clearly represents a significant improvement in the search for an empirical GRB standard candle but is further
hindered by an unknown physical basis for the relation, the lack of a low-z training set to calibrate the relation in a
cosmology-independent way, and several major potential systematic uncertainties and selection effects. Until these
concerns are addressed, a larger sample is acquired, and attempts are made to marginalize or perform Monte Carlo
simulations over the unknown density distribution (which itself may evolve with redshift), we urge caution con-
cerning claims of the utility of GRBs for cosmography and especially attempts to combine the results from GRBs
with those of SNe Ia.

Subject headinggs: cosmological parameters — cosmology: observations — gamma rays: bursts

1. INTRODUCTION

As ultraluminous explosions from the death of massive stars,
gamma-ray bursts (GRBs) can, in principle, occur and be detected
from redshifts at the epoch of reionization, serving as unique
probes of the gas and metal enrichment history in the early uni-
verse (e.g., Loeb & Barkana 2001; Mészáros & Rees 2003; Inoue
2004). At redshifts beyond z � 2, the dynamics of the universal
expansion is not yet dominated by the cosmological constant
�, so the construction of an early-universe Hubble diagram us-
ing GRBs would complement cosmography results found in the
�-dominated regime at lower redshifts. Since gamma rays pen-
etrate dust, a standard candle derived fromGRB energetics could
avoid potential systematic errors inherent in supernovae (SNe)
due to uncertainties in dust extinction. Cosmological k-corrections
for GRBs (Bloom et al. 2001b) are, in principle, more tractable
than traditional optical k-corrections for SNe; where GRB spec-
tra are devoid of emission/absorption features at gamma-ray
wavelengths, SNe spectra, due to the variety offilter bands used
and uncertainty in the intrinsic spectral shape, are generally con-
sidered to contribute a redshift-dependent systematic error to

SN Ia magnitudes (Wang & Garnavich 2001). Still, both sam-
ples necessarily contend with unknown evolution of the stan-
dard candle; but, owing to very different physics in the emission
mechanisms, any such evolution would unlikely be the same for
GRBs and SNe Ia.

Early attempts to meaningfully constrain cosmological pa-
rameters using GRB energetics were stymied (e.g., Dermer 1992;
Rutledge et al. 1995; Cohen & Piran 1997) bywhat is now known
(Bloom et al. 2001b; Schmidt 2001) as a wide distribution (more
than 3 orders of magnitude) in the intrinsic isotropic-equivalent
energies (Eiso) and luminosities of GRBs. The realization that
GRBs are jetted phenomena (Harrison et al. 1999; Stanek et al.
1999) led to the discovery that the geometry-corrected prompt
energy release (E�) in GRBs appears nearly constant (�1051 ergs �
1 foe; Frail et al. 2001; Piran et al. 2001). This, along with the
possibility of inferring GRB redshifts from the gamma-ray prop-
erties alone (e.g., Reichart et al. 2001; Norris 2002), renewed en-
thusiasm for the cosmographic utility of GRBs (Schaefer 2003;
Takahashi et al. 2003). Frail et al. (2001) had noted this appar-
ent constancy for what was then the current sample of 17 GRBs
with known redshifts. Bloom et al. (2003b), with an expanded
sample of 29GRBswith known z, later argued that even geometry-
corrected energetics were not sufficient for cosmography on both
conceptual and empirical grounds. First, while the physical mo-
tivation for a standard energy release is plausible, the geometry
correction of Eiso is highly model dependent, requiring an in-
ference of the nature of the circumburst environment and
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assumptions about the structure of the jet. This problem per-
sists even with new energy corrections detailed herein. Second,
the cosmographic utility of E� was limited by the presence of
several low- and high-energy outliers, comprising upward of
20% of the sample, spanning 3 orders of magnitude (GRB
980425 aside). Bloom et al. (2003b) argued that without an
energy-independent discriminant (such as properties of the af-
terglow) such outliers could not be excluded (or recalibrated) a
priori when constructing a GRB Hubble diagram. A regulariza-
tion ofE� would require a universal relation between E� and other
observables.

The recent discovery of a connection between E� and the peak
energy (Ep) in the rest-frame prompt-burst spectrum (Ghirlanda
et al. 2004a) is apparently such a universal relation spanning the
hardest, brightest bursts to the softest, faintest X-ray flashes
(XRFs; Heise et al. 2001). In this paper we demonstrate that this
Ep-E� (‘‘Ghirlanda’’) relation can serve as an approximate em-
pirical correction to GRB energies, advancing GRB energetics
toward a more standardized candle. In presenting the formalism
for correcting GRB energetics, we draw a strong analogy be-
tween our corrections and the empirical light-curve shape cor-
rections (based on the peak brightness–decline rate correlation)
used to standardize the peakmagnitudes of SNe Ia (Phillips 1993;
Hamuy et al. 1995, 1996; Riess et al. 1995, 1996; Perlmutter et al.
1997; Tonry et al. 2003). In x 2 we confirm the Ep-E� relation
and show that although the goodness of fit to the simple power-
law relation is highly sensitive to input assumptions, the corre-
lation itself is still highly significant over a variety of plausible
cosmologies. In x 3 we introduce a new formalism, with an ex-
plicit accounting for observational uncertainties, for correcting
GRB energies. In x 4 we discuss similar work from Dai et al.
(2004) and Ghirlanda et al. (2004b), noting critical differences
in our respective methodologies and data sets. We then attempt
to lay the groundwork for identifying relevant systematic errors
and selection effects in x 5 and end with a discussion of the fu-
ture prospects of an even more standardized GRB energy. Un-
less otherwise noted, we assume a standard cosmology of (�M ;
��; h ¼ H0/100 km s�1 Mpc�1) ¼ (0:3; 0:7; 0:7).

2. GRB ENERGETICS AND THE Ep-E�

RELATION REVISITED

We compute the geometry-corrected prompt energy release
in gamma rays (E�) following Bloom et al. (2003b) and the
associated uncertainties with a slightly improved formalism in
x 2.1. All energies are computed using the ‘‘top-hat’’ model
prescription for the jet: the energy per steradian in the jet is as-
sumed to be uniform inside some half-angle �jet and zero outside
(Rhoads 1997; Sari et al. 1999). Following Frail et al. (2001),
the total beaming-corrected gamma-ray energy can be written
as

E� ¼ Eiso fb ¼
4�S�kD

2
l;th

1þ z
1� cos �jet
� �

; ð1Þ

where fb ¼ 1� cos �jet is the beaming fraction, z is the observed
redshift, Dl;th is the theoretical luminosity distance for a given
cosmology (defined in eq. [11] of Riess et al. 2004b), S� is the
gamma-ray fluence in the observed bandpass, and k is the ‘‘cos-
mological k-correction’’ (Bloom et al. 2001b), a correction fac-
tor of order unity that blueshifts the observed redshifted GRB
spectrum back into some ‘‘bolometric’’ cosmological rest-frame
bandpass, which we take as [20, 2000] keV (Bloom et al. 2003b).
See x 5.1 for a justification of this choice of bandpass. Fol-

lowing Sari et al. (1999), in the case of a homogeneous cir-
cumburst medium,

�jet ¼ 0:101 rad
tjet

1 day

� �3=8 �

0:2

� �1=8
n

10 cm�3

� �1=8

;
1þ z

2

� ��3=8
Eiso

1053 ergs

� ��1=8

; ð2Þ

where z is the redshift, tjet is the afterglow jet-break time, n is
the density of the ambient medium (ISM), Eiso is defined via
equation (1), and � is the efficiency for converting the explosion
energy to gamma rays. For simplicity in the later formalism, we
write equation (2) as �jet ¼ Bt 3/8jet �

1/8n1/8(1þ z)�3/8E�1/8
iso defin-

ing the constantB ¼ 0:101(1 day)�3/8 (0:2)�1/8(10 cm�3)�1/823/8

(1053 ergs)1/8 ¼ 5:08 ;105 ergs1/8 cm3/8 day�3/8, which absorbs
the relevant units. See x 5.4 for a discussion of how the analysis
changes for a circumburst medium that is not homogeneous, for
example, a wind profile from a massive star (Chevalier & Li
1999, 2000).

2.1. Error Analysis

We estimate the uncertainty in E� under the assumption of no
covariance between the measurement of the observables S� , k,
tjet, and n and the inference of �jet. We assume that the error in
the determination of the redshift z is negligible. We also assume
priors on the Hubble constant (h ¼ 0:7) and gamma-ray effi-
ciency (� ¼ 0:2), each with no error. Under these assumptions,
the fractional uncertainty in E� is given by

�E�

E�

� �2

¼ 1�
ffiffiffiffiffiffiffiffi
C�jet

q� �2 �S�

S�

� �2

þ �k

k

� �2

" #

þ C�jet 9
�tjet

tjet

� �2

þ �n

n

� �2

" #
; ð3Þ

where C�jet is defined in equation (5) of Bloom et al. (2003b).
The above expression is slightly modified from equation (4)
of Bloom et al. (2003b), which also assumed no covariance but,
in contrast, employed the approximation of ignoring the im-
plicit Eiso dependence inside of fb. This changes the multipli-
cative factor for the terms on the first line of equation (3) from
the old term (1þ C�jet ) to the new term ½1� (C�jet )

1/2�2, indi-
cating that equation (4) of Bloom et al. (2003b) was, at worst,
conservatively overestimating the error by about 25% for a typ-
ical burst.
While the above expression makes fewer assumptions than

previous work, the assumption of no covariance (also discussed
in Bloom et al. 2003b) still requires justification, which we de-
fer to x 5.2. However, using the triangle inequality, we can place
a firm upper limit on �E�

even assuming maximal covariance:

�E�

E�

� �
� 1�

ffiffiffiffiffiffiffiffi
C�jet

q� � �S�

S�

� �
þ �k

k

� �� 	

þ
ffiffiffiffiffiffiffiffi
C�jet

q
3

�tjet

tjet

� �
þ �n

n

� �� 	
: ð4Þ

Evaluating this expression for a typical burst tells us that even
maximal covariance (we argue that it is nowhere near maximal
in x 5.2) would mean that we are underestimating the errors by
at most a factor of P2. As such, we believe that the assumption
of no covariance is a reasonable starting point, although, in the
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extreme case, a factor of 2 increase in the error bars would
significantly affect the results.

2.2. Data Set Compilation

Computing E� , �E�
and constructing the Ghirlanda relation

requires a compilation of all available data. The observables of
interest include z, S� , tjet, n, and �, as defined in x 2. Also needed
are the observed peak energy Eobs

p [the rest-frame peak energy
is Ep ¼ Eobs

p (1þ z)], as well as the low- and high-energy spec-
tral slopes � and � of the Band function, respectively (Band
et al. 1993). Ideally, high-energy measurements would be derived
from a single satellite and inferences of afterglow parameters
would be construed from consistentmodelingwith homogeneously
acquired data. In practice, however, we must compile a heteroge-
neous data set with varying degrees of accuracy on parameters
derived from different models and different instrumentation.

Still, in the interest of obtaining from the literature the high-
est quality and most homogeneous data set possible, we abide
by several guidelines. First, we preferentially choose Eobs

p mea-
surements with reported error bars that have accompanying reports
of � and � with errors. Second, we use input fluence measure-
ments with reported errors with priority over fluence measure-
ments in wider bandpasses. Third, we choose the best sampled
afterglow light curve with the smallest errors on the best-fit value
of tjet, preferring those estimations that use the earliest available
afterglow data before the break. Measurements reported in pub-
lished papers are assumed to supersede those given in GCN or
IAU Circulars. Notes on the data selection for individual bursts
are given in Appendix A.

Often, measurements on some noncritical input parameters
to the energetics are not available (we of course exclude bursts
from our analysis where no redshift, peak energy, or jet-break
time is known). For these, we choose a single value for every
burst with an associated ‘‘measurement error.’’ In the absence
of reported values of � or � (there are no cases of both missing
in our sample), we set � ¼ �1 and � ¼ �2:3 as described in
Appendix A. Following Frail et al. (2001), we also assume � ¼
0:2 (20% efficiency) for all bursts (see x 5.6 for a critique of
this assumption). Following Bloom et al. (2003b), we assume n ¼
10 � 5 cm�3 (the 50% error assumption is new to this work) in
the absence of constraints from broadband afterglow modeling
(see x 5.5 for a discussion of this choice). We note, however,
that the analysis is very sensitive to the assumptions for the cir-
cumburst density (and, to a lesser extent, the gamma-ray effi-
ciency), as we show in xx 2.4 and 2.5. In the absence of reported
errors, we assume errors of 10% for S� and 20% for Eobs

p . These
errors are reflective of those for bursts with reported errors (see
Table 1). Errors on tjet are available for all bursts in the set we
use (although see Appendix A). All errors on the cosmological
k-correction are computed via the formalism in Bloom et al.
(2001b). These implicitly depend on the low-energy slope � , the
high-energy slope �, and the break energy Eobs

0 ¼ Eobs
p (2þ � ) of

the Band function (Band et al. 1993), and we assume 20% errors
on these parameters when they are not reported, as these are also
typical of reported errors. When asymmetric fluence or peak en-
ergy errors are reported in the literature (e.g., HETE-2 bursts;
Sakamoto et al. 2004), we assume �S� ¼ (�þ

S�
��
S�
)1/2 and �Eobs

p
¼

(�þ
Eobs
p
��
Eobs
p
)1/2 (i.e., the geometric mean). This assumption has

little effect on the overall analysis. Finally, we assume h ¼ 0:7
with no error to calculate the energetics.

The most current input data and reported errors are listed in
Table 1. Again, see Appendix A concerning data selection for
individual bursts. Since the Bloom et al. (2003b) energetics com-
pilation, spectroscopic redshifts have been determined for 10

additional bursts, XRF 020903, GRB 030226, GRB 030323,
GRB 030328, GRB 030329, XRF 030429, GRB 031203, XRF
040701, GRB 040924, and GRB 041006, for a total of 39 bursts
with z, along with at least four upper limits: XRF 020427, GRB
030324, GRB 030528, and XRF 030723. Of these 14 bursts, 10
have measurements or constraints on tjet, along with 7 bursts
where constraints have been added or updated from the Bloom
et al. (2003b) sample. We use this updated list of GRB observ-
ables4 as inputs to the energetics calculations that follow. The
E� values (with errors) of these new bursts and updates to the
previous compilation are given in Table 2 for the standard
cosmology.

2.3. Refitting the Ep-E gamma Relation2.3. Refitting the Ep-E� Relation

Limited to only those 23 bursts with redshifts and observed
jet-break times without upper or lower limits (hereafter ‘‘set E’’),
the median value of log (E� ½ergs�) is 50.90 (�1 foe) with an rms
scatter of 0.55 dex. Under our assumptions, the average frac-
tional error on E� for these bursts is�26% (0.11 dex). Including
10 more bursts with upper or lower limits taken at face value
does not significantly affect the median, yielding 50.91 (�1 foe),
with an rms of 0.55 dex. The fact that the average log space
error on each burst is 0.11 dex and the rms scatter is 0.55 dex
could imply that either the errors on each burst have been sig-
nificantly underestimated or a one-parameter correlation (as dis-
cussed below) cannot be sufficient for completely reducing the
scatter in E� . This would be the first indication that there can-
not exist a perfect correlation between E� and only one other
observable (e.g., Ep); additional observables would be required.
However, it should be noted that the rms scatter actually is an
overestimate of the true 1 � error on the median since the E�

distribution is only approximately Gaussian with a broad tail
extending to low energies: as recognized by a number of au-
thors, the low-redshift burst GRB 030329 (z ¼ 0:1685) and
GRB 990712, GRB 021211, and XRF 030429 all appear to be
underenergetic by around 1 order of magnitude. Moreover, the
low-redshift GRB 031203 (z ¼ 0:1055) alongwithXRFs 030723
(z < 2:1) and 020903 (z ¼ 0:251) also appear underluminous
by at least 2–3 orders of magnitude, even assuming an isotropic
explosion, as the geometry correction is not known for these
bursts.

Ghirlanda et al. (2004a) recognized that these underluminous
bursts appeared systematically softer in the prompt burst spec-
trum than bursts of apparent higher E� . Expanding on the much
discussed correlation (Amati et al. 2002) between the isotropic-
equivalent energy Eiso and the rest-frame peak energy in the
GRB spectrum (Ep), the authors discovered a remarkably strong
correlation between E� and Ep, which can be represented as a
power law:

Ep ¼ 	
E�

E�

� ��

: ð5Þ

The scaling E� is a constant that we choose in order to mini-
mize the covariance between � and 	 when fitting for this two-
parameter relation, simplifying future error analyses. This choice
of E� does not affect the values of the best-fit slope � (or the
goodness of fit) and the parameter 	 simply scales as (E�)�.

4 See also http://www.cosmicbooms.net, which contains data links to the
compilation found in Table 1 of this paper. It is our intention to keep data at this
site up to date as new bursts are observed.
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TABLE 1

Compilation of Spectra and Energetics Input Data

GRB/XRFa zb
S�

c

(10�6 ergs cm�2)

Bandpass

(keV)

tjet
d

(days)

ne

(cm�3) � f � g

Eobs
p

h

(keV)

Ep
i

( keV)

References

(z, S� ¼ S, tjet ¼ t, n, � , �, Ep)

970228.......... 0.6950 11.00 (1.00) 40, 700 . . . 10.00 (5.00)�* �1.54 (0.08) �2.50 (0.40) 115 (38) 195 (64) z: 1, S: 2, � : 2, �: 2, Ep: 2

970508.......... 0.8349 1.80 (0.30) 40, 700 25.00 (5.00) 1.00 (0.50)�*�* �1.71 (0.10) �2.20 (0.25) 79 (23) 145 (42) z: 3, S: 2, t: 4, n: 4, � : 2, �: 2, Ep: 2

970828.......... 0.9578 96.00 (9.60)�* 20, 2000 2.20 (0.40) 10.00 (5.00)�* �0.70 (0.08) �2.07 (0.37) 298 (60) 583 (117) z: 5, S: 6, t: 5, � : 7, �: 6, Ep: 6

971214.......... 3.4180 8.80 (0.90) 40, 700 >2.50 10.00 (5.00)�* �0.76 (0.17) �2.70 (1.10) 155 (30) 685 (133) z: 8, S: 2, t: 8, � : 2, �: 2, Ep: 2

980326.......... [1.00]�* 0.75 (0.15) 40, 700 <0.40 10.00 (5.00)�* �1.23 (0.21) �2.48 (0.31) 47 (5) [94] (10) z: 9, S: 2, t: 10, � : 2, �: 2, Ep: 10

980329.......... [2.95]�* 65.00 (5.00) 40, 700 0.29 (0.20) 29.00 (10.00) �0.64 (0.14) �2.20 (0.80) 237 (38) [936] (150) z: 11, S: 2, t: 12, n: 12, � : 2, �: 2, Ep: 2

980425.......... 0.0085 3.87 (0.39)�* 20, 2000 . . . 10.00 (5.00)�* �1.27 (0.25) �2.30 (0.46)�* 118 (24) 119 (24) z: 13, S: 6, � : 6, Ep: 6

980519.......... [2.50] 10.30 (1.03)�* 20, 2000 0.55 (0.17) 10.00 (5.00)�* �1.35 (0.27) �2.30 (0.46)�* 205 (41) [718] (144) S: 6, t: 14, � : 6, Ep: 6

980613.......... 1.0969 1.00 (0.20) 40, 700 >3.10 10.00 (5.00)�* �1.43 (0.24) �2.70 (0.60) 93 (43) 195 (90) z: 15, S: 2, t: 16, � : 2, �: 2, Ep: 2

980703.......... 0.9662 22.60 (2.26)�* 20, 2000 3.40 (0.50) 28.00 (10.00) �1.31 (0.26) �2.40 (0.26) 254 (51) 499 (100) z: 17, S: 6, t: 18, n: 18, � : 7, �: 6, Ep: 6

981226.......... [1.50] 0.40 (0.10) 40, 700 >5.00 10.00 (5.00)�* �1.25 (0.05) �2.60 (0.70) 61 (15) [153] (38) S: 19, t: 20, � : 19, �: 19, Ep: 19

990123.......... 1.6004 300.00 (40.00) 40, 700 2.04 (0.46) 10.00 (5.00)�* �0.89 (0.08) �2.45 (0.97) 781 (62) 2031 (161) z: 21, S: 2, t: 21, � : 2, �: 2, Ep: 2

990506.......... 1.3066 194.00 (19.40)�* 20, 2000 . . . 10.00 (5.00)�* �1.37 (0.28) �2.15 (0.43) 283 (57) 653 (131) z: 22, S: 6, � : 7, �: 6, Ep: 6

990510.......... 1.6187 19.00 (2.00) 40, 700 1.57 (0.03) 0:29þ0:11
�0:15 �1.23 (0.05) �2.70 (0.40) 163 (16) 427 (42) z: 23, S: 2, t: 24, n: 25, � : 2, �: 2, Ep: 2

990705.......... 0.8424 75.00 (8.00) 40, 700 1.00 (0.20) 10.00 (5.00)�* �1.05 (0.21) �2.20 (0.10) 189 (15) 348 (28) z: 26, S: 2, t: 27, � : 2, �: 2, Ep: 2

990712.......... 0.4331 11.00 (0.30) 2, 700 1.60 (0.20) 10.00 (5.00)�* �1.88 (0.07) �2.48 (0.56) 65 (11) 93 (16) z: 23, S: 28, t: 29, � : 2, �: 2, Ep: 2

991208.......... 0.7055 100.00 (10.00) 25, 1000 <2.10 18:00þ22:00
�6:00 . . . . . . . . . . . . z: 30, S: 31, t: 32, n: 25

991216.......... 1.0200 194.00 (19.40)�* 20, 2000 1.20 (0.40) 4:70þ6:80
�1:80 �1.23 (0.25) �2.18 (0.39) 318 (64) 642 (128) z: 33, S: 6, t: 34, n: 25, � : 7, �: 6, Ep: 6

000131.......... 4.5000 35.10 (8.00) 26, 1800 <3.50 10.00 (5.00)�* �1.20 (0.10) �2.40 (0.10) 163 (13) 897 (72) z: 35, S: 35, t: 35, � : 35, �: 35, Ep: 35

000210.......... 0.8463 61.00 (2.00) 40, 700 >0.88 10.00 (5.00)�* . . . . . . . . . . . . z: 36, S: 36, t: 36

000214.......... [0.42]�* 1.42 (0.40) 40, 700 . . . 10.00 (5.00)�* �1.62 (0.13) �2.10 (0.42) >82 >116 z: 37, S: 2, � : 2, �: 2, Ep: 2

000301C....... 2.0335 2.00 (0.60) 150, 1000 7.30 (0.50) 26.00 (12.00) . . . . . . . . . . . . z: 38, S: 39, t: 40, n: 41

000418.......... 1.1182 20.00 (2.00)�* 15, 1000 25.70 (5.10) 27:00þ250:00
�14:00 . . . . . . . . . . . . z: 22, S: 42, t: 42, n: 25

000630.......... [1.50] 2.00 (0.20)�* 25, 100 >4.00 10.00 (5.00)�* . . . . . . . . . . . . S: 43, t: 44

000911.......... 1.0585 230.00 (23.00)�* 15, 8000 <1.50 10.00 (5.00)�* �1.11 (0.12) �2.32 (0.41) 579 (116) 1192 (239) z: 45, S: 45, t: 45, � : 45, �: 45, Ep: 45

000926.......... 2.0369 6.20 (0.62)�* 25, 100 1.80 (0.10) 27.00 (3.00) . . . . . . . . . . . . z: 46, S: 47, t: 48, n: 48

010222.......... 1.4769 120.00 (3.00) 2, 700 0:93þ0:15
�0:06 1.70 (0.85)�*�* �1.35 (0.19) �1.64 (0.02) >358 >887 z: 49, S: 50, t: 51, n: 25, � : 2, �: 2, Ep: 2

010921.......... 0.4509 18:42þ0:97
�0:95 2, 400 <33.00 10.00 (5.00)�* �1.55 (0.08) �2.30 (0.46) 89 (17) 129 (25) z: 52, S: 53, t: 54, � : 53, �: 55, Ep: 53

011121.......... 0.3620 24.00 (2.40)�* 25, 100 >7.00 10.00 (5.00)�* �1.42 (0.14) �2.30 (0.46)�* 217 (26) 296 (35) z: 56, S: 57, t: 57, � : 7, Ep: 7

011211.......... 2.1400 5.00 (0.50)�* 40, 700 1.56 (0.02) 10.00 (5.00)�* �0.84 (0.09) �2.30 (0.46)�* 59 (7) 185 (22) z: 58, S: 58, t: 59, � : 7, Ep: 7

020124.......... 3.1980 8:10þ0:89
�0:77 2, 400 15.00 (5.00) 10.00 (5.00)�* �0.79 (0.15) �2.30 (0.46) 87 (15) 365 (63) z: 60, S: 53, t: 61, � : 53, �: 55, Ep: 53

020331.......... [1.50] 0:69þ0:84
�0:74 2, 400 . . . 10.00 (5.00)�* �0.79 (0.13) �2.30 (0.46) 92 (17) [229] (43) S: 53, � : 53, �: 55, Ep: 53

020405.......... 0.6899 74.00 (0.70)�* 15, 2000 1.67 (0.52) 10.00 (5.00)�* 0.00 (0.25) �1.87 (0.23) 364 (73) 615 (123) z: 62, S: 62, t: 62, � : 62, �: 62, Ep: 63

020427.......... <2.30 0.58 (0.04) 2, 28 >17.00 10.00 (5.00)�* �1.00 (0.20) �2.10 (0.26) 3 (3) <9 z: 64, S: 65, t: 65, � : 65, �: 7, Ep: 65

020813.......... 1.2540 97:87þ1:27
�1:28 2, 400 0.43 (0.06) 10.00 (5.00)�* �0.94 (0.03) �1.57 (0.04) 142 (13) 320 (30) z: 66, S: 53, t: 66, � : 53, �: 53, Ep: 53

020903.......... 0.2510 0:10þ0:06
�0:03 2, 400 . . . 10.00 (5.00)�* �1.00 (0.20)�* �2.62 (0.55) 3 (1) 3 (1) z: 67, S: 53, �: 53, Ep: 53

021004.......... 2.3351 2:55þ0:69
�0:50 2, 400 6.50 (0.20) 30:00þ270:00

�27:00 �1.01 (0.19) �2.30 (0.46)�* 80 (35) 266 (117) z: 68, S: 53, t: 69, n: 70, � : 53, Ep: 53

021211.......... 1.0060 3:53þ0:21
�0:21 2, 400 1.40 (0.50) 10.00 (5.00)�* �0.86 (0.10) �2.18 (0.25) 46 (7) 91 (14) z: 71, S: 53, t: 72, � : 53, �: 53, Ep: 53

030115.......... [2.20] 2:31þ0:40
�0:32 2, 400 . . . 10.00 (5.00)�* �1.28 (0.14) �2.30 (0.46)�* 83 (34) [265] (110) z: 73, S: 53, � : 53, Ep: 53

030226.......... 1.9860 5:61þ0:69
�0:61 2, 400 0.83 (0.10) 10.00 (5.00)�* �0.89 (0.17) �2.30 (0.46) 97 (21) 290 (64) z: 74, S: 53, t: 75, � : 53, �: 55, Ep: 53

030323.......... 3.3718 1:23þ0:37
�0:34 2, 400 >1.40 10.00 (5.00)�* �1.62 (0.25) �2.30 (0.46)�* . . . . . . z: 76, S: 53, t: 76, � : 53
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TABLE 1—Continued

GRB/XRFa zb
S�

c

(10�6 ergs cm�2)

Bandpass

(keV)

tjet
d

(days)

ne

(cm�3) � f � g

Eobs
p

h

(keV)

Ep
i

( keV)

References

(z, S� ¼ S, tjet ¼ t, n, � , �, Ep)

030324.......... <2.70 1:82þ0:33
�0:30 2, 400 . . . 10.00 (5.00)�* �1.45 (0.14) �2.30 (0.46)�* 147 (203) <543 z: 73, S: 53, � : 53, Ep: 53

030328.......... 1.5200 36:95þ1:40
�1:42 2, 400 0.80 (0.10) 10.00 (5.00)�* �1.14 (0.03) �2.09 (0.40) 126 (13) 318 (34) z: 77, S: 53, t: 78, � : 53, �: 53, Ep: 53

030329.......... 0.1685 163:00þ1:40
�1:30 2, 400 0.48 (0.03) 5.50 (2.75)�*�* �1.26 (0.02) �2.28 (0.06) 68 (2) 79 (3) z: 79, S: 53, t: 63, n: 63, � : 53, �: 53, Ep: 53

030429.......... 2.6564 0:85þ0:15
�0:13 2, 400 1.77 (1.00) 10.00 (5.00)�* �1.12 (0.25) �2.30 (0.46)�* 35 (10) 128 (35) z: 80, S: 53, t: 81, � : 53, Ep: 53

030528.......... <1.00 11:90þ0:76
�0:78 2, 400 2.20 (1.80) 10.00 (5.00)�* �1.33 (0.15) �2.65 (0.98) 32 (5) <64 z: 82, S: 53, t: 82, � : 53, �: 53, Ep: 53

030723.......... <2.10 0:03þ0:06
�0:01 2, 400 1.67 (0.30) 10.00 (5.00)�* �1.00 (0.20)�* �1.90 (0.20) <9 <28 z: 83, S: 53, t: 84, �: 53, Ep: 53

031203.......... 0.1055 1.20 (0.12)�* 20, 2000 . . . 10.00 (5.00)�* �1.00 (0.20)�* �2.30 (0.46)�* >190 >210 z: 85, S: 86, Ep: 87

040511.......... [1.50] 10.00 (1.00)�* 30, 400 1.20 (0.40) 10.00 (5.00)�* �0.67 (0.07) �2.30 (0.46)�* 131 (26) [328] (65) z: 88, S: 89, t: 90, � : 91, Ep: 73

040701.......... 0.2146 0.45 (0.08) 2, 25 . . . 10.00 (5.00)�* . . . . . . . . . . . . z: 92, S: 93

040924.......... 0.8590 2.73 (0.12) 20, 500 <1.00 10.00 (5.00)�* �1.17 (0.23) �2.30 (0.46)�* 67 (6) 125 (11) z: 94, S: 95, t: 94, � : 73, Ep: 95

041006.......... 0.7160 7.00 (0.70)�* 30, 400 1.10 (0.60) 10.00 (5.00)�* �1.37 (0.27) �2.30 (0.46)�* 63 (13) 109 (22) z: 96, S: 97, t: 98, � : 73, Ep: 73

a Upper/lower limit data are indicated with < and >, respectively. The 1 � errors are indicated to the right of data values in parentheses. References are given in order for redshift (z), fluence (S ), jet-break time (t),
density (n), low energy band spectral slope (� ), high energy band spectral slope (�), and spectral peak energy (Ep) (see x 2.2, Appendix A).

b Spectroscopic redshift z. GRBs marked with an asterisk have upper and lower limits, where the z indicated is the mean. For GRBs 980519, 000630, 020331, 030115, and 040511, we assume the redshift in square
brackets to calculate the data in the table.

c GRB fluence S� calculated in the observed bandpass [e1, e2] keV. Fluence errors are assumed to be 10% when not reported in the literature (marked with an asterisk). When multiple fluence references are available,
we choose measurements prioritized according to those with reported fluence errors, then those with the widest observed bandpass, preferring published papers over GCNs. When asymmetric fluence errors are reported in
the literature (e.g., Sakamoto et al. 2004), we use the geometric mean to construct approximate symmetric errors, i.e., �S� � (�þS� �

�
S�
)1

=2.
d Afterglow jet-break time tjet. When multiple references are available, we choose those reporting early-time optical data.
e Ambient density n inferred from broadband afterglow modeling assuming a constant-density ISM. We assume n ¼ 10 � 5 cm�3 (50% error) in the absence of constraints from broadband afterglow modeling

(marked with an asterisk) and also 50% error when the error is not reported (marked with two asterisks).
f Low energy ‘‘Band’’ spectral slope � . When � is reported in the literature but � is not, we set � ¼ �1 (marked with an asterisk; see Appendix A). When multiple references are available (i.e., Jimenez et al. 2001;

Amati et al. 2002; Amati 2004), we list the values with reported errors and assume an error of 20% otherwise.
g High energy ‘‘Band’’ spectral slope �. Following Atteia (2003), when � is reported in the literature and � is not, we fix � ¼ �2:3 (marked with an asterisk; see also Appendix A). We assume an error of 20% when

not reported.
h Observed spectral peak energy Eobs

p ¼ Eobs
0 (2þ � ). When asymmetric peak energy errors for Eobs

p are reported in the literature (e.g., Sakamoto et al. 2004), we assume �Eobs
p

� (�þ
Eobs
p
��
Eobs
p
)1

=2 (i.e., the geometric mean),
to calculate the approximate symmetric errors reported in this table.

i Rest-frame spectral peak energy Ep ¼ Eobs
p (1þ z) ¼ Eobs

0 (2þ � )(1þ z) ¼ E0(2þ � ). Ep values calculated for uncertain redshifts are marked with square brackets.
References.—(1) Bloom et al. 2001a; (2) Amati et al. 2002; (3) Bloom et al. 1998; (4) Frail et al. 2000; (5) Djorgovski et al. 2001; (6) Jimenez et al. 2001; (7) Amati 2004; (8) Kulkarni et al. 1998; (9) Bloom et al. 1999;

(10) Groot et al. 1998; (11) Lamb et al. 1999; (12) Yost et al. 2002; (13) Tinney et al. 1998; (14) Jaunsen et al. 2001; (15) Djorgovski et al. 2003; (16) Halpern & Fesen 1998; (17) Djorgovski et al. 1998; (18) Frail et al. 2003;
(19) Frontera et al. 2000; (20) Frail et al. 1999; (21) Kulkarni et al. 1999; (22) Bloom et al. 2003a; (23) Vreeswijk et al. 2001; (24) Stanek et al. 1999; (25) Panaitescu &Kumar 2002; (26) Le Floc’h et al. 2002; (27)Masetti et al.
2000; (28) Frontera et al. 2001; (29) Björnsson et al. 2001; (30) Djorgovski et al. 1999a; (31) Hurley et al. 2000b; (32) Sagar et al. 2000; (33) Djorgovski et al. 1999b; (34) Halpern et al. 2000; (35) Andersen et al. 2000;
(36) Piro et al. 2002; (37) Antonelli et al. 2000; (38) Castro et al. 2000a; (39) Jensen et al. 2001; (40) Berger et al. 2000; (41) Panaitescu 2001; (42) Berger et al. 2001; (43) Hurley et al. 2000a; (44) Fynbo et al. 2001;
(45) Price et al. 2002c; (46) Castro et al. 2000b; (47) Price et al. 2001; (48) Harrison et al. 2001; (49) Mirabal et al. 2002; (50) in’t Zand et al. 2001; (51) Galama et al. 2003; (52) Price et al. 2002a; (53) Sakamoto et al.
2004; (54) Price et al. 2003a; (55) Atteia 2003; (56) Garnavich et al. 2003; (57) Price et al. 2002b; (58) Holland et al. 2002; (59) Jakobsson et al. 2003; (60) Hjorth et al. 2003; (61) Berger et al. 2002b; (62) Price et al.
2003b; (63) Price et al. 2003c; (64) van Dokkum & Bloom 2003; (65) Amati et al. 2004; (66) Barth et al. 2003; (67) Soderberg et al. 2004; (68) Möller et al. 2002; (69) Pandey et al. 2003; (70) Schaefer et al. 2003;
(71) Vreeswijk et al. 2003; (72) Holland et al. 2004; (73) Vanderspek 2004; (74) Greiner et al. 2003; (75) Klose et al. 2004; (76) Vreeswijk et al. 2004; (77) Martini et al. 2003; (78) Andersen et al. 2003; (79) Bloom et al.
2003c; (80) Weidinger et al. 2003; (81) Jakobsson et al. 2004; (82) Rau et al. 2004; (83) Fynbo et al. 2003; (84) Dullighan et al. 2003; (85) Prochaska et al. 2003; (86) Watson et al. 2004; (87) Sazonov et al. 2004; (88) Berger
2004a; (89) Dullighan et al. 2004; (90) Bersier et al. 2004; (91) Ghirlanda et al. 2004a; (92) Kelson et al. 2004; (93) Barraud et al. 2004; (94)Wiersema et al. 2004; (95) Golenetskii et al. 2004; (96) Price et al. 2004; (97) Galassi
et al. 2004; (98) D’Avanzo et al. 2004.

5



TABLE 2

Derived Energetics Parameters

GRB/XRFa
Data Set

(s)b zc kd
log Eiso

e

(ergs)

�jet
f

(deg)

log E�
g

(ergs) 
�
h A�

i

C�
j

(mag)

DM�; unc
k

(mag)

DM�
l

(mag)

970228.................. . . . 0.6950 1.44 (0.07) 52.30 (0.05) . . . <52.30z <25.05z <17.70z . . . . . . . . .

970508y................ A 0.8349 1.55 (0.08) 51.71 (0.08) 21.83 (2.18) 50.56 (0.10) 0.46 (0.11) 2.00 (1.00) �1.19 (0.64) 44.74 (0.48) 42.59 (0.72)

970828.................. A, G, D 0.9578 0.82 (0.08) 53.28 (0.06) 7.26 (0.68)�* 51.18 (0.09) 1.91 (0.40) 1.04 (0.39) 1.82 (0.45) 43.05 (0.43) 43.92 (0.55)

971214�*................ . . . 3.4180 1.09 (0.14) 53.36 (0.07) >5.48 >51.02 >1.32 (0.25) >0.57 (0.20) <2.17 (0.44) <46.97 (0.39) <48.18 (0.52)

980326�*yyy........... . . . [1.00]�* [1.65] (0.21) 51.51 (0.10) <6.33 <49.29 <[0.02] (0.01) <[0.21] (0.06) >[�2.13] (0.27) >[49.46] (0.47) >[46.38] (0.43)

980329.................. . . . [2.95]�* [0.97] (0.09) 54.07 (0.05) . . . . . . . . . . . . . . . . . . . . .

980425yyy ............ . . . 0.0085 1.00 (0.00) 47.79 (0.04) . . . <47.79z <0.00077z <0.028z . . . . . . . . .
980519yyy ............ . . . [2.50] [0.86] (0.09)�* 53.10 (0.06) [3.65] (0.43) [50.41] (0.11) [0.32] (0.08) [0.13] (0.05) [2.27] (0.46) [48.19] (0.52) [49.50] (0.59)

980613�*................ . . . 1.0969 1.47 (0.24) 51.66 (0.11) >12.82 >50.06 >0.14 (0.03) >0.40 (0.30) <�0.55 (1.01) <47.16 (0.49) <45.65 (1.06)

980703.................. A, G, D 0.9662 0.94 (0.08) 52.71 (0.06) 11.42 (0.83) 51.01 (0.07) 1.29 (0.22) 0.89 (0.31) 1.48 (0.45) 43.64 (0.35) 44.17 (0.51)

981226�*................ . . . [1.50] 1.58 (0.18) 51.56 (0.12) >14.80 >50.08 >[0.15] (0.04) >[0.61] (0.28) <[�1.08] (0.54) <[47.93] (0.52) <[45.90] (0.65)

990123.................. A, G, D 1.6004 1.13 (0.01) 54.34 (0.06) 4.68 (0.50) 51.86 (0.10) 9.09 (2.11) 0.77 (0.24) 4.52 (0.30) 42.17 (0.48) 45.74 (0.45)

990506.................. . . . 1.3066 0.87 (0.10) 53.87 (0.07) . . . <53.87z <933.40z <59.46z . . . . . . . . .

990510yyy ............ A, G 1.6187 1.29 (0.03) 53.20 (0.05) 3.77 (0.22) 50.54 (0.06) 0.43 (0.06) 0.38 (0.08) 1.14 (0.24) 46.61 (0.28) 46.80 (0.31)

990705.................. A, G, D 0.8424 1.30 (0.05) 53.26 (0.05) 5.56 (0.55)�* 50.93 (0.09) 1.07 (0.23) 1.27 (0.32) 0.70 (0.20) 43.55 (0.44) 43.30 (0.37)

990712.................. A, G, D 0.4331 0.74 (0.08) 51.59 (0.05) 11.78 (0.93)�* 49.91 (0.08) 0.10 (0.02) 0.87 (0.28) �2.15 (0.39) 45.18 (0.36) 42.08 (0.47)

991208�*................ . . . 0.7055 1.09 (0.03)�* 53.15 (0.05) <8.39 <51.18 <1.90 (0.37) . . . . . . >42.24 (0.39) . . .

991216.................. A, G, D 1.0200 0.88 (0.09) 53.66 (0.06) 4.66 (0.73) 51.18 (0.14) 1.91 (0.63) 0.91 (0.41) 2.03 (0.45) 43.22 (0.67) 44.30 (0.66)

000131�*................ . . . 4.5000 0.85 (0.07) 54.04 (0.11) <4.71 <51.57 <4.67 (1.09) <1.34 (0.39) >2.75 (0.24) >45.85 (0.48) >47.65 (0.42)

000210�*................ . . . 0.8463 1.28 (0.10)�* 53.16 (0.04) >5.43 >50.82 >0.82 (0.13) . . . . . . <43.94 (0.32) . . .

000214�*�*............... . . . [0.42]�* [1.39] (0.13) 50.94 (0.13) . . . . . . <1.11z <3.67z . . . . . . . . .

000301C............... . . . 2.0335 1.37 (0.36)�* 52.44 (0.17) 13.88 (1.12) 50.90 (0.14) 1.00 (0.32) . . . . . . 46.00 (0.66) . . .
000418.................. . . . 1.1182 1.00 (0.02)�* 52.81 (0.04) 22.95 (6.52) 51.71 (0.25) 6.45 (3.72) . . . . . . 41.69 (1.17) . . .

000630�*................ . . . [1.50] [4.21] (1.56)�* 52.68 (0.17) >9.85 >50.85 >[0.89] (0.29) . . . . . . <[45.37] (0.66) . . .

000911�*yy............. . . . 1.0585 0.63 (0.12) 53.63 (0.10) <5.58 <51.30 <2.53 (0.55) <0.47 (0.19) >3.37 (0.48) >42.92 (0.45) >45.33 (0.57)

000926.................. . . . 2.0369 3.91 (1.33)�* 53.38 (0.15) 6.28 (0.32) 51.16 (0.12) 1.82 (0.49) . . . . . . 45.15 (0.55) . . .
010222�*�*yyy.......... . . . 1.4769 1.03 (0.04)�* 53.84 (0.02) 3.29 (0.24) 51.05 (0.07) 1.42 (0.21) <0.41 (0.15) >2.73 (0.46) 44.65 (0.31) >46.42 (0.51)

010921�*................ . . . 0.4509 0.97 (0.10) 51.96 (0.05) <32.76 <51.16 <1.84 (0.40) <9.61 (3.53) >�1.45 (0.44) >41.08 (0.43) >38.68 (0.54)

011121�*y............... . . . 0.3620 3.70 (0.63)�* 52.46 (0.09) >16.24 >51.06 >1.46 (0.30) >2.20 (0.62) <0.35 (0.28) <40.88 (0.43) <40.28 (0.41)

011211y ................ A, G, D 2.1400 1.43 (0.11) 52.89 (0.06) 5.98 (0.39)�* 50.63 (0.07) 0.53 (0.08) 1.61 (0.40) �0.66 (0.28) 47.06 (0.32) 45.45 (0.36)

020124yy .............. A, G, D 3.1980 1.02 (0.02) 53.25 (0.04) 11.30 (1.59) 51.54 (0.13) 4.33 (1.25) 4.77 (1.88) 0.81 (0.39) 45.07 (0.59) 44.93 (0.57)

020331.................. . . . [1.50] [1.11] (0.06)�* 51.64 (0.50) . . . <[51.64]z <5.52z <5.48z . . . . . . . . .

020405yy .............. A, G, D 0.6899 0.90 (0.07)�* 52.92 (0.03) 7.68 (1.02) 50.87 (0.12) 0.93 (0.25) 0.47 (0.19) 1.93 (0.45) 43.22 (0.55) 44.20 (0.60)

020427�*................ . . . <2.30 [1.43] (0.72) <52.01 >18.52 <52.01z . . . . . . . . . . . . . . .

020813y................ A, G, D 1.2540 1.50 (0.03) 53.77 (0.01) 3.24 (0.26)�* 50.98 (0.07) 1.19 (0.19) 1.60 (0.36) 0.52 (0.23) 44.46 (0.34) 44.03 (0.33)

020903.................. . . . 0.2510 0.28 (0.28) 48.62 (0.48) . . . <48.62z <0.0052z <3.64z . . . . . . . . .

021004.................. A 2.3351 1.04 (0.06)�* 52.52 (0.10) 12.73 (4.55) 50.91 (0.32) 1.03 (0.76) 1.82 (1.79) 0.12 (0.95) 46.33 (1.50) 45.49 (1.43)

021211.................. A 1.0060 1.07 (0.11) 52.00 (0.05) 8.78 (1.30) 50.07 (0.13) 0.15 (0.05) 1.28 (0.51) �2.19 (0.36) 46.90 (0.63) 43.75 (0.57)
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TABLE 2—Continued

GRB/XRFa

Data Set

(s)b z c kd
log Eiso

e

(ergs)

�jet
f

(deg)

log E�
g

(ergs) 
�
h A�

i

C�
j

(mag)

DM�; unc
k

(mag)

DM�
l

(mag)

030115.................. . . . [2.20] [1.01] (0.06)�* 52.42 (0.07) . . . . . . <33.34z <15.77z . . . . . . . . .

030226yyy ............ A, G 1.9860 1.08 (0.05) 52.76 (0.05) 4.99 (0.39) 50.34 (0.08) 0.27 (0.05) 0.43 (0.16) 0.31 (0.49) 47.81 (0.37) 47.17 (0.55)

030323�*................ . . . 3.3718 1.05 (0.03)�* 52.48 (0.13) >5.71 >50.18 >0.19 (0.05) . . . . . . <49.75 (0.54) . . .
030324.................. . . . <2.70 [1.00] (0.09)�* <52.47 . . . <52.47z . . . . . . . . . . . . . . .

030328.................. A, G, D 1.5200 1.15 (0.11) 53.39 (0.04) 4.37 (0.35)�* 50.86 (0.08) 0.90 (0.16) 1.22 (0.30) 0.51 (0.25) 45.38 (0.35) 44.93 (0.35)

030329.................. A, G, D 0.1685 1.01 (0.03) 52.04 (0.01) 6.60 (0.45) 49.86 (0.06) 0.09 (0.01) 0.99 (0.18) �2.50 (0.17) 43.01 (0.28) 39.56 (0.26)

030429.................. A, G 2.6564 0.96 (0.06)�* 52.11 (0.08) 7.41 (1.64)�* 50.03 (0.20) 0.14 (0.06) 0.71 (0.45) �1.46 (0.61) 49.60 (0.94) 47.19 (0.90)

030528y................ . . . <1.00 [0.82] (0.17)�* <52.40 >9.27�* <52.40z . . . . . . . . . . . . . . .

030723�*�*............... . . . <2.10 [1.19] (0.13)�* <50.61 >11.89 <50.61z . . . . . . . . . . . . . . .

031203�*�*yyy ......... . . . 0.1055 0.99 (0.02)�* 49.48 (0.04) . . . <49.48z <0.04z <0.21z . . . . . . . . .

040511y ................ . . . [1.50] [1.36] (0.05)�* 52.89 (0.05) [5.91] (0.83)�* [50.61] (0.13) [0.51] (0.15) [0.67] (0.28) [0.57] (0.44) [46.16] (0.60) [45.77] (0.61)

040701.................. . . . 0.2146 21.61 (15.12) 51.03 (0.31) . . . <51.03z . . . . . . . . . . . . . . .

040924�*yyy ........... . . . 0.8590 1.28 (0.05) 51.83 (0.03) <8.36 <49.86 <0.09 (0.01) <0.49 (0.11) >�1.52 (0.23) >47.18 (0.31) >44.71 (0.32)

041006.................. A 0.7160 1.56 (0.09) 52.16 (0.05) 8.11 (1.74)�* 50.16 (0.19) 0.18 (0.08) 1.23 (0.66) �1.81 (0.45) 45.67 (0.89) 42.90 (0.78)

a GRB names with an asterisk have upper/lower limits on tjet, and names with two asterisks have upper/lower limits on Eobs
p . See Table 1 for input data and references. Bursts that have A� � 1 have the least scatter

about the Hubble diagram. Bursts marked with one, two, and three daggers are 1–2, 2–3, and >3 � outliers in A�, respectively.
b Data sets A, G, and D are as described in x 2.4. Data calculated for uncertain redshifts are marked with square brackets. Values are calculated assuming a cosmology of (�M ; ��; h) ¼ (0:3; 0:7; 0:7). Set A is used

to fit the Ghirlanda relation. Set E (not marked) consists of the 23 bursts with z and tjet with no upper/lower limits and is used to calculate the median energy Ē�. Standard candle variables computed for bursts not in sets A
or E assume the parameters calculated from the fits to the standard sets, e.g., (�, 	, Ē�).

c See Table 1 for redshift references.
d Cosmological k-correction calculated for a rest-frame ‘‘bolometric’’ gamma-ray bandpass of [20, 2000] keV. Values of k marked with an asterisk are calculated for bursts with no spectral information via the template

spectra method of Bloom et al. (2001b), which has been adapted to incorporate upper/lower limit information on Eobs
p /Eobs

0 . Bloom et al. (2001b) also describe the formalism for calculating k and its error, given known
‘‘Band’’ spectral parameters � , �, Ep. See Table 1 for ‘‘Band’’ parameters and references, which are inputs to the k-correction.

e Isotropic-equivalent gamma-ray energy Eiso is calculated via eq. (1) for a rest-frame ‘‘bolometric’’ bandpass of [20, 2000] keV.
f Top-hat jet half-opening angle �jet is calculated via eq. (2). Values marked with an asterisk assume a constant ISM density of n ¼ 10 � 5 in the absence of constraints from broadband afterglow modeling. Upper

limits on �jet come from upper limits on the jet-break time, tjet. Lower limits on �jet come from either lower limits on tjet or upper limits on z and a measured tjet (i.e., GRB 030528, XRF 030723 for the latter). See Table 1
for input densities, jet-break times, and references.

g Beaming-corrected top-hat gamma-ray energy E� ¼ Eiso(1� cos �jet) (eq. [1]), for a rest-frame ‘‘bolometric’’ bandpass of [20, 2000] keV. When jet-break times (and hence opening angles) are not available in the
literature, we indicate the upper limit E� with a dagger. In other words, E� ¼ Eiso fb � Eiso is always true since fb � 1, and E� ¼ Eiso only in the limit of isotropy ( fb ¼ 1).

h The ‘‘uncorrected’’ standard candle, 
� ¼ E� /Ē� . The error in 
� ¼ E� /Ē� is given by �
� ¼ �E�
/Ē�.

i The dimensionless ‘‘corrected’’ GRB standard candle (defined in eq. [6]) has a spread of no more than a factor of �2–3, as compared to the distribution of 
� , which spans several orders of magnitude.
j C� is the ‘‘GRB energy correction’’ term that helps standardize the energetics. Due to the Ghirlanda relation, large, positive C� values correspond to bursts with E� > Ē� and vice versa for bursts with C� < 0. As

noted, the maximal spread in C� � 8 mag reflects the large underlying spread in 
�.
k The apparent GRB distance modulus derived assuming 
� � 1.
l The apparent GRB distance modulus derived assuming A� � 1. Note that C� � DM� � DM�;unc þ (10/3) log (Ē� /E

�). For reference, (10/3) log (Ē� /E
�) ¼ 0:95 mag in the standard cosmology.
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Using an updated set including 19 bursts with redshifts, Ep ¼
Eobs
p (1þ z), and reported tjet measurements without upper/lower

limits (hereafter ‘‘set A’’), we confirm the strong correlation in
the standard cosmology for the set of assumptions detailed in
x 2, finding the best-fit values5 of � ¼ 0:669 � 0:034, 	 ¼ 252�
11 keV (E� ¼ 4:14 ;1050 ergs), with a Spearman � correlation
coefficient of 0.86 (null hypothesis probability of 2:9 ;10�6).

The relation for a standard cosmology is shown in Figure 1,
with the inset panel indicating the cosmology dependence, which

is discussed in detail in x 3.3. Although the correlation is clearly
significant, we find a reduced �2


 � �2/dof ¼ 3:71 (for 17 de-
grees of freedom [dof ]), suggesting that a single power law does
not adequately accommodate the data, given the assumptions and
data set compilation: we address the dependence of �2


 on var-
ious assumptions in detail in xx 2.4 and 2.5.
Despite the poor fit, Ghirlanda et al. (2004a) correctly noted

that this power-law fit is better than the fit to the Ep-Eiso ‘‘Amati’’
relation Ep ¼ A Eiso/E

0ð Þm (E 0 ¼ 1052 ergs). Indeed, for the sub-
set of 29 bursts with measurements of redshift z, and Ep with-
out upper/lower limits (excluding GRB 980425), we find best fit
m ¼ 0:496 � 0:037, A ¼ 90 � 8 keV and a Spearman � corre-
lation coefficient of � ¼ 0:88, with a null hypothesis probability
of no correlation of 4:9 ;10�10. As originally recognized by
Amati et al. (2002), the correlation is clearly significant. How-
ever, the goodness offit found here,�2


 � 9:48 (27 dof ), is clearly
poorer than for the new Ghirlanda relation and cannot easily be
improved by changing input assumptions. Recentwork (Nakar&
Piran 2004) indicates that a significant fraction of GRBs with-
out known redshifts cannot fall on the Amati relation, which, due
to selection effects, may be better understood as a demarcation of
an upper limit (where burst energies can be no greater than their
isotropic equivalents). This implies that any intrinsic spectra-
energy connection is more closely related to the Ghirlanda rela-
tion than the Amati relation; this is not surprising given the more
physically motivated, beaming-corrected energy, rather than the
poor approximation of energy inferred for a spherical explosion.
However, see Band & Preece (2005) for a similar analysis of the
Ghirlanda relation that raises the possibility that the relation itself
could arise due to selection effects, mostly concerning the mea-
surement of tjet , E

obs
p , and z.

2.4. Comparison with Other Work

The Ep-E� relation has been fitted in several other works
(Ghirlanda et al. 2004a, 2004b; Dai et al. 2004) using different
data sets and a range of input assumptions different from those
assumed herein. We focus on comparing our results with the
sample of Ghirlanda et al. (2004a, 2004b; 15 bursts, hereafter
‘‘set G’’), which uses a more complete sample than that of Dai
et al. (2004; 12 bursts, hereafter ‘‘set D’’). In contrast, our set A
contains 19 bursts (see our Table 1). The bursts belonging to each
of these samples are noted in the second column of Table 2.
For clarification, the set name A, G, or D simply refers to the
names of the bursts in the sample, not to the assumptions used
by various groups or the individual references chosen for the data
for a given burst, differences that are detailed in Appendix B.
In referring below to the Ghirlanda et al. (2004a, 2004b) data,
we refer to the overlapping subset of our data (Table 1) as G
and refer to the Ghirlanda et al. (2004a) data themselves (their
Tables 1–4) as G�*, which uses their data selection and assump-
tions, and likewise for D (our Table 1) and D� (Table 1 of Dai
et al. 2004).
The parameterization of the Ep-E� relation and the reported

errors on the slope that we find, � ¼ 0:669 � 0:034, �2

 ¼ 3:71

(17 dof ), are consistent with those given in Ghirlanda et al.
(2004a, 2004b), � ¼ 0:706� 0:047, ��1 ¼ 1:416� 0:09, respec-
tively. Both fits are performed in the standard (�M ; ��; h) ¼
(0:3; 0:7; 0:7) cosmology but differ somewhat owing to the
slightly larger sample used here to construct the fit (19 vs. 15 bursts),
data selection differences for the bursts common to both samples
(again, see Appendix A), differing assumptions for the density
and its fractional error, and the different energy bandpass used
for E� . We compute the energy in the rest-frame [20, 2000] keV
band as opposed to [1, 104] keVin Ghirlanda et al. (2004a, 2004b),

Fig. 1.—The (weak) cosmological dependence of the Ep-E� relation. The
best-fit power-law relation for a representative set of cosmologies with h ¼ 0:7
is shown as a series of lines. Only the derived E� values in standard �CDM
cosmology of (�M ; ��) ¼ (0:3; 0:7) are shown for clarity with upper/lower
limits indicated with arrows, although the nominal best-fit cosmology that
minimizes �2 is very close to the representative (�M ; ��) ¼ (0:1; 1:3) loi-
tering model shown (but see x 3.3). Set A comprises those bursts with no
upper/ lower limits (small filled squares), with a goodness of fit �2/dof ¼ 3:71
(17 dof ) in the standard cosmology; �2/dof ¼ 2:8 (17 dof ) in the best-fit loi-
tering cosmology. Data are calculated for a bolometric rest-frame bandpass of
[20, 2000] keV, assuming a gamma-ray production efficiency of � ¼ 0:2 and a
homogeneous ISM density of n ¼ 10 � 5 cm�3 when there are no reliable
constraints from broadband afterglow modeling. Notable outliers under these
assumptions are indicated by a large square surrounding the data points (small
filled squares). GRBs 980425 and 031203 are major outliers regardless of their
geometry correction or external density. The only outliers for which density is
constrained are GRBs 970508 and 990510. All other nominal outliers can be
made consistent with the relation simply by changing the density (or increasing
the error on the density), as discussed in x 2.5. With the current data and our
assumptions, XRFs 020903 and 030723 are consistent with the relation. Note
that GRB 030329, a large outlier in E� (large filled square), falls directly on the
relation. The best-fit value of the slope (�) is shown inset as a contour plot over
the cosmological parameters (�M, ��). Over a wide range of cosmologies
[0 � �M , ��;� 2], � falls in a narrow range of �0.6–0.8, with typical errors
�0.03–0.5 (5%–6%). Note that the data for a standard cosmology with best fit
� ¼ 0:67 � 0:03 (asterisk in inset plot; thick black line in outer plot) essentially
bracket the fits across all cosmologies in the range [0 � �M , �� � 1],
�2½0:64; 0:70�, excepting only the extreme cosmologies with �M � 0 and
�� � 1 or �M � 1. Thus, for a wide range of reasonable cosmologies (not to
mention k-correction bandpasses and densities) the slope of the relation is �2

3
.

5 Unless otherwise noted, all uncertainties on derived parameters reported
hereafter are 1 � derived from �2 analysis. They do not reflect any covariance
with other parameters nor are the uncertainties scaled by (�2/dof )1

=2, as is cus-
tomary under the assumption that the data should be well fitted by the model.
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although we find similar results for our data set A by adopting the
[1, 104] keV bandpass: � ¼ 0:647� 0:034, �2


 ¼ 4:15 (17 dof ),
Spearman � ¼ 0:83 (null probability 1:02 ; 10�5), and, in fact,
for an even wider range of bandpasses (see x 5.1 for a detailed
discussion of bandpass choice). Despite these differences, the
value of the slope � and the high significance of the correlation
coefficient are remarkably insensitive to these assumptions and
the sample selection, although � itself does depend on the cos-
mology (see x 3.3).

Although the slope range 0:6 < � < 0:8 (consistent with
� � 2

3
) and high correlation significance appear robust in our

standard cosmology for a variety of input assumptions, the
value of the goodness of the fit, however, is not. The value of �2



is not reported in either Ghirlanda et al. (2004a) or Ghirlanda
et al. (2004b). However, that group has since reported �2


 ¼ 1:27
(13 dof ) for the fit to the Ep-E� relation (Ghirlanda et al. 2004c).
After discussing the differences between our input assumptions
(G. Ghirlanda 2004, private communication; D. Lazzati 2004,

private communication), we refit the data directly fromTables 1–4
of Ghirlanda et al. (2004a), using their assumptions, and confirm
�2

 ¼ 1:27. As such, we attempt here to reconcile their margin-

ally good fit with our unacceptable fit by comparing our data and
assumptions.

Ultimately, both values for �2

 follow from data compilation

and input assumptions. However, the large discrepancy indi-
cates that �2


 is highly sensitive to assumptions and individual
parameter measurements. Figure 2 illustrates the sensitivity of
the goodness of fit to the assumptions that differ between our
analyses including density and its fractional error, gamma-ray
efficiency, k-correction bandpass, sample size, and data selec-
tion differences for the 15 bursts common to both samples. The
dominant factors are the assumptions for density and its frac-
tional error and the choice of references for individual bursts com-
mon to both samples. Although the gamma-ray efficiency (set to
� ¼ 0:2 in Fig. 2) plays the same role as density in equations (1)
and (2), the former is less important as it is, by definition,

 

Fig. 2.—Extreme sensitivity of the goodness of fit of the Ghirlanda relation to input parameters (density and k-correction bandpass) and data selection criteria. Here
we compare the effects of different assumptions on the 15 bursts common to our sample set A and the Ghirlanda et al. (2004a, 2004b) sample set, denoted by G for our
data and G�*for their data. Plotted are the reduced �2


 ¼ �2/dof vs. log ½(n/1 cm�3)(�/0:2)�, with all plots assuming � ¼ 0:2. Burst-by-burst comparison indicates only a
few significant differences in the references, noted in detail in x 2.5 and Appendix B. However, using the Ghirlanda et al. (2004a) data (set G�*) results in a significantly
improved goodness offit (�2


 ¼ 1:27) in comparison to the same 15 bursts using our data set G (�2

=2.45 even with the Ghirlanda et al. [2004a] assumptions), indicating

the strong sensitivity of the fit to data selection choices. In an individual plot, we vary only the density assumed for all bursts without reliable density constraints. Various
assumptions for n and �n /n from previous work are indicated by symbols referenced in the top right panel. Frail et al. (2001) did not assume an error on the density, and
we mark their density assumption of n ¼ 0:1 cm�3 on the 10% error curve for display purposes only. For all data sets A, G, G�*, a density choice of nmin � 1 2 cm�3

minimizes the goodness of fit, essentially independent of the fractional error, k-correction bandpass. Clearly, an increased fractional error on the density improves the fit
for any choice of density, as seen for each curve that corresponds to an increasing fractional error on the density. The top (bottom) panels show the results for a rest-frame
k-correction of [20, 2000] keV ([1, 104] keV). Different k-correction bandpasses change �2


 slightly, but the fits actually worsen going from our [20, 2000] keV to their
[1, 104] keV bandpass for our data. The addition of the four new bursts after the original Ghirlanda 15 slightly worsens �2


 . Ultimately, there exist a certain set of input
assumptions that lead to a good fit for the Ep-E� relation (see also x 5.5). However, these assumptions are not favored a priori over many other equally plausible
assumptions that yield poor fits.
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constrained to values between [0, 1] (likely�1%–90% in prac-
tice), whereas the density can range over several orders of mag-
nitude (see xx 5.5 and 5.6). Although wemust assume values for
the fluence error, � , �, and their errors for some bursts, we sin-
gle out the assumptions for n and � in particular because (1)
they apply to most/all of the bursts in the sample, and (2) they
have a much stronger effect on computing E� , �E�

. Changing
the k-correction bandpass alters �2


 slightly, but we find that
the fits actually worsen going from our [20, 2000] keV to their
[1, 104] keV bandpass (see Fig. 2). The addition of four new
bursts to our sample slightly worsens �2


 , as do data updates
to older bursts from the most current literature (e.g., Sakamoto
et al. 2004).

More specifically, following Bloom et al. (2003b), we assume
n ¼ 10 cm�3 (with 50% error), in the absence of constraints from
broadband afterglow modeling, which applies to most bursts
(13/19) in our sample. See x 5.5 for a justification of this choice.
In contrast, Ghirlanda et al. (2004b) assume n ¼ 3 cm�3, with
errors where they ‘‘allow n to cover the full [1–10] cm�3 range.’’
Refitting their data directly from Tables 1–4 of Ghirlanda et al.
(2004a), we determine that the error assumption as described in
Ghirlanda et al. (2004b) translates to n ¼ 3þ7

�2 cm
�3, where the

geometric mean of the asymmetric errors is then used to approx-
imately symmetrize the errors, giving n ¼ 3 � 3:74 cm�3 (i.e.,
�n �

ffiffiffiffiffiffiffiffiffi
7 ; 2

p
¼

ffiffiffiffiffi
14

p
¼ 3:74 cm�3). Only with this assumption

for the fractional error on the density can we recover �2

 ¼ 1:27

from their data. This is a fractional error of about 125%, in con-
trast with our assumption of 50% error.

In fact, we find that for �n /n between 10% and 300% (which
covers the range of fractional errors on density that have been
assumed in previous work; Bloom et al. 2003b; Dai et al. 2004;
Ghirlanda et al. 2004a, 2004b), the choice of density that mini-
mizes�2


 for our data set A and our data set G is around 1–2 cm�3,
for either the [20, 2000] keVor [1, 104] keV bandpass (see Fig. 2).
Although the choice of n ¼ 3 cm�3 (Ghirlanda et al. 2004a,
2004b) does not optimize the fit for our data sets A and G or
their data set G�*(for either bandpass), it improves the fit dra-
matically as compared to our choice of n ¼ 10 cm�3. Clearly an
increase in �n /n also improves the goodness of fit, as shown in
Figure 2.

We also have different references for S� , Ep , tjet , and n, for
several bursts common to both samples, although the majority
of the input data are identical. See our Table 1 compared to
Tables 1–4 of Ghirlanda et al. (2004a), as well as Appendix B,
for detailed burst-by-burst comparison. As an example of the
most notable differences, consider the jet-break time for 020124:
We use tjet ¼ 15 � 5 days (e.g., tjet ¼ 10 20 days; Berger et al.
2002a), versus their reference of tjet ¼ 3 � 0:4 days (also citing
Berger et al. 2002a jointly with Gorosabel et al. 2002; Bloom
et al. 2003b; see their Table 2), although we cannot verify this
number from those sources or anywhere else in the literature.
For our data set A, this single burst has a strong effect on the fit,
improving it from �2


 ¼ 3:71 to 2.80, simply by changing this
jet-break reference from our reference to their reference. As
seen in the bottom right panel of Figure 2, �2


 is very sensitive to
these data selection differences for the bursts common to both
samples, worsening dramatically for our slightly different refer-
ences, the most sensitive of which we believe are either more
current (e.g., Sakamoto et al. 2004) or more reliable (e.g., Berger
et al. 2002a) than those cited in Ghirlanda et al. (2004a) for the
bursts in question. In fact, the data in Ghirlanda et al. (2004a)
for their set G�*yield marginally acceptable fits for a much
larger range of assumed densities and fractional errors (again,
see Fig. 2).

Dai et al. (2004) also reexamine the Ghirlanda relation and do
not include GRBs 990510 and 030226 (in addition to 970508,
021004, 021211, which were known at the time, as well as
030429 and 041006, which were discovered later), keeping
only 12 bursts (hereafter ‘‘set D’’). Using those 12 bursts, a
slightly different (�M ; ��; h) ¼ (0:27; 0:73; 0:71) cosmology,
a k-correction bandpass of [1, 104] keV (as in Ghirlanda et al.
2004a, 2004b), and n ¼ 3 � 0:33 cm�3 (i.e., D�*; their Table 1),
Dai et al. (2004) report �2


 ¼ 0:53 (��1 ¼ 1:5 � 0:08), a very
good fit to a power law. Using set D, with our assumptions, we
find� ¼ 0:659 � 0:034 and a reduced�2


 ¼ 2:70 (10 dof ),which
is much worse than the Dai et al. (2004) fit. Since this compari-
son is for the same 12 bursts, again, the large discrepancy comes
primarily from different density assumptions. As mentioned,
Dai et al. (2004) assume n ¼ 3 � 0:33 cm�3, a choice that im-
proves the fit relative to our choice of n ¼ 10 cm�3, even though
they assume a fractional error (11%) that is smaller than our as-
sumption (50%), which, all other things being equal, would tend
to worsen their fit. The different k-correction bandpasses and
the slightly different cosmology they use compared to our stan-
dard cosmology, (�M ; ��; h)¼ (0:27; 0:73; 0:71) versus our
(0.3, 0.7, 0.7) choice, have little effect on the goodness of fit.
Under our assumptions, the fit to our set D (�2


 ¼ 2:70) is
much better than the fit for our set A (�2


 ¼ 3:71), although
both are poor. This discrepancy arises due to data selection, as
the Dai et al. (2004) sample does not include two of the major
outliers to the Ghirlanda relation, 990510 and 030226, as seen
in Figure 1. Dai et al. (2004) specifically argue that these bursts
should be left out on grounds that are somewhat controversial.
The strong effect of removing only two bursts in such a small
sample is not surprising, as we have already seen that the data
are sensitive to reference choices for individual bursts (e.g.,
the jet break for 020124). Ultimately, the difference between
sets D and A comes from data selection, while the larger dif-
ference between fits for sets D�*and D comes from differing
assumptions. The combination of both leads to the largest dif-
ference between fits for A (�2


 ¼ 3:71) and D�*(�2

 ¼ 0:53),

although, as with the comparison to the data set G�*(Ghirlanda
et al. 2004a, 2004b), the best-fit slopes themselves remain largely
unchanged.
The sample selection critique (i.e., excluding outlier bursts)

does not apply to set G�*(Ghirlanda et al. 2004a, 2004b) or to
our set G, as the fit is only slightly worsened by including some
of the bursts in our set A (some of which were discovered after
their paper) and could be improved by removing some bursts
from their set G�*, nor does it apply to subsequent work from the
Dai et al. (2004) group (Xu et al. 2005), as this work uses a
larger sample including GRBs 990510 and 030226. Neverthe-
less, the realization that individual data selection choices can
change the fit from a good one to a poor one gives us great pause
in believing a standard candle derived from the relation, which
requires that the relation is well fitted by a power law. To quan-
tify this, we identify and discuss the role of outliers further in
the following section.

2.5. Identifying Ep-E gamma Outliers2.5. Identifying Ep-E� Outliers

If the Ep-E� correlation holds, then equation (5) can be re-
written to yield a dimensionless number, the GRB standard
candle A� , which should be a constant of order unity from burst
to burst, constructed as

A� ¼
E�

E�

� �
	

Ep

� �1=�

; ð6Þ
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with error (neglecting the uncertainty in redshift, and assum-
ing no covariance) given by

�A�

A�

� �2

¼
�E�

E�

� �2

þ 1

�

� �2 �Ep

Ep

� �2

þ �	

	

� �2

" #

þ 1

�

� �2 ��

�

� �2

ln
Ep

	

� �� 	2( )
: ð7Þ

Since the combination 	1=�/E� [or equivalently 	/(E�)�] is a
constant for the fit, we are free to choose E� to minimize the
covariance between � and 	 without affecting A� , as 	 changes
to compensate. As such, we can safely neglect the related co-
variance terms in equation (7). Certainly Ep and E� themselves
are correlated (this is the central point of interest in this work);
however, this correlation is likely an intrinsic correlation (pos-
sibly due to local physics), not observational covariance, which
must be dealt with in the error analysis (although see Band &
Preece 2005). As before, we assume no covariance and delay
further justification until x 5.2, although again, even assuming
maximal covariance increases the errors by at most a factor of
P2 and simply indicates that certain bursts that were minor out-
liers may actually be consistent with the relation.

Computing A� provides a quick diagnostic to determine
which bursts deviate from the Ghirlanda relation. Bursts that
fall significantly off the relation (outliers) will have an A� value
that significantly deviates from unity (within the errors). A list
of A�values for all bursts in our sample (set A) in a standard cos-
mology, using our assumptions for density, etc., can be found
in Table 2, where seven bursts from set A (970508, 990510,
011211, 020124, 020405, 020813, and 030226) have computed
A�values at least 1 � from A� ¼ 1 (assuming no covariance). Of
these, 020124 and 020405 are between 2 and 3 � away, whereas
990510 and 030226 are at more than 3 � away from A� ¼ 1. See
also Figure 1, where these nominal outliers are indicated on the
plot. See Appendix B for a detailed burst-by-burst comparison
of the outliers between sets A, G, and D. Again, note that set
D excludes 990510 and 030226, the two largest outliers to the
relation in our set.

Additionally, there are several bursts with upper/lower lim-
its on tjet, E

obs
p , or z, not included in set A, which can be identi-

fied as outliers by considering limiting cases. Of course, one must
assume the values of � and 	 derived for set A in order to place
other bursts on the relation. As noted by Ghirlanda et al. (2004a),
the very low redshift GRB 980425 falls well off the relation.
Berger (2004b) recently noted that GRB 031203 also falls off
the relation, with an Ep > 210 keV (Sazonov et al. 2004). Al-
thoughwe cannot compute �A�

for these bursts, since neither have
a jet-break constraint, even assuming isotropy (i.e., fb ¼ 1),
these bursts appear as major outliers in the Ghirlanda relation,
completely independent of any assumptions concerning cir-
cumburst density (see Fig. 1). Other bursts not in set A (010222,
010921, 011121, 000911, 040924) are also minor (1 �) to major
(2–3 �) outliers, depending on the assumptions involving tjet,
Ep, and z. Several bursts with uncertain redshift (980326, 980519,
030528) also are outliers under reasonable assumptions. See
Appendix B for details.

Despite the apparent ubiquity of outliers to the relation, in
light of the results highlighted in Figure 2, a major caveat must
be stressed. For most of these bursts, the ambient density is
unknown, and any discussion about bursts being outliers is only
meaningful modulo assumptions made concerning the density
and the gamma-ray efficiency. In fact, only for the bursts 980425

and 031203 (and, to a lesser extent, 9905106) can we be rel-
atively certain that they are still outliers independent of the
circumburst environment or gamma-ray efficiency. More quan-
titatively, E� / ½(n/10 cm�3)(�/0:2)�1=4 in the small �jet limit
(1� cos �jet � �2jet /2). As an example, simply changing the as-
sumed density from, say, 10 to 1 cm�3 (while keeping � ¼ 0:2)
leads to a decrease in inferred energy by a factor of�(1/10)1/4 ¼
0:56 (�50%), or vice versa. Ultimately, while the product (n�)
cannot be tuned arbitrarily, given existing constraints on n
(x 5.5) and � (x 5.6), it does provide enough freedom to make
most outlier bursts consistent with the relation (980425 and
031203 aside). As such, we now conclude that without reliable
density (and efficiency) estimates, GRB cosmology using the
Ep-E� relation becomes prohibitively uncertain. On the other
hand, the current data do not rule out an eventual good fit to the
relation, as there still exist reasonable density assumptions that
yield good fits (see x 5.5). However, since these assumptions are
not favored a priori over equally reasonable assumptions that
yield poor fits, only an improved sample can determine the true
goodness of fit to the relation.

2.6. Cosmology Dependence of the Relation

Although there are several significant outliers under our as-
sumptions and the goodness offit of the Ep-E� relation is sensitive
to these assumptions, the relation does appear to be a significant
correlation, for our standard cosmology, with a slope between
roughly 0.6 and 0.8 independent of any density assumptions,
with most choices of n and �n giving a slope�2

3
. As also recently

suggested by Dai et al. (2004) and Ghirlanda et al. (2004b), the
correlation could provide a means to correct the energetics and
use GRBs for cosmography. However, without any knowledge
of the slope of the power law a priori, in the cosmographic con-
text, it is imperative to demonstrate that the power-law fit to the
correlation is statistically acceptable over the range of plausible
cosmologies: this is nontrivial, given the complex dependence
of E� on the luminosity distance (eqs. [1] and [2]).

Figure 1 shows the correlation for set A for a variety of cos-
mologies, placing emphasis on the outliers. The inset of Figure 1
shows the best-fit values of � as a contour plot in the (�M , ��)-
plane, with data calculated for our standard assumptions. Over a
wide range of cosmologies [0 � �M ,�� � 2], � falls in a narrow
range from �0.6 to 0.8, with typical errors �0.03–0.5 (5%–6%)
that are essentially invariant to the cosmology. Recalling equa-
tion (5), by choosing the normalization parameter E� that min-
imizes the covariance between the slope � and the intercept 	,
we find that log (E�½ergs�) remains in a small range 50.3–50.8
across the entire grid [0 � �M ,�� � 2], and that with this choice
forE�, 	 remains essentially a constant in the range 247–256 keV.
Along with associated 1 � error, the best-fit value of � ¼ 0:669�
0:034 in a standard cosmology brackets the best-fit values in
all but the most extreme cosmologies in the range [0 � �M ,
�� � 1]. We thus confirm the claim by Dai et al. (2004) that the
slope of the Ep-E� relation is relatively insensitive to �M , as
it changes by no more than 25% across the entire grid and by
closer to 5% or 10% in what is arguably the most plausible

6 The density for 990510 has been constrained (n ¼ 0:29þ0:11
�0:15 cm

�3; Panaitescu
& Kumar 2002), so it is an outlier regardless of our density assumption for other
bursts, although there is some freedom as the model uncertainty in deriving
the constraint is likely to far exceed the reported statistical uncertainty shown
here (see x 5.5). GRB 030226, with unknown density, is an even greater outlier
(compared to our n ¼ 10 � 5 cm�3 assumption) if one applies the Dai et al.
(2004) assumption of n ¼ 3 � 0:33 cm�3, which further reduces the energy (see
Fig. 1).
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region of the (�M ,��)-plane. However, even these small changes
in the slope, along with the uncertainty involved in determining
it from the data, must be taken into account self-consistently to
avoid circularity in the cosmography analysis.

Previously, we reported a poor fit (�2

 ¼ 3:71) to theGhirlanda

relation for our set A in the standard cosmology. Refitting the
relation for setAovermany cosmologies shows that a power law
also provides an unacceptable fit (5 > �2


 > 3) over the range
[0 � �M , �� � 2]. The fit also remains poor over this same
region of the (�M , ��)-plane for subsets G and D. Thus, based
on our assumptions, the relation cannot be well fitted simply by
changing the cosmology. However, as discussed for our stan-
dard cosmology, goodfits exist for different density assumptions
and, ultimately, this remains the case for every cosmology in our
grid.

3. FORMALIZING THE STANDARDIZED GRB ENERGY

Despite the apparent intrinsic scatter in the Ghirlanda rela-
tion and the uncertainties in the assumptions used to fit it, the
correlation is highly significant and can be used to standardize
GRB energetics with a simple empirical correction. By con-
structing the GRB standard candle A� , which should be iden-
tically unity if the Ghirlanda relation exactly holds for all bursts,
we can derive an expression for the GRB luminosity distance
(Dl;�) and the GRB distance modulus (DM�). Although it is
perfectly possible to solve forDl;� numerically without employ-
ing the small-angle approximation for the beaming fraction (as
in Ghirlanda et al. 2004b and outlined briefly below), such a
choice leaves the formalism less explicit and not much is gained
as the small-angle approximation yields values of Dl;� that are
accurate to within P1% of the numerical result even for the
widest jets in the sample (�20	–30	), making the approxima-
tion much less important than the sensitivity due to input as-
sumptions or the propagated observational errors. Although we
do calculate these quantities numerically in practice for the sub-
sequent analysis and for the values reported in Table 2, we still
feel that it is instructive to additionally present the formalism
with the small-angle approximation. As such, to derive Dl;� an-
alytically, we can approximate �jet as a small angle (i.e., fb �
�2
jet /2), yielding

E� � B2

2

� �
4�S� k tjet(n�)

1=3

(1þ z)2

" #3=4

D
3=2
l;70h

�3=2
70 ; ð8Þ

where Dl;70 ¼ Dl;thh70, h70 ¼ H0/70 km s�1 Mpc�1, Dl;th is the
luminosity distance defined in equation (11) of Riess et al.
(2004b) (i.e.,Dl;th / H�1

0 ), and all other variables are defined in
x 2. Although we set h70 ¼ h/0:7 ¼ 1 throughout the analysis,
we now include it in equation (8) to make the Hubble constant
dependence explicit. The Hubble constant itself was implicit in
equations (1) and (2) inside the variableDl;th. The expression in
equation (8) is accurate to within P1% of the exact expression
for E� (eq. [1]) for all bursts in the sample.

Under the standard candle assumption A� � 1, or equiva-
lently E� � E� Ep/	

� �1=�
, the GRB luminosity distance Dl;� is

found by solving forDl;70 in equation (8). Thus, if A� � 1 is true
for each burst, then Dl;� � Dl;70. Making these substitutions
and solving for Dl;� , we find

Dl;� � 2E�

B2

� �2=3
Ep

	

� �2=3�
(1þ z)2

4�S�k tjet(n�)
1=3

" #1=2

h70: ð9Þ

This is similar to the derived quantity in Dai et al. (2004) (who
take � � 2

3
).

As shown, �E�
can be derived analytically without the small-

angle approximation. As with E� , �E�
is also well approximated

by direct error propagation of equation (8), which assumes the
small-angle limit.7WhileDl;� cannot be derived analyticallywith-
out the small angle or some other approximation (e.g., Bloom
et al. 2003b), as with E� , the small-angle expression for Dl;�

(eq. [9]) is accurate to withinP1% of the numerical result. As
with �E�

, the error �Dl ; �
can be derived analytically without the

small-angle approximation (see x 3.1). However, using the small-
angle approximation by direct error propagation of equation (9)
(as done similarly in Dai et al. 2004) gives an expression ac-
curate to within P1% of the exact expression, found by direct
error propagation of the right- and left-hand sides of the fol-
lowing equation:

Dl;�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fb(Dl;�)

p
¼

Eobs
p (1þ z)

	

" #1=2�
E�(1þ z)

4�S�k

" #1=2

h70: ð10Þ

This equation is derived combining equations (1) and (2) and
setting Dl;th � Dl;� , where fb(Dl;�)¼1� cos ½�jet(Dl;�)�. The more
tractable terms not involving Dl;� are grouped on the right-hand
side. This equation makes explicit how to solve for Dl;� numer-
ically. Simply evaluate the right-hand side and vary Dl;� on the
left-hand side until j1� (LHS/RHS)j < 
, where 
 can be tuned
to achieve the desired accuracy.
Returning to the small-angle approximation, using an alter-

native approach, we recast equation (9) in cgs units with an anal-
ogy to astronomical magnitudes and derive the ‘‘apparent GRB
distance modulus,’’ DM� ¼ 5 log (Dl;� /10 pc), finding

DM� � �2:5 log
4�S�k tjet n�ð Þ1=3

1þ zð Þ2

" #
þC� þ zp; ð11Þ

with the ‘‘GRB energy correction’’ term in mag,

C� ¼ 10

3�
log

Eobs
p (1þ z)

	

" #
; ð12Þ

and the zero point zp ¼ (10/3) log 2E�/B2ð Þ � 5 log (3:085 ;
1019 cm)þ 5 log h70. The zero point zp contains unit conver-
sion terms so that the first term plus zp is in mag, as well as the
scaled Hubble constant h70 and the normalization E� of the
Ghirlanda relation (in ergs), chosen to minimize the covariance
between � and 	. In principle, zp could also be defined in terms
of 	 rather than E� since the quantity 	/(E�)� is related to the
true ‘‘y-intercept’’ in the two-parameter fit (with �) to the
Ghirlanda relation. Note that since the parameters 	/(E�)� and
� are fitted from the data for each cosmology, they have already
been effectively marginalized over. The same is true for E� via
its role in zp. In contrast to SN Ia work, the Hubble constant
does not need to be additionally marginalized over, precisely be-
cause of the cosmology dependence of the GRB standard can-
dle. In other words, while assuming a prior on h (e.g., h70 ¼ 1)
is necessary to calculate E� , A� , and DM� for a given cosmology,

7 From eq. (5) of Bloom et al. (2003b), theC�jet term in our eq. (3) is given by
C�jet ¼ f�jet sin �jet/½8(1� cos �jet)�g2. In the small-angle limit, C�jet � 1/16. By
taking this limit in eq. (3) or computing the result of direct error propaga-
tion of eq. (8), we find (�E�

/E�)
2 � (9/16)½(�S� /S�)2 þ (�k /k)

2 þ (�tjet /tjet)
2þ

1/9(�n/n)
2�. One can show that this expression is equivalent to within P1% of

eq. (3), which does not use the small-angle approximation.
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it is unnecessary for cosmography as its effect cancels in the ex-
pression for the Hubble diagram �2, shown in x 3.3.

As discussed previously, the above analysis differs from the
analysis in Bloom et al. (2003b; their eqs. [2] and [3]), where
the assumption was to neglect the implicit Dl;th dependence
inside fb , which itself is a reasonable approximation (see their
footnote 7) but is not as accurate as the small-angle jet approxi-
mation. The other main assumption in Bloom et al. (2003b) was
a different standard candle assumption, namely, 
� ¼ E�/Ē� � 1,
where Ē� is the median energy for all the bursts in the sample,
which, for self-consistency, must be recalculated for every cos-
mology in the same way that the Ghirlanda relation must be
refitted for every cosmology to determine the best-fit � and 	.
Fitting for Ē� (or � and 	 ! E�) thus represents the freedom in
determining the cosmological zero point for each cosmology
from a sample of high-z bursts in the absence of a low-z ‘‘training
set’’ to calibrate the relation in a cosmology-independent way
(see x 6).

Based on the differences between the assumptions in Bloom
et al. (2003b) and those herein, we canwrite an expression involv-
ing the ‘‘uncorrected’’ GRB distance modulus (DM�;unc), which
is related to the ‘‘corrected’’ GRB distance modulus (eq. [11])
in the small-angle limit by

DM� � DM�;unc �C� �
10

3
log

Ē�

E�

� �
¼ 10

3
log


�
A�

� �
: ð13Þ

The value C� corrects for the now untenable assumption of a
standard energy. Note that DM� � DM�;unc � C� if and only if
Ē� � E�. While the correction termC� differs from burst to burst,
the (10/3) log(Ē� /E

�) term is simply a constant for all bursts in a
given cosmology. Although C� is defined in the context of the
small-angle approximation, it is still appropriate to think of the
exact correction (where the difference DM�� DM�;unc is calcu-
lated numerically) as a magnitude correction, for which C� �
DM� � DM�;unc þ (10/3) log(Ē� /E

�) is a reasonable approxi-
mation. This can be seen by comparing the relevant columns
in Table 2. For reference, (10/3) log(Ē�/E

�) ¼ 0:95 mag in the
standard cosmology. For self-consistency, the comparison in
equation (13) should be derived for the same set of bursts used
to define both the standard candles 
� and A� . Although there are
23 bursts (set E) that can be used to compute E� (Ē�) and only
19 bursts (set A) with all the data necessary for the Ep-E� re-
lation (�, 	), we still use all the bursts to compute Ē� . In prac-
tice, this is a small point, since log(Ē� ergs½ �) ¼ 50:85 and 50.90
for sets A and E, respectively.

Ultimately, we derive the formalism in terms of the dis-
tance modulus DM� rather than only the luminosity distance
Dl;� and cast C� in magnitudes to highlight a direct analogy to
various empirical (magnitude) corrections for SNe Ia includ-
ing �m15 (Phillips 1993; Hamuy et al. 1995, 1996), the multi-
color light-curve shape (MLCS)method (Riess et al. 1995, 1996),
MLCS2k2 (S. Jha et al. 2005, in preparation), the stretch method
(Perlmutter et al. 1997), and the BATM method (Tonry et al.
2003). This is in addition to future arguments for log space error
analysis discussed in x 3.1. From the Ghirlanda relation, a large,
more positive C� is obtained for bursts with larger inferred E� ,
and C� < 0 for bursts that are underenergetic from the median.
As seen in Table 2, the spread in C� is rather large,�8 mag, re-
flecting the intrinsic scatter of more than 3 orders of magnitude
in E� . In contrast to typical, one-parameter, peak luminosity cor-
rections for SNe Ia involving factors of �2–3, the GRB energy
correction involves factors ofk103. This alone requires more rig-
orous support to justify using GRBs for precision cosmology.

Figure 3 shows the effect of the correction term on the effective
absolute GRB magnitude, as a function of redshift. The improve-
ment in the scatter about the Hubble diagram is apparent. Equiv-
alently, the corrected distribution of residuals, DMth � DM� �
(10/3) log(A�/1), is clearly much narrower than the distribution
of ‘‘uncorrected’’ residuals, DMth � DM�;unc � (10/3) log(
� /1)
(see Fig. 3 inset plots), reflecting the relative superiority of the
standard candle assumption A� � 1 versus 
� � 1. As seen in
Table 2, the A� distribution for set A has a spread of only a factor
of 2–3 as compared to several orders of magnitude for 
�. Since
the same assumptions for density apply to both the 
� and A�

standard candles, it is clear that the latter is far superior, inde-
pendent of the relevant input assumptions.

3.1. Error Estimates

As with �E�
, we estimate the error in the inferred GRB lu-

minosity distance Dl;� under the assumption that there is no
covariance between the measurement of the observables S� , k,
Eobs
p , tjet , n and the inference of �jet . Under these assumptions

and the approximation of Gaussian errors, the fractional uncer-
tainty inDl;� , which can be derived analyticallywithout the small-
angle approximation, is given by

�Dl;�

Dl;�

� �2

¼ 1

4

�S�

S�

� �2

þ �k

k

� �2

" #
þ 1

4

C�jet

ð1�
ffiffiffiffiffiffiffiffi
C�jet

p
Þ2

" #

; 9
�tjet

tjet

� �2

þ �n

n

� �2

" #
þ 1

4

1

ð1�
ffiffiffiffiffiffiffiffi
C�jet

p
Þ2

" #

;
1

�

� �2 �Ep

Ep

� �2

þ �	

	

� �2

þ ��

�

� �2

ln
Ep

	

� �� 	2( )

¼ 1

4

1

ð1�
ffiffiffiffiffiffiffiffi
C�jet

p
Þ2

" #
�A�

A�

� �2

: ð14Þ

Equation (14) shows an implicit relationship between the in-
trinsic scatter in the Ghirlanda relation and the measurement
errors in Ep. See also the related equation (7) for �A�

/A� . Note
that we have also treated the errors on � and 	 as statistical,
rather than systematic. See x 5.2 for a discussion of possible
systematic errors from neglecting nonzero covariance, although,
as discussed, even assuming maximal covariance (using the tri-
angle inequality) implies that equation (14) is underestimating
the errors by at most a factor of P2. The error on the apparent
GRB distance modulus is then obtained from �DM�

¼ (5/ ln 10)
(�Dl; �

/Dl;�)� 2:17(�Dl; �
/Dl;�).

Similarly, the errors on C� (which uses the small-angle ap-
proximation) are given by

�C�

� �2¼ C�

� �2 ��

�

� �2

þ 10

3� ln 10

� �2 �Ep

Ep

� �2

þ �	

	

� �2

" #
:

ð15Þ

Figure 3 shows the GRB Hubble diagram for a standard cos-
mology with the C� term and without. It is clear that the in-
clusion of the C� term (1) accommodates bursts that are highly
discrepant in E� (e.g., 030329) and (2) significantly reduces
the scatter about the luminosity distance–redshift relation. Un-
der our assumptions, typical fractional errors are (�S� /S�)�
9%, (�k /k) � 6%, (�tjet /tjet) � 21%, (�n/n) � 63%, (�E�

/E�) �
26%, (�Ep

/Ep) � 17%, (��/�) � 5%, and (�	/	) � 4%. In order
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of decreasing importance, typical error terms in equation (14)
are (1/2�)½1/(1� C1/ 2

�jet )�(�Ep /Ep) � 0:174, (3/2)½C1/ 2
�jet /(1� C1/ 2

�jet )�
(�tjet /tjet)� 0:106, (1/2)½C1/ 2

�jet /(1�C1/ 2
�jet

)�(�n/n)� 0:105, 12 (�S� /S�)�
0:045, (1/2�)½1/(1�C1/2

�jet
)�(�	/	) � 0:040, 12 (�k /k) � 0:030, and

(1/2�) ½1/(1�C1/2
�jet )�(��/�)½ ln (Ep/	)� � 0:004. The quadrature

sum of these numbers gives a typical fractional error on Dl;�

of (�Dl;�
/Dl;�) � 25% or an error in the apparent GRB distance

modulus of �DM� � 0:54 mag, nearly a factor of 3 larger than
the typical error in determining the distance modulus of SNe Ia
(�0.2 mag; see Table 5 of Riess et al. [2004b], which uses the
MLCS2k2 algorithm; S. Jha et al. 2005, in preparation).

Note, however, that the approximation of Gaussian errors
breaks down for large errors when expressing the errors in terms
of DM� as opposed to Dl;� because the log space distance mod-
ulus errors become asymmetric. This is a concern for SNe Ia

with typical distance modulus errors of 0.15–0.2 mag and could
be of more concern for GRBs with typical distance modulus er-
rors of 0.4–0.6 mag. However, the uncertainties on the relevant
GRB input parameters such as n and tjet are better described by a
lognormal, rather than a normal, distribution, as seen in Figure 5
of Panaitescu & Kumar (2001). As such, we feel that it is more
appropriate to follow the formalism of Riess et al. (2004b) for
SNe Ia and work in log (magnitude) space when performing the
error analysis for GRBs, although it is worth exploring the mer-
its of error analysis in purely luminosity distance space in future
work.
Under our assumptions, the dominant terms come from the

errors on the observed spectral peak energy [assuming no error
on z, the fractional error on Ep is the same as the error on
Eobs
p ¼ Ep/(1þ z)], the jet-break time, and the external density.

Fig. 3.—Top: GRB Hubble diagram with (left) and without (right) the GRB energy correction term C�. The solid curve is the theoretical distance modulus (DMth) in
the standard cosmology of (�M ; ��; h) ¼ (0:3; 0:7; 0:7). The data are DM� (left) and DM�; unc (right) with associated errors, respectively, both derived assuming the
standard cosmology and a density of n ¼ 10 � 5 cm�3 for bursts without constraints. Although C� is defined using the small-angle approximation, the data are
calculated numerically. Bursts without upper or lower limit arrows (set A) were used to fit the Ghirlanda relation to obtain the cosmological zero point to DM� (left),
while those with z, tjet, and no upper/lower limits (set E) are used analogously for DM�; unc (right). The potential utility ofC� in a cosmographic context is best seen by the
effect on GRB 030329 (lowest z data shown): without the correction, that burst is significantly discrepant from the best fit by �4 mag (a factor of�15 in energy) yet is
consistent to within�0.2magwith theC� correction. Bottom: Hubble diagram residuals, DM� � DMth � (10/3�) log A� and DM�; unc � DMth � (10/3�) log 
� , plotted
for the corrected (left) and uncorrected (right) standard candles, respectively. Histograms of the residuals are also shown inset in the top panels. The scatter about a
constant value of 0 is a measure of the goodness of the standard candle. Clearly the correction improves the scatter about a ‘‘standard’’ GRB magnitude. In the bottom
left panel, with respect to the 0 line, 10 bursts are within 1 �, 2 are between 1 and 2 �, and 6 are at greater than 2 � (plus four more including the upper/ lower limits),
indicative of the poor fit. While the highest redshift burst without upper/ lower limits (020124, z ¼ 3:198) appears as a major outlier, this can be remedied simply by
changing the density from n ¼ 10 to 1 cm�3. As such, there is no apparent evolution with redshift, even out to z ¼ 4:5, but, ultimately, redshift evolution of the standard
candle A� cannot be probed accurately without better density constraints. Note that any cosmological parameter determination requires a separate plot like the top left
panel for each cosmology. The global minimum �2


 over all cosmologies then gives the favored cosmological parameters. However, for this cosmology, the fit is poor
(�2


 � 3). In fact, for set A, �2

 k2 for all cosmologies in our grid (see Fig. 4, top right panel ), undermining the cosmographic utility of the Ghirlanda relation at present,

at least under the assumptions we have made.
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Although nonnegligible, the intrinsic scatter in the fit to the
Ghirlanda relation (via � and 	), the fluence, and k-correction
have the least important error terms. The relative unimportance
of the statistical error �k/k in determining the distance highlights
an advantage of GRBs over SNe Ia, where the latter suffers from
both statistical and additional systematic errors in determining
the k-correction. However, as discussed, we can increase the
errors arbitrarily by increasing the fractional error on density.We
also assume no error on the efficiency �, an assumption critiqued
in x 5.6.

3.2. Are GRBs Useful as Cosmological Distance Indicators
in Principle?

Given the preceding formalism, one can construct a GRB
standard candle and use it to test cosmological models. However,
a crucial point not yet addressed is whether GRBs are actually
competitive as cosmological distance indicators in principle.

Of the main advantages (high-redshift detection, immunity
to dust, more tractable k-corrections, separate evolution from
SNe Ia), the first is arguably the most important. While zmax �
1:7 is essentially the upper limit for currently feasible spectral
characterization of SNe Ia with the Hubble Space Telescope
(HST; e.g., SN 1997ff; Riess et al. 2001) and future (pre-JWST )
Type Ia versus Type Ib/c SN classification with the Supernova/
Acceleration Probe (SNAP; Aldering et al. 2004; Linder 2004),
10 GRBs out of the sample of 39 with known z already have
measured redshiftsk2 (see Table 1). While this is clearly prom-
ising for future high-z detections with Swift, it is not obvious
that the z > 1:7 region is an interesting part of the Hubble di-
agram since it is in the matter-dominated epoch and, at first
blush, does not strongly constrain the dark energy. However,
Linder & Huterer (2003) argue that a full survey in the range
0 < z < 2 is necessary for revealing the nature of dark energy
because, while low-z measurements are crucial for determin-
ing �� and w, certain inherent systematic errors and degener-
acies due to the dark energy and its possible time variation are
only resolvable at high redshift. This is particularly evident in
Figures 3–5 of Linder & Huterer (2003). Furthermore, depend-
ing on the nature of the time variation, the region of interest
may conceivably include redshifts greater than 2. In addition,
although five bursts in set A have z > 2, the mean redshift in the
sample is z̄ � 1:3, and with Swift, it is likely that GRBs will
dominate the 1 < z < 2 region, as compared to SNe Ia, several
years before the launch of SNAP (�2010). Indeed there are
13 GRBs in our sample in the redshift range 0:65 < z < 2 (nine
in the range 0:9 < z < 2), which is already comparable to the
number of high-z SNe Ia so far discovered withHST (Table 3 of
Riess et al. 2004b). This intermediate- to high-redshift regime is
clearly important for more precisely constraining�M ,�� ,w, its
possible time variation, and the transition redshift to the epoch
of deceleration (Riess et al. 2004a, 2004b).

Thus, as also stressed by Ghirlanda et al. (2004b), what may
evolve from this work is a combination of GRBs and SNe Ia,
where SNe Ia are primarily useful for determining �� and w at
low z, and GRBs serve to provide independent, and potentially
more accurate, constraints on �M (without many low-z bursts,
GRBs alone are essentially insensitive to ��). GRBs could ul-
timately serve as an independent cross-check to the systematic
errors that would plague an SN Ia sample with relatively sparse
coverage in the 1 < z < 2 region, as outlined in Linder &Huterer
(2003). This is in addition to the fact that GRBs have systematic
errors that are different from those that are potentially the most
problematic for SNe Ia, e.g., dust, k-corrections, and evolution.

3.3. Using the Standardized Energy for Cosmography

Granting that GRBs are cosmographically useful in princi-
ple, we can test this in practice for the current sample, noting
of course that the sample is small (19 bursts), depends on the
typically unknown external density, and is not well sampled at
low redshift. Since the theoretical distance modulus DMth and
apparent GRB distance modulus DM� are functions that have
complex, but different, dependencies on the cosmological pa-
rameters �M and ��, a minimization of the scatter in the re-
siduals DMth�DM� � (10/3) log(A� /1) (in the small-angle jet
limit) can in principle be a useful tool to probe the geometry of
the universe.

We first stress the need to recalibrate the slope of the relation
for different cosmologies. To quantify this, although � changes
by no more than �25% across the full grid, this variation, as
well as the error in determining the slope for each cosmology
(�5%), must be self-consistently taken into account in the fit
to the GRB Hubble diagram. Even changes of k5% in � [and
thus 	 and E�, since 	/(E�)� and � are the two fundamental pa-
rameters in the fit] affect the apparent GRB luminosity distance
sensitively as Dl;� / (E�)2

=3(Ep/	)
2=3� in the small-angle limit

(eq. [9]). Ultimately, without a low-redshift training set to cal-
ibrate � or an a priori value of � from physics, assuming a value
of � derived in a given cosmology will effectively input prior
information about that cosmology into the analysis. As shown
in x 4, this concern affects the analysis of Dai et al. (2004).

Although the intrinsic scatter (and sensitivity to input as-
sumptions) in the Ghirlanda relation limits the precision of this
cosmographic method, one can still apply a self-consistent ap-
proach to the current sample of GRBs with the required spectral
and afterglow data and confirmed spectroscopic redshifts. First,
for a given cosmology, we determine E� , �E�

for all GRBs of
interest, assuming values for the gamma-ray efficiency �, the
external density n, its error, and other data where appropriate.
We then refit the Ep-E� correlation to find � , (��), 	 , (�	) for
that cosmology. After fitting for �, we determine the value of
the normalization E� for that cosmology that minimizes the co-
variance between � and 	 in order to eliminate the related terms
from the error analysis. We then determine DM� and �DM�

for
all GRBs in the set. We repeat this for a grid of cosmologies
spanning the range [0 � �M , �� � 2]. For each cosmology we
then compute

�2 �M ; ��; �; 	ð Þ

¼
XNGRB

i¼1

DM� zi; �M ; ��; �; 	ð Þ � DMth zi; �M ; ��ð Þ
�DM�

zi; �M ; ��; �; 	ð Þ

� 	2
;

ð16Þ

where NGRB is the number of GRBs. We do this for all cos-
mologies in our grid (with maximum resolution 51 ; 51) and
construct a �2 surface, shown in Figure 4 (for set A) for a range
of assumptions for density and its error. In principle, the mini-
mum �2 should then correspond to the favored (�M , ��) cos-
mology. Equivalently, the cosmology can be parameterized in
terms of (�M , w), as in Riess et al. (2004b), but the sample
requires a substantial fraction of low-z bursts (which our sample
is lacking) for optimal sensitivity to w. Again, note that there is
no need to marginalize again over E� (implicit in the zp for
DM� ; eq. [11]) because effective marginalization has already
been performed as the parameters 	/(E�)� and � are fitted di-
rectly from the data for each cosmology. Similarly, there is no
need to further marginalize over the Hubble constant because its
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effect cancels in equation (16); the 5 log h implicit in each term
of the numerator cancels and the denominator (a log space er-
ror) is a fractional error in real space, which is independent of h.

Although the method is, in principle, sound, the current data
provide essentially no meaning ful constraints on the cosmolog-
ical parameters because the shape and normalization of the �2

surfaces are highly sensitive to input assumptions and data ref-
erences for individual bursts (which are outliers to the Ghirlanda
relation for some input data and not for others). Under our as-
sumptions, the data do not give a good fit for the Hubble dia-
gram in any cosmology in our grid [0 � �M , �� � 2], with a
minimum �2


 ¼ 2:36 for the (�M ; ��) ¼ (0:12; 1:32) cosmol-
ogy (see Fig. 4). Although not shown here, for our assumptions,
we find �2


 > 1:5 (a poor fit), at the minimum of the Hubble dia-
gram surface for each of the data subsets A, G, and D. This is not

surprising since the Ghirlanda relation itself, the basis for the
cosmographic standard candle assumption, is not well fitted by
a power law under our input assumptions in any reasonable
cosmology for any of the data sets.
As with the Ghirlanda relation, by changing the input as-

sumptions, once can improve the Hubble diagram fit. However,
an interesting, but somewhat anticlimactic, feature emerges. As
shown in Figure 4, for our set A, the peculiar, GRB-favored
loitering cosmology (�M ; ��) ¼ (0:12; 1:32) remains essen-
tially invariant over a range of input assumptions for density
and its error. Although not shown herein, we have confirmed
that this strange attractor-like behavior (at the surface mini-
mum) remains for our data set G, although the shape and mini-
mum �2


 of the surface do change sensitively due to small number
statistics. This is not surprising, as Ghirlanda et al. (2004b) find a
similar best-fit cosmology, (�M ; ��) ¼ (0:07; 1:2), for their
data set G�*, although this point is overshadowed as they present
their fit jointly with SN Ia data (see x 4). Extending upon the
work of Ghirlanda et al. (2004b), Firmani et al. (2005) also
note the appearance of ‘‘mathematically undesirable attractors’’
near the loitering region, claiming that they are mathematical
artifacts that can be removed with a newBayesian approach. The
Firmani et al. (2005) method does not use the traditional good-
ness of fit from a �2 analysis, and although it probably deserves
further study, it is unclear if it is warranted given the data and
sensitivity to input assumptions. At least for our data and as-
sumptions, the best-fit parameters and errors are only mean-
ingful if the fit is implicitly good, which is not the case for all
density assumptions with fractional errors P125% (the value
assumed in Ghirlanda et al. 2004b). This is illustrated in Fig-
ure 4. Thus, on statistical grounds, we are not entitled to believe
the best-fit loitering cosmology currently favored by GRBs, re-
lieving us of the burden of explaining a cosmology inconsistent
with flatness that comes close to seriously challenging the big
bang model. All told, the results herein indicate that, when con-
sidering the full data set for a range of input assumptions, GRBs
are simply not yet useful for cosmography.

4. COSMOGRAPHY COMPARISONS

Since there are a host of potential uncertainties in this nascent
approach to GRB cosmography, at present, we focus on con-
straining�M and�� using GRBs alone. While Dai et al. (2004)
and Ghirlanda et al. (2004b) have attempted to constrain w, the
former with GRBs alone, and the latter using a combined fit with
SNe Ia, we consider this well motivated but likely premature,
due to the presence of many unaddressed and potentially prob-
lematic systematic errors (which we attempt to address in x 5),
the relatively small GRB sample compared to SNe Ia, data se-
lection, and the aforementioned sensitivity to input assumptions.
We note that despite many improvements, the most recent follow-
up work from these groups (Firmani et al. 2005; Xu et al. 2005)
does not address the sensitivity to input assumptions.

4.1. Addressing the Dai et al. (2004) Cosmographic Analysis

Dai et al. (2004) havemade use of the Ep-E� relation to form a
more standard candle and test cosmological models. They re-
port remarkably tight constraints on �M ¼ 0:35þ0:15

�0:15 (68.3%
confidence assuming flatness). Yet, there are a number of rea-
sons why we believe that this work has significantly overstated
the cosmographic power of GRBs. First, the Dai et al. (2004)
sample contains seven fewer bursts (12 vs. 19; >50%) than
our sample. As seen in Table 2 and graphically in Figure 1, two
of the absent bursts (GRBs 990510 and 030226) are the two

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.—Plotted are �2 contours for the GRB Hubble diagram for set A
(17 dof ), for a range of assumed densities (cm�3) and fractional errors. All other
assumptions are as in the text. With the steep shape of the surface, the outermost
contour corresponds to ��2 ¼ 11:8, nominally 99.73% confidence for two
parameters. As with the Ep-E� relation itself, the goodness of fit at the minimum
of the surface (asterisk, ‘‘min’’) in all panels is clearly sensitive to density and its
error. However, independent of these assumptions, the best fit (�M ; ��) ¼
(0:12; 1:32) cosmology (asterisk) lies abutting the cosmic loitering line, which
borders the region in the (�M, ��)-plane for which there is no big bang. Also
overplotted are the standard (�M ; ��; h) ¼ (0:3; 0:7; 0:7) concordance cos-
mology (square, ‘‘conc’’) and the best-fit cosmology assuming flatness (dia-
mond, ‘‘flat’’). However, in the top two panels, the data yield a poor fit for any
cosmology in our grid, precluding the use of the �2 contours shown for
meaningful cosmological parameter determination. As seen in the bottom two
panels, one can recover a marginally good fit in the Hubble diagram by in-
creasing the density error to �125% (assumed in Ghirlanda et al. 2004b), or to
arbitrarily higher values (not shown). Even so, the peculiar loitering cosmology
seemingly favored by GRBs, inconsistent with flatness and close to conflicting
with a big bang, remains essentially invariant to the choice of density or its error.
Although not shown here, even when removing individual bursts, which sen-
sitively changes the global shape of the surface via small number statistics, the
favored loitering cosmology persists (see also Ghirlanda et al. 2004b; Firmani
et al. 2005). In light of the independent evidence from SNe Ia, large-scale
structure, and the CMB, this result strongly supports the idea that, at least for
the current data, GRBs are simply not useful for cosmography (although see
Firmani et al. [2005], who claim that a Bayesian rather than �2 analysis removes
the loitering problem). It is also possible that the loitering cosmology attractor is
simply an artifact resulting from a sample with very few low-redshift bursts
rather than a particular analysis method and may be remedied with a future Swift
sample that contains many more nearby GRBs.

FRIEDMAN & BLOOM16 Vol. 627



most extreme outliers in A� from set A. GRB 990510 remains
an outlier independent of density assumptions as it has a den-
sity constraint (Panaitescu &Kumar 2002), while GRB 030226
is an outlier under either set of assumptions, worsening for the
Dai et al. (2004) density assumption relative to ours. Dai et al.
(2004) do offer some justification to exclude these two bursts,
but clearly these exclusions, which we feel are unwarranted,
help to significantly tighten the scatter and improve the cosmol-
ogy statistics. Recently, however, those authors present work
with a larger sample that includes these bursts (Xu et al. 2005).

Second, the authors did not perform the fit of the Ghirlanda
relation self-consistently but instead assumed the slope of the
relation to be fixed for all cosmologies. The value ��1 ¼ 1:5 �
0:08 derived in Dai et al. (2004) assumes a (�M ; ��; h) ¼
(0:27; 0:73; 0:71) cosmology. The authors treat their fit as a
rough confirmation of the � ¼ 0:706 � 0:047 slope found in
Ghirlanda et al. (2004a) for a slightly different (�M ; ��; h) ¼
(0:3; 0:7; 0:7) cosmology and fix ��1 � 1:5 thereafter, ne-
glecting the derived uncertainty. Dai et al. (2004) do attempt to
justify this and note ‘‘this power to be insensitive to �M’’ for
their data set. However, as we have shown, while the particular
value of the slope does not vary dramatically, even for a wide
range of cosmologies, one cannot ignore even this small cosmol-
ogy dependence in the context of self-consistent cosmography.
By fixing ��1 � 1:5, the Dai et al. (2004) analysis ignores the
fact that the value of � is not known a priori but instead is a
simple empirical (bad) fit to noisy data. Ghirlanda et al. (2004b)
also express similar concerns in their discussion of the Dai et al.
(2004) analysis. Again, we note that subsequent work from this
group (Xu et al. 2005) has considerably improved upon these
points and included a self-consistent fit of the Ghirlanda rela-
tion, following Ghirlanda et al. (2004b) and this work.

As with Ghirlanda et al. (2004a, 2004b), Dai et al. (2004)
assumed a density (n ¼ 3 cm�3) that improves the fit relative to
our assumption of n ¼ 10 cm�3. They also assume a smaller er-
ror on the density (11% vs. 50%), and their equation (5) neglects
the error terms we include involving � , 	, and the k-correction.
These effects lead us to derive a slightly larger typical error on
the distance modulus, where we find �0.54 mag versus �0.45
mag in Dai et al. (2004). However, the authors do not report a
goodness of fit for their favored cosmology, whereas we find
a minimum �2/dof ¼ 2:36 (17 dof ) for the GRB Hubble dia-
gram under our assumptions for our set A. Furthermore, Dai et al.
(2004) present constraints on the equation-of-state parameter
w given priors on flatness and �M , which is an interesting po-
tential application of GRB cosmology but may be premature
given the small data set, the large dependence on the outliers,
and the strong sensitivity to input assumptions, the latter of which
is not addressed in otherwise much improved follow-up work
from this group (Xu et al. 2005).

4.2. Addressing the Ghirlanda et al. (2004b) Analysis

Ghirlanda et al. (2004b) have taken a number of steps to
improve upon the Dai et al. (2004) analysis. They have right-
fully acknowledged that the Ep-E� correlation should be recali-
brated for each cosmology and should include the uncertainty
in the slope � when performing a cosmographic analysis. They
too, independent of our work, have noted that GRBs alone are in-
sensitive to the measurement of�� (we specifically note that this
insensitivity is directly attributable to the lack of low-redshift
bursts, although Ghirlanda et al. [2004b] do suggest the need
for more lower z bursts). The Ghirlanda et al. (2004b) analysis
does not include four bursts (some were discovered after their
paper), and these bursts only slightly worsen the goodness of

fit of the relation to a power law (see Fig. 2). Ghirlanda et al.
(2004b) also avoid using the small-angle approximation to cal-
culate E� in practice, although they do not present the equations
for the error analysis explicitly.

Both our fit to the Ep-E� relation and the Ghirlanda et al.
(2004b) fit, with�2


 ¼ 3:71 (17 dof ) and�2

 ¼ 1:27 (13 dof ), re-

spectively, follow from our different input assumptions and data
selection choices. This highlights the extreme sensitivity to the
input assumptions (especially density), uncovered here when
trying to reconcile the differences between our respective works.

Our original disagreements stemmed from the difficulty in-
volved in interpreting the cosmographic method of analysis in
Ghirlanda et al. (2004b), which, in contrast to Dai et al. (2004),
is presented in words but not explicitly formulated in equations.
As mentioned, from Ghirlanda et al. (2004b) alone, it is not
clear that when they ‘‘allow n to cover the full [1–10] cm�3

range,’’ this means n ¼ 3þ7
�2 cm�3 ! �n �

ffiffiffiffiffiffiffiffiffi
7 ; 2

p
¼

ffiffiffiffiffi
14

p
¼

3:74 cm�3 (roughly 125% error), which is required to reproduce
�2

 ¼ 1:27 for the fit to the Ep-E� relation from their data. This

turns out to be crucial because without this extra information it
is not possible to compare or even reproduce their results for
the Ep-E� relation from Ghirlanda et al. (2004a, 2004b) alone.
Ultimately, however, investigation of this elucidated the sen-
sitivity to density. As noted, further work from this group does
not discuss or identify the sensitivity to density (Firmani et al.
2005).

Rather than focusing on the cosmology selected by GRBs
alone, the authors report a joint fit with SNe Ia. By including a
set of 15 GRBs (with large errors) along with 156 (better con-
strained) SN Ia data points (the ‘‘Gold’’ sample of Riess et al.
2004b), it is clear that the joint fit presented in Ghirlanda et al.
(2004b) is dominated by the supernovae, which already are consis-
tent with today’s favored cosmology concordance model derived
from cosmic microwave background (CMB) data (Spergel et al.
2003) and large-scale structure (Tegmark et al. 2004). Ghirlanda
et al. (2004b) argue that SNe Ia themselves are only marginally
consistent withWMAP, whereas the combined SN Ia +GRBfit re-
sults in contours that are more consistent with a flat,�-dominated
universe. However, this line of reasoning ignores the fact that
GRBs alone are strikingly inconsistent withWMAP or flatness,
where the best fit found in Ghirlanda et al. (2004b) straddles the
cosmic loitering line, which borders the region in the (�M ,��)-
plane for which there is no big bang (although see Firmani et al.
2005). While it is certainly reasonable to assume flatness as a
prior and explore the outcome, we feel that it is important to
stress the cosmographic potential of GRBs alone and first de-
termine whether GRB cosmography is robust and comparable
to cosmography with SNe Ia before attempting to combine them.
Ultimately, the sensitivity to input assumptions and data selec-
tion we have found here makes it currently inappropriate to use
GRBs for cosmography, let alone combine with other better un-
derstood standard candles.

5. POTENTIAL BIASES FOR FUTURE
GRB COSMOGRAPHY

Here we briefly identify some major potential systematic er-
rors concerning GRB cosmography. The list is not meant to be
comprehensive but to serve as the starting point for future work.
We do not discuss possible selection effects on the sample (e.g.,
Malmquist bias), but see Band & Preece (2005), who consider
selection effects in testing the consistency of a large sample of
BATSE bursts with the Ghirlanda relation, extending upon simi-
lar work for the Amati relation (Nakar & Piran 2004). Although
Band & Preece (2005) conclude that as many as �33% of the
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bursts in their sample may not be consistent with the Ghirlanda
relation, this depends sensitively on the assumed distribution for
fb . Under the least model-dependent assumption that only requires
E� � Eiso for all bursts (e.g., fb � 1), Band & Preece (2005) es-
timate that only 1.6% of their sample is inconsistent with the
Ghirlanda relation. In any case, the Band & Preece (2005) anal-
ysis raises the possibility that the Ghirlanda relation itself may
merely reflect observational selection effects,which, if true, would
fundamentally undermine any cosmographic use of the relation.

5.1. Cosmological k-Correction

The choice of rest-frame bolometric bandpass for the cos-
mological k-correction (Bloom et al. 2001b) [E1, E2] is implicit
in the definition of, and any interpretation of, E� (eq. [1]). If any
bursts have Ep < E1 (or Ep > E2) keV, then we may be sys-
tematically underestimating the fluence and energy outside the
bandpass. In our set A, however, the lowest Ep bursts (030329:
79 keV; 021211: 91 keV; 041006: 109 keV; and XRF 030429:
128 keV) all have Ep > 20 keV by at least a factor of�4. XRFs
020903 and 030723 have only upper limits Ep < 10 keV and
Ep < 30 keV, respectively, and so are not included in set A. There
is one burst, however, with Ep > 2000 keV: 990123, with Ep ¼
2030 keV (the second closest is 000911, with Ep ¼ 1192 keV).
Thus, for some bursts, we slightly underestimate the energy.
As such, a bandpass of [1, 104] keV (Bloom et al. 2001b; Amati
et al. 2002; Dai et al. 2004; Ghirlanda et al. 2004a, 2004b) may
be more appropriate than the traditional BATSE bandpass, al-
though this choice has a much smaller effect than the sensitivity
to input assumptions, at least for the current sample. For future
samples, with several XRFs (or GRBs) with low Ep, it may be
more appropriate to choose E1 < 1 keV (also stressed by G.
Ghirlanda 2004, private communication). In contrast, there are
diminishing returns for increasing E2 arbitrarily, as the typical
fractional error on the k-correction increases from �11% for
[1, 104] keV to �25% for the [1, 105] keV bandpass, with the
typical k-correction only increasing from �1.5 to �2. Further-
more, for E2 > 104 keV (10 MeV), we are surpassing the limit
beyond which we have strong evidence to believe in our ex-
trapolation of the Band spectrum.

5.2. Covariance between Observables

Ignoring covariance where it exists will systematically under-
estimate the error on the GRB distance modulus. However, as
shown in earlier error analysis, even assuming maximal co-
variance, which we argue is unlikely, leads to at most a factor of
P2 underestimate of the errors in E� , A� , or Dl;� , respectively.

Bloom et al. (2003b) discuss possible covariances between
S� and the inference of �jet (or fb), arguing that the effects should
be small as the two quantities are determined from the obser-
vationally distinct measurements of different phenomena, i.e.,
the prompt emission and the afterglow. Bloom et al. (2003b) also
argue that, despite both being derived from broadband afterglow
modeling, tjet and n should have small covariance because tjet
is usually determined from early optical/IR afterglow data whereas
n, in the rare cases where it is estimated, is best constrained by
late-time radio data (see their footnote 6). Bloom et al. (2001b)
also argue that the possible covariance between S� and k is small,
introducing at most a factor of �2 uncertainty into the error on
k (see their x 2.1).

Because of the k-correction, E� ¼ E�½k(Ep)�, and thus Ep and
E� are not completely independent variables. As such, there is
certainly some covariance, but it should be small in practice be-
cause k and �k are only slowly varying functions of their inputs

and depend most on the choice of rest-frame bolometric bandpass
[E1, E2] keV. Although the goodness of fit to the Ghirlanda
relation worsens (under our assumptions) if one ignores the
k-correction (i.e., by assuming k ¼ 1 for all bursts), the value of
E� itself depends on a combination of observables with no re-
lation to Ep (e.g., tjet , n, etc.), implying that the Ep-E� relation
itself is not in doubt on these grounds. As such, there is also
certainly an intrinsic correlation between Ep and E� , but unlike
the covariance above, which describes a mathematical depen-
dence affecting the correlated measurement of E� and Ep , the
intrinsic correlation is presumably based on local GRB physics
and is therefore not reflective of observations with correlated
errors (although, again, see Band & Preece 2005).
Finally, a judicious choice of E� can minimize the covariance

between the measurements of the parameters � and 	 (i.e., the
off-diagonal elements in the covariance matrix of the Ep-E�

Bt ! 0), thus eliminating covariance terms from the Ghirlanda
parameters in the cosmography error analysis. A different choice
of E� would not affect the value of Dl;� or A� , since the value of
	 in the fit to the Ghirlanda relation would change to compen-
sate, scaling as 	 / (E�)�.

5.3. Gravitational Lensing

Gravitational lensing is not likely to dominate the system-
atics, although higher redshift bursts are more likely to be
lensed than lower redshift SNe Ia. Bloom (2003) has argued,
based on beaming, that the probability of detection for a high-
redshift GRB is largely unaffected by Malmquist bias (but see
also Baltz & Hui 2005); so the principal concern is whether the
inferred values of E� will be systematically skewed for bursts at
higher redshift. The probabilities of strong lensing or micro-
lensing of a GRB are small, <5 ; 10�3 (zGRB < 5; Porciani &
Madau 2001) and �0.01 (Nemiroff et al. 1998), respectively.
Here we disregard the higher probability of microlensing of
the afterglow, since afterglow fluxes are not used to derive E� ,
although, clearly, a microlensed afterglow could confound the
measurement of tjet. Still, strongly lensed GRBs should be more
recognizable as such by the observations of strong foreground
absorption in the early-afterglow spectra and/or the presence of
a galaxy near the burst line of sight in late-time imaging. Weak
lensing, with a broad probability of amplification between 0.8
and 1.2, is expected at z > 3 in a �CDM model (Wang et al.
2002), but since there is roughly an equal probability of ampli-
fication and deamplification, weak-lensing biases are systemat-
ically suppressed with a larger sample size. This is quantified for
SNe Ia in Holz & Linder (2004). However, for GRBs, at present,
the measurement uncertainties themselves are likely to dominate
over lensing systematics.

5.4. Wind-blown Circumburst Environment

If GRB progenitors are massive Wolf-Rayet–type stars as in
the popular collapsar model (Woosley 1993) or the hypernova
model (Paczynski 1998), one naturally expects at least some
bursts to go off in the presence of a wind-blown environment
(WIND) where the radial density profile varies as the inverse
square of the radial distance (Chevalier & Li 1999, 2000; Li &
Chevalier 2003). Following equation (31) of Chevalier & Li
(2000), a WIND modifies our equation (2) for the jet opening
angle, and in general, E� will be smaller when inferred for the
WIND case for the same value of tjet and typical density scal-
ings (e.g., A� ¼ 1, defined in Chevalier & Li 2000). Thus, in the
context of the fit to the Ghirlanda relation, a WIND will help
an outlier burst to fall on the relation only if E� , calculated
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assuming an ISM, was too large (i.e., the data point has excess
energy on the x-axis in Fig. 1 relative to the best-fit line). Of the
bursts that are outliers in this sense (970508, 011211, 020124,
and 020813, with 011121 and 010921 as lower and upper limit
outliers, respectively), only for 011121 is there strong support
for a WIND (Price et al. 2002b). For GRB 970508, the analy-
sis of Frail et al. (2000) claims to rule out a WIND, whereas
Chevalier & Li (2000) and Panaitescu & Kumar (2002) claim
support for a WIND. For the remaining bursts in our sample
set Awhere aWIND has been supported by at least some analy-
ses (980703, Panaitescu & Kumar 2001; 991216, Panaitescu &
Kumar 2001, 2002; 021004, Li & Chevalier 2003; but see
Pandey et al. 2003; 030226, Dai &Wu 2003), theWINDwould
tend to lower the energy in the x-axis of Figure 1, making them
greater outliers. Generally, there is a lack of strong evidence
for a WIND for most bursts. Furthermore, WIND interaction
with the ambient medium (termination shock) may still lead to
a roughly constant density (ISM) profile beyond some radius
(Ramirez-Ruiz et al. 2001). As such, the ISM assumption is
reasonable and does not lead to a major systematic error relative
to the WIND case.

5.5. Density Assumptions

The assumption of the same density for all bursts lacking
constraints leads to a potentially major systematic error. From
the set of 12 bursts with the best constrained densities in Table 1,
estimates range from 0.29 to 30 cm�3 with a mean of 16.5 cm�3

and a standard deviation of 12.7 cm�3. This gives some justi-
fication to our earlier order-of-magnitude assumption of n ¼
10 cm�3 but highlights the large uncertainty in assuming the
same density for all unknown bursts, which, in nature, will be
drawn from a wider distribution. Current constraints limit den-
sity roughly to the 0.1–100 cm�3 range or greater8 (see Panaitescu
& Kumar 2002). In addition, even these constraints are highly
uncertain as density is not measured directly but requires de-
tailed broadband afterglow modeling, where in most cases the
fit parameters are underconstrained by the sparse data and the
model uncertainties may be much greater than the reported sta-
tistical uncertainties. All this indicates that, at the very least, a
more conservative error assumption is appropriate for the density.
This, of course, would naturally improve the fit to the Ghirlanda
relation.

Despite the uncertainties, we have shown that good fits are
possible simply by changing the unknown density (and error)
for all bursts (Fig. 2). However, granting that the true densities
likely follow some wide distribution (rather than the effective
�-function we have been assuming), one can allow the assumed
densities of individual bursts to vary, drawing them from this dis-
tribution. As a simple exercise, we use a Komolgorov-Smirnov
(K-S) test to determine whether the distribution of known densi-
ties is consistent with the distribution of densities tuned to make
all the nominal outlier bursts fall on the relation. For simplicity,
we fix � ¼ 0:2 for the exercise. From the set of the 12 most re-
liable density estimates, only 6 are also in set A, leaving 13 of
19 bursts with no density constraints. Fitting the Ep-E� relation
only with those 6 bursts, we find � ¼ 0:806 � 0:074, �2


 ¼ 3:96
(4 dof ). Using this as a baseline fit, we solve for the individual
densities necessary to make all remaining 13 bursts fall on the

relation. Comparing the set of 12 known and 13 tuned densities
via a K-S test indicates an acceptable consistency with a K-S
probability of 11%, which is meaningful if there are at least four
bursts in each set (Press et al. 1992).9 If the density distributions
had been obviously inconsistent, say, with K-S probabilities
T5%, then the relation would remain a poor fit independent of
any assumptions for the density. In fact, we find that there are
reasonable density choices consistent with the distribution of
known densities that lead to a good fit for the relation.10 This
leaves some hope that a sample of bursts with well-constrained
densities (and efficiencies) in the Swift era may reveal an un-
derlying good fit for the relation, which is a prerequisite for any
cosmographic utility. More detailed analysis would require mar-
ginalizing over, or sampling statistically from, the assumed den-
sity distribution (e.g., aMonte Carlo simulation), which is beyond
the scope of this work. Beyond this, future studies must contend
with the additional possibility of a drift in the shape and mean of
the density distribution with redshift as may be expected for a
population of massive star progenitors.

5.6. Assuming a Gamma-Ray Production Efficiency

As with density, assuming the same efficiency for all bursts
represents a potential systematic error, although, as discussed,
it is likely to be a much weaker effect. Following Frail et al.
(2001), we assume a gamma-ray production efficiency of � ¼
20% for all bursts in our sample. In the context of the internal
shock model, this is consistent with the range of theoretically
predicted efficiencies:P1%–90% (Kobayashi et al. 1997; Kumar
1999; Lazzati et al. 1999; Beloborodov 2000; Guetta et al. 2001;
Kobayashi & Sari 2001). Furthermore, � has been reported for
individual bursts for the [20, 2000] keV bandpass, as deter-
mined with radio fireball calorimetry, X-ray modeling of the
afterglow kinetic energy, or other estimates of the total energy
of the fireball (Panaitescu & Kumar 2001, 2002; Yost et al.
2003; Berger et al. 2003a, 2004; Lloyd-Ronning & Zhang 2004).
Estimates for individual bursts range from �3% (970508; Yost
et al. 2003; Berger et al. 2004) to as high as �88% (991208;
Panaitescu & Kumar 2002). Although the various techniques
used to estimate � are highly uncertain, clearly the assumption of
a constant efficiency for each burst is suspect. In light of the un-
certainty involved, it may be appropriate to at least assume some
error on � , for example, a 50%–100% error, in future work. As
with density, a potential future approach involves assuming a dis-
tribution (e.g., a Gaussian) and marginalizing over it, or sampling
from it statistically. Similarly, it is an open question whether the
efficiency distribution might evolve with redshift.

6. DISCUSSION

We have shown that, given our set of assumptions, the fit to
the Ghirlanda relation remains poor in the standard cosmology
(�2


 > 3), across the entire grid of cosmologies, and for all data

8 Panaitescu&Kumar (2002) report a very low density of 1:9þ0:5
�1:5 ; 10

�3 cm�3

for GRB 990123 (see their Table 2), although this estimate has been superseded
by more recent analyses, e.g., Panaitescu & Kumar (2004), where the authors
report considerably higher densities in the range 0.1–1 cm�3 (see their Fig. 1).

9 One can extend this to a larger distribution including tentative density
estimates (see Appendix A). This yields a set with 11 additional bursts for a total
of 23 with known + tentative density estimates. This set is consistent with the set
of 13 bursts tuned to fall on the relation with K-S probability of 32%. Fur-
thermore, if we relax the constraints and do not require all outlier bursts to be
tuned to fall on the relation, we can achieve even greater levels of consistency,
although the K-S test itself is only a consistency test, not a measure of the
goodness of fit (Press et al. 1992).

10 This, for example, is not true for the Amati relation, which depends on
assumptions concerning the rest-frame k-correction bandpass [E1, E2], but not
on � or n. As such, the goodness of fit of that relation cannot be made to ap-
proach unity by changing the assumptions.
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subsets that we consider. As was the case for the standard cos-
mology,�2


 can only bemade acceptable at theminimum of these
surfaces by changing the input assumptions or by choosing dif-
ferent parameter references for individual bursts. Although this
casts doubt on the current cosmographic utility of the relation, it
must be stressed that it is possible to obtain good fits simply by
changing the density (and/or efficiency)—to otherwise reason-
able values—for bursts without reliable constraints.

The value of � (and 	) might be determined a priori (1) from a
well-motivated theoretical model or (2) by measuring a sample
of GRBs at low redshift, where the observed GRB properties
are essentially independent of the cosmology (Ghirlanda et al.
2004b). This low-z population would represent a ‘‘training set,’’
analogous to the training set of low-z SNe Ia used to calibrate
the various light-curve shape corrections to SN Ia magnitudes
in a cosmology-independent way.With GRBs, at present, we do
not have the luxury of such low-redshift calibration, necessitat-
ing the use of the data themselves as the training set with sepa-
rate calibration of the relation for each cosmology. As also noted
in Ghirlanda et al. (2004b) (in contrast to Dai et al. 2004), this
is currently the only self-consistent way to do cosmology with
GRBs.

Procuring such a training set may be feasible. In the cur-
rent sample of 39 bursts with known redshifts (Table 1), GRBs
980425, 030329, and 031203 have z < 0:17. With a similar de-
tection ratio, Swift may find �5–10 such low-z bursts per year.
This would conservatively provide a reasonable training set of
�10–20 objects within only 2 yr. It is noteworthy, however,
that only one burst in our sample thus far (GRB 030329, z ¼
0:1685) falls into this potential training set class. As seen in
Figure 1, 030329 is remarkable because it is highly discrepant
from the mean in energy yet falls extremely close to the best-
fit line for the Ep-E� relation. As a single burst, it is the low-
redshift anchor of the relation and comes as close as possible
to acting as a cosmology-independent calibrator. However, one
needs more than a single point to constrain a slope, and although
more low-z bursts are expected with Swift, it remains to be seen
whether they will actually fall on the relation. In fact, as men-
tioned, the two lowest redshift GRBs (980425 and 031203) are
the two most striking outliers to the relation regardless of any
assumptions about the value of the ambient density. Rather than
a failure of the Ep-E� relation, such outliers might serve as diag-
nostics for identifying different progenitor classes, going beyond
the recognition of purely subenergetic bursts, which are be-
coming increasingly common.

In fact, with the relatively recent discoveries of GRBs 030329
and 031203 and XRFs 020903 and 030723, the existence of
true outliers in the E� distribution became incontrovertible; GRB
980425 is not simply a singular anomaly in prompt-burst energy
release.Without compelling reason to exclude these outlier bursts
on energy-independent grounds, what was once a promising
prospect, the E� distribution (e.g., 
�), is clearly a poor standard
candle. Even if there exists a standard reservoir of energy in
GRB explosions, on conceptual grounds, it is entirely plausible
that E� should differ from burst to burst, sensitive to the varia-
tion in gamma-ray efficiency. The energy channeled into gravi-
tational radiation, neutrinos, and the supernova explosion also
likely offer significant contributions to the total energy budget.

Furthermore, Berger et al. (2003c) have shown that the ki-
netic energy (Ek) in relativistic ejecta (as proxied by the radio
and X-ray afterglow) may be comparable to (if not greater than)
E� . Of course, this hypothesis, in concert with the Ghirlanda
power law, implies a trivial connection of Ek upon � and
Ep: Ek ¼ Etot � E�(Ep/	)

1=�, with Etot � 5 foe ¼ 5 ; 1051 ergs

(Berger et al. 2003c). In this context, although in their fit to
GRBs with X-ray afterglow Lloyd-Ronning et al. (2004) do not
find a constant Etot , it is curious to note that those authors do
find that Ek / E1:5�0:5

p , a power law consistent with 1/� � 3/2.
Perhaps more interesting, if Etot is indeed constant, then the ef-
ficiency of shock conversion to gamma rays, �, should be � ¼
E� /Etot ¼ (E�/Etot)(Ep/	)

1/� / E1/�
p � E3/2

p (as opposed to �/
E0:4�0:1
p found by Lloyd-Ronning et al. 2004), suggesting that

XRFs are lower efficiency shocks, rather than off-axis GRBs. If
there are multiple jet components (e.g., Berger et al. 2003c), the
value of � is even less than implied by the relation. Also, such a
connection between � and Ep would imply that the inference of
�jet inheres an implicit dependence on Ep (beyond the implicit
dependence of �jet on Ep from the k-correction), requiring a
reformulation of E� and thus the Ghirlanda relation.
Inherent in the reconstruction of E� is also a systematic un-

certainty in the jet structure and diversity of the bursts. We have
cast the correction formalism in the context of the top-hat model,
where the energy per solid angle remains constant across the
cone of the jet, independent of the observer’s viewing angle rel-
ative to the central beaming axis. If, instead, all GRB jets are
universal with the energy per steradian falling as the square of
the azimuthal angle (Rossi et al. 2002; Zhang & Mészáros 2002)
or a Gaussian profile (Zhang et al. 2004; Lloyd-Ronning et al.
2004), a similar spread of the resultant E� distributions is in-
ferred. In such alternative jet prescriptions, we have confirmed
that E� still correlates with Ep ,

11 and so we argue that the need
to specify a particular jet model is obviated: all that is required is
the existence of an empirical correlation between Ep and some
function of observables, which may happen to be interpreted as
E� in some particular jet model. Although the Ghirlanda relation
has been interpreted in the context of a top-hat jet model, it is
ultimately derived empirically from observables.
Although there is still some uncertainty surrounding the phys-

ical basis for the SN Ia light-curve peak luminosity–decline rate
correlations (Mazzali et al. 2001; Timmes et al. 2003; Röpke
&Hillebrandt 2004), the basic mechanism involving sensitivity
to 56Ni production is fairly well understood (Pinto & Eastman
2001). In contrast, the physics that gives rise to the intrinsic cor-
relation between Ep and E� is not well understood, although see
Rees & Mészáros (2005) and Eichler & Levinson (2004), with
the latter concerning the related Ep-Eiso correlation. While the
choice of jet model is irrelevant if one is interested only in an em-
pirical correlation, it is highly relevant if one is seeking a mean-
ingful physical explanation. In particular, understanding E� alone
requires a more physical jet model than a simple top hat, as E�

has a clear physical interpretation as the total beaming-corrected
gamma-ray energy, which is computed differently between jet
models. Indeed, a structured jet, with more energy on-axis, finds
natural support in numerical simulations of the ‘‘collapsar model’’
(MacFadyen et al. 2001). At the very least, physical jets are
likely to have an energy profile much more complicated than
some simple analytic function: for example, a highly variable
jet core with ‘‘wings’’ (Ramirez-Ruiz 2004). If future Ep-E� data
provide better support for a single power law, for example, the
slope � may contain information about the underlying physics
and might be useful in actually constraining jet models, as the
intrinsic value of E� (and probably Ep) clearly depends on the

11 Applying more realistic jet models (Rossi et al. 2002; Zhang & Mészáros
2002; Zhang et al. 2004; Lloyd-Ronning et al. 2004) comes at the cost of intro-
ducing additional free parameters, which we have no way of simultaneously de-
termining a priori. As such, wemustmake assumptions about themwhen analyzing
different jet models, even though they may not be constant from burst to burst.
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jet structure of the burst. The physical origin of Ep itself is even
less understood (although, again, see Rees & Mészáros 2005).

Ultimately, as stressed by Ghirlanda et al. (2004a), the rela-
tion clearly has great promise to lend insight into GRB radiation
mechanisms and is likely more fundamental than the long-
discussed Ep-Eiso relation (Nakar & Piran 2004). As discussed,
a theoretical cosmologically independent explanation for the
relation would help reduce the uncertainties in the determina-
tion of A� , the C� correction term for each burst, and DM� by
effectively reducing �� (�	) to nil (this, too, has been noted by
Ghirlanda et al. 2004b). However, better understanding of the
underlying density distribution is required in either case.

7. CONCLUSIONS

Regardless of the physical basis for the Ghirlanda relation,
we have shown that the C� correction provides a significant
improvement to the standard candle. Further improvements to
the C� corrections should be possible with more data and more
detailed observations. Swift should detect >200 GRBs over the
next �2 yr (Gehrels et al. 2004). Of these, redshift constraints
are expected for a majority of the bursts, from either the onboard
broadband spectroscopy or ground-based follow-up spectra.With
early-time light curves from the Swift UVOT instrument and
ground-based follow-up programs, tjet could be measured for a
substantial fraction of these bursts. Unfortunately, future Ep mea-
surementsmay be hindered by the relatively narrow spectral range
of Swift ([15, 150] keV), further strengthening the science case for
the ongoing symbiosis withHETE-2 and INTEGRAL, due to their
larger [30, 400] keV and [15, 1000] keV bandpasses, respec-
tively. Even so, the Swift, HETE-2, and INTEGRAL bandpasses
are relatively narrow compared to the rest-frame bandpasses of
[20, 2000] and [1, 104] keV used here and in previous work
(Bloom et al. 2003b; Ghirlanda et al. 2004a, 2004b; Dai et al.
2004). As such, future work may require a reconsideration of the
optimal rest-frame bandpass for the cosmological k-correction
(Bloom et al. 2001b), since the error�k increaseswith diminishing
returns by increasing the rest-frame bandpass size, especially
when the observed bandpass is narrow.

Beyond this, more early-time measurements of GRB after-
glows should help constrain the density of the circumburst me-
dium, along with its radial dependence (which may arise from a
stellar wind; Chevalier & Li 2000), testing our assumption of a
constant-density medium. In addition, the value of the conver-
sion efficiency to gamma rays (�) may not be constant and may
indeed be a measurable quantity for each burst (e.g., Panaitescu
& Kumar 2002; Yost et al. 2003; Berger et al. 2004; Lloyd-
Ronning & Zhang 2004). Despite the increase in sample size
expected with Swift, even for a sample including an order of
magnitude more GRBs with measured z, tjet , and Ep , we believe
that density constraints will remain the limiting factor for GRB
cosmography with the Ep-E� relation, since each requires de-
tailed broadband afterglow modeling (e.g., Panaitescu & Kumar
2002).Measuring the efficiencies for individual burstswill present
a similar, but less important, problem since the range of plau-
sible efficiencies is smaller than the range of plausible densities
by several orders of magnitude. These concerns are relevant in-
dependent of a low-z training set or a theoretical prediction that
constrains the slope of the relation a priori. However, even with
incomplete density (efficiency) data, a more detailed analysis can
be completed in future work by assuming priors for the proba-
bility distributions of n and �, marginalizing over them, and/or
sampling from them in a statistical (Monte Carlo) fashion, while
also considering the possible evolution of this distribution with
redshift.

The existence of a relationship between E� and another in-
trinsic property of the GRB mechanism also augurs well for
the potential refinement of the standard energy with additional
relations. For example, correlations between E� and/or Ep and
GRB temporal profiles (e.g., variability; Fenimore & Ramirez-
Ruiz 2000; Reichart et al. 2001; Lloyd-Ronning & Ramirez-
Ruiz 2002; Schaefer 2003) and/or spectral evolution (e.g.,
spectral lags; Norris et al. 2000; Schaefer et al. 2001; Norris
2002) might prove useful in reducing the scatter of the dimen-
sionless GRB standard candle A� . That is, the Ghirlanda rela-
tion may prove to be a projection from a higher dimensional
‘‘fundamental plane’’ involving additional observables.

If, with an expanded data set and additional refinements to
C� , GRBs prove to be standardizable candles, tests of cosmo-
logical models could be performed to redshifts z � 10 or higher
(Lamb 2003; Bromm & Loeb 2002), a lever arm where Hubble
diagrams diverge most, which could help pin down (1) the mat-
ter density to higher precision, (2) the redshift of the transition
to the epoch of deceleration, and (3) systematics of the dark
energy and its time variation (Linder & Huterer 2003), com-
plementary to SNe Ia (Riess et al. 2004b). Such redshifts be-
yond zmax � 1:7 represent the current (HST ) and future (SNAP)
upper limit to precision spectral classification of SNe Ia (JWST
notwithstanding), with a sample essentially free of reddening/
extinction by dust and with potentially less systematically biased
k-corrections, several years before the expected launch of the
SNAP satellite (Schaefer 2003; Aldering et al. 2004; Linder
2004). Ultimately, if the dark energy shows exotic time varia-
tion, high-redshift cosmology (e.g., z > 2) may prove quite inter-
esting, lending insight into much more than the matter density.

Also of great interest, an expanded set (with better con-
strained densities) will allow for tests of the evolution of the
GRB standard candle A�with redshift, clearly a crucial insight
if high-redshift bursts are to be used for cosmography. With the
current sample, no evolution in the corrected energies is appar-
ent, from redshifts of 0.1 to 4.5, a difference in look-back time
that is �80% the age of the universe (see Fig. 3), although, of
course, this depends on density assumptions for individual bursts
that could conceivably be tuned to mimic evolution. Even so, any
systematic evolutionary effects (which must occur at some lim-
iting redshift when the GRB progenitors become Population III
stars; Barkana & Loeb 2001) are bound to be different than those
for SNe Ia, providing a complementary, independent check.

While indeed more promising than E� (see Fig. 3) or the
Ep-Eiso relation (which can be used to construct a corrected stan-
dard candle roughly intermediate in accuracy between 
� and A�

since the Amati relation is implicit in the Ghirlanda relation),
in strong contrast to the conclusions of Dai et al. (2004) and
Ghirlanda et al. (2004b), we have found that this new GRB stan-
dard candle A� provides essentially nomeaningful constraints on
�M and��with the current, small sample of less than 20 events,
most notably due to the sensitivity to data selection choices and
assumptions for the unknown density (efficiency).

Still, despite the current uncertainties and rather strong de-
pendence on input assumptions and data selection, we believe
that the standardization of GRB energetics holds promise,
thanks to the discovery of the Ep-E� relation. SN Ia data and, by
extension, GRB data probe an orthogonal region in the pa-
rameter space. Whereas CMB power spectrum measurements
are most sensitive to �Mh

2, �bh
2, and �tot ¼ �M þ ��, SN Ia

measurements, and hence GRB measurements, are sensitive
essentially to the difference �M � ��, with GRBs being most
sensitive to �M . Aside from providing more bursts for statis-
tics, with accurate and homogeneously determined GRB and
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afterglow parameters, we expect that the Swift satellite will yield
further refinements toward a standardizable GRB energy.

To that end, we continue to stress the importance of early-time
broadband ground-based follow-up observations to help con-
strain tjet and the ambient density (efficiency) of future bursts
(also of independent interest for constraining the progenitors).
Again, we highlight the continued relevance of the HETE-2 and
INTEGRAL satellites (with their respective [30, 400] and [50,
1000] keV bandpasses) concerning all applications of the Ep-E�

relation, as the spectral coverage of the BAT detector on Swift is
limited largely to the narrow [15, 150] keV range (Gehrels et al.
2004). As such, the current work strengthens the science case for
the ongoing symbiosis ofHETE-2, INTEGRAL, and Swift. By fur-
ther exploring the Ep-E� relation in this manner, we may poten-
tially lend insight toward both our understanding of GRBs and
the expansion history of the universe.
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APPENDIX A

DATA SELECTION

Expanding upon x 2.2, we discuss data selection concerns for the observables of interest defined in the text (Ep , z, S� , tjet , n, � , � ,
and � ), detailing specific cases for individual bursts as is relevant.

Peak energymeasurements are occasionally inconsistent from different satellites (e.g., GRB 970508), and in these cases, we choose
the bursts that have spectra that are well described by the Bandmodel and preferentially chooseEobs

p measurements with reported error
bars. For 970508, Jimenez et al. (2001) report Eobs

p ¼ 389 along with � ¼ �1:191, � ¼ �1:831 (all without error bars), whereas
Amati et al. (2002) report Eobs

p ¼ 79 � 23 along with � ¼ �1:71 � 0:1, � ¼ �2:2 � 0:25. The Jimenez et al. (2001) data for GRB
970508 have no reported error bars and have � > �2, which cannot be interpreted in the context of the Band model since the
k-correction diverges for a true bolometric rest-frame bandpass [E1, E2] (e.g. E1 ¼ 0, E2 ! 1). As such, we use the Amati et al.
(2002) reference.

In the absence of reported values of � or � (there are no cases of both missing in our sample), we choose values consistent with
those measured in the sample, although this choice is not critical in the analysis. In our sample there are 29 bursts with measured
redshifts, peak energies, and � and 20 bursts with measured redshifts, peak energies, and � (for recent bursts observed by HETE-2 in
the [30, 400] keV bandpass, it is often difficult to constrain the high-energy spectral slope � ). For the first set we find a mean value of
�̄ ¼ �1:11 with a standard deviation of 0.36, and for the second set we find a mean value of �̄ ¼ �2:30 with a standard deviation of
0.29. These values are also representative of those found for a large sample of bright BATSE bursts (Preece et al. 2000). Thus, in the
absence of constraints, we set � ¼ �1 (choosing � ¼ �1:1 would not affect the analysis) and � ¼ �2:3 where appropriate (the latter
is also assumed in Atteia [2003], and similar averages are used in Ghirlanda et al. [2004a]).

Occasionally, measurements of fluence S� from different satellites are inconsistent, but more often than not, we cannot determine
whether two independent measurements are inconsistent if either one or both do not report 1 � error bars. As noted, in these cases we
use input fluence measurements with reported errors with priority over fluence measurements in wider bandpasses. For example, for
pre–HETE-2 bursts, we generally will choose a BeppoSAX burst measured in the [40, 700] keV bandpass with reported fluence er-
rors over BATSE bursts measured in the larger [20, 2000] keV bandpass when the latter does not have reported fluence errors.

In the case of competing tjet measurements, we choose the best sampled light curve with the smallest errors on the best-fit value of
tjet , preferring early-time optical data where available. However, there may be problems with any measurement that reports tjet errors
smaller than 10%, due to intractable uncertainties in the afterglowmodeling (D. Lazzati 2004, private communication). As such, there
is reason to consider a lower limit criterion for fractional errors of 10% on the jet-break time. Although we do not modify the reported
measurement errors for any bursts in this fashion, if we did, it would affect the following bursts: [GRB/XRF: tjet (days), reference]!
[011211: 1:56 � 0:02, Jakobsson et al. 2003], [990510: 1:2 � 0:08, Harrison et al. 2001; 1:57 � 0:03, Stanek et al. 1999; 1:6 � 0:2,
Israel et al. 1999 (we reference the latter)], [021004: 6:5 � 0:2, Pandey et al. 2003], and [030329: 0:481 � 0:033, Price et al. 2003c].
In addition, [GRB 000926: tjet ¼ 1:8 � 0:1, Harrison et al. 2001] also has a reported jet-break error of less than 10%, but it is not
included in our sample because Eobs

p is not found in the literature. Again, we do not alter any reported errors, but as an example,
Ghirlanda et al. (2004a) do change the reported error for 011211 from tjet ¼ 1:56 � 0:02 to 1:56 � 0:15 (e.g., 10%).

Density measurements require detailed broadband afterglow modeling (see Panaitescu & Kumar 2002; Yost et al. 2003) and are
generally unknown for most bursts, requiring us to assume a value. Of the 52 bursts listed in Table 1, only 12 have reliable density
estimates that are listed here. However, at least an additional 11 bursts have densities reported in the literature, [GRB/XRF: n (cm�3),
reference] ! [980519: 0:14þ0:32

�0:03, Panaitescu & Kumar 2002], [990123: 1:9þ0:5
�1:5 ;10

�3, 0.1–1, Panaitescu & Kumar 2002, 2004;
000911: 0.07, Price et al. 2002c], [020124: 1, Berger et al. 2002b], [020405: 0.08, Berger et al. 2003b], [020427: 1, Amati et al. 2004],
[020903: 100, Soderberg et al. 2004], [021211:<1, >30, Kumar &Granot 2003; Panaitescu&Kumar 2004], [030226: 100, Dai &Wu
2003], [030723: 1, Huang et al. 2004], and [040924: 0.01, Fan et al. 2005], but we do not list them in Table 1 because either (1) the
densities are from estimates other than broadband afterglow modeling, (2) the estimate assumed a redshift (e.g., 980519, z ¼ 1
assumed in Panaitescu & Kumar 2002), (3) the estimates had been contradicted by further analyses of the same data (e.g., 990123;
Panaitescu & Kumar 2002, 2004), or (4) the densities are unreliable for some other reason, such as being distinctly presented as
tentative by the authors (e.g., Price et al. 2002c).
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The question of data selection is relatively moot for redshift measurements as they are the most accurate (usually confirmed by
several follow-up spectra) and precise (negligible errors) of our input observables. In any case, it is clear that spectroscopic redshifts
are preferred over photometric redshifts, with no preference between emission or absorption redshifts. Ultimately, in the case of
spectroscopic redshifts with multiple independent confirmations we take the measurement with the highest precision, although the
results are rather insensitive to whether the redshift is known to three or six decimal places, for example.

APPENDIX B

DATA COMPARISON AND POTENTIAL OUTLIERS

Here we note burst-by-burst differences between our references and those used in other work (Ghirlanda et al. 2004a, 2004b; Dai
et al. 2004), emphasizing its effect on the outlier status of individual bursts. Again, references to sets A, G, and D only refer to the burst
names in those subsets, not to individual data references.

Our data selection differs from Ghirlanda et al. (2004a) mostly from updates to S� and Eobs
p taken from Sakamoto et al. (2004),

which was recently added to the literature, superseding the analysis of Barraud et al. (2003), reported in Ghirlanda et al. (2004a), as the
new work now incorporates a joint fit with the WXM X-ray data. This affects bursts: 020124, 020813, 030226, and 030328 most
significantly for Eobs

p and S� . Additionally, for 011211, S� is not listed in Ghirlanda et al. (2004a), although the burst is used in their
analysis and probably also uses S� ¼ 5 ;10�6 ergs cm�2 (Holland et al. 2002), which we reference. Other minor differences include
slightly different references for tjet and n for 030329, although this makes little difference in the analysis.

In comparing the outliers between sets A and G, as noted, using tjet ¼ 15 � 5 days (i.e., tjet ¼ 10 20 days; Berger et al. 2002b),
GRB 020124 is an outlier, although it is not an outlier with tjet ¼ 3 � 0:4 days as reported in Ghirlanda et al. (2004a), also citing
Berger et al. (2002b) along with Gorosabel et al. (2002) and Bloom et al. (2003b) for the same burst in their Table 2, although we
believe that the reference group itself is specious. GRB 021004 (z ¼ 2:332) was a significant outlier if we take Eobs

p ¼ 1080 keV
(Ep ¼ 3600 keV; Barraud et al. 2003). However, it is no longer an outlier using Eobs

p ¼ 79:79 keV, updated from Sakamoto et al.
(2004), a more current analysis of HETE-2 burst spectra. The only outlier that we include in set A that is not also in set G is 970508,
which Ghirlanda et al. (2004a) left out of their sample due to conflicting Eobs

p reports from Amati et al. (2002) and Jimenez et al.
(2001), where we use the former reference herein. As noted, Dai et al. (2004) do not include 970508, along with the major outliers
990510 and 030226, which they argue should be left out, on grounds that are, at best, controversial.

Other bursts not in set A are also minor (1 �) to major (2–3 �) outliers in A� depending on the assumptions regarding tjet , Ep , and z:
(1) GRB 010222, with Ep > 887 keV (Amati et al. 2002), is a major 3 � outlier. (2) GRB 010921 falls significantly off the relation if
one assumes tjet ¼ 33 � 6:5 days (Price et al. 2002c). It is consistent with the relation if we interpret this jet break as an upper limit, as
we do here, conservatively, following Ghirlanda et al. (2004a). Price et al. (2002a) had previously noted the afterglow light curve to
also be consistent with an early jet break tjet < 1 day, which would still make 010921 a minor outlier, although in the opposite sense.
(3) GRB 011121 (tjet > 7 days; Price et al. 2002b) is an outlier if we assume Ep ¼ 295 � 35 keVas reported in Amati (2004), although
it is consistent with the relation if we assume Ep > 952 keV (Piro et al. 2005, as cited by Ghirlanda et al. 2004awhile the former was in
preparation). However, the Piro et al. (2005) reference, after publication, now claims an Eobs

p < 10 keV for GRB 011121. (4) GRB
000911 is a major outlier if one assumes tjet ¼ 0:6 days, or the firmer upper limit of tjet < 1:5 days from Price et al. (2002c), along with
n ¼ 10 cm�3. Price et al. (2002c) also tentatively suggest a largely uncertain broadband afterglow fit of n ¼ 0:07 cm�3, but this would
only make 000911 more of an outlier. The recently discovered GRB 040924 is also a major outlier under the assumptions made here.

Several bursts with uncertain redshift also are outliers under reasonable assumptions. GRB 980326 has a redshift suggestion of
z � 1:0 (Bloom et al. 1999) and tjet < 0:4 days (Groot et al. 1998), whichmake it a 3 � outlier fromA� ¼ 1. There is some indication that
GRB 980519 has z � 1:5 (Bloom et al. 2003b), which would make it a 3 � outlier. Furthermore, the recently discovered GRB 030528
with Eobs

p ¼ 32 keV, 0:4 days < tjet < 4 days (i.e., tjet ¼ 2:2 � 1:8 days), and z < 1 tentatively reported by Rau et al. (2004) also falls
off the relation. Bursts that are 1–3 � outliers regardless of membership in set A are indicated in the second column of Table 2.
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