Your place in the cosmos From Planets to Stars to Galaxies and Beyond

Andrew Friedman & Ryan Hickox Harvard-Smithsonian Center For Astrophysics Dudley House Crosstalk: Thursday, December 8th 2005

Astrology

"Yeah, m-maybe... by leaving her predictions vague and generalized, there's less of a chance of someone findin' out she's a phoney." -Bobby Boucher, The Waterboy

The Copernican Principle

People Earth

Sun & Solar System Spiral Galaxy

Galaxy Clusters & Superclusters

A Small Piece of Our Observable Universe Other Universes?...

Nuclear fusion in stars

Where do heavy elements come from?

Our Star The Sun

The Periodic Table

SupernovaE

SN 1994d Hubble Space Telescope SN 1999bh – Katzmann Automated Imaging Telescope & Andy

Gamma-ray bursts (GRBs)

The Brightest Explosions in the Universe!

Long Duration GRBs Occur along with supernovae of some massive stars

Short Duration GRBs Probably merging neutron stars

Supernova REMNANTS

• What's left over after the explosion?

We are all made of stars

Cosmic Rays

SNe & GRBs Bursts Produce High-Energy Cosmic Rays

Cosmic Rays From Space Set the Background Rate of Genetic Mutation on Earth!

Cosmic Ray Air Shower

DNA Molecule

Astrophysical disasters

Asteroid Impacts

Supernovae in our own Galaxy or Gamma-Ray Bursts even in distant galaxies!

concl usions

HISTORICAL SUPERNOVAE

Supernovae in our galaxy (or a nearby galaxy)

<u>Year</u> <u>Report</u>

1006 China, Japan, Korea, Arab lands, Europe

1054 China, Japan

- 1181 China, Japan
- 1572 Europe (Tycho Brahe), China, Japan
- 1604 Europe (Kepler), China, Japan, Korea

Supernove Remnant

Identified with radio SNR

Crab Nebula

Possible identification with radio SNR 3C58

Tycho's remnant

Kepler's remnant

1987 SN 1987A – Large Magellanic Cloud

Remnant still observable

Neutron stars

Neutron Star to Attend Harvard

PULsars

<u>Crab Nebula</u> Pulsar Movie

Pulsars are rapidly rotating neutron stars with radio or X-ray beams like lighthouses
Pulsars rotate with precise regularity that beats our best atomic clocks.

Quark stars

Star wars

Astrophysical Object

People

Planets

Protostars

Main Sequence Stars

White Dwarfs

Neutron Stars

Quark Stars

Black Holes

Force Fighting Gravity

Electromagnetism

Electromagnetism

Thermal Pressure (gravitational contraction)

Thermal Pressure (nuclear fusion)

electron degeneracy pressure

neutron degeneracy pressure

quark pressure?

NOTHING!

Type la SupernovaE

Thermonuclear Bombs in Space! Explosions of White Dwarfs in Binary Systems

WD Accretion From Main Sequence Companion

Merger of 2 White Dwarfs

Type I i Supernovae

Gravity Bombs! Gravitational Core Collapse of Massive Stars

Star with M > 8 Msun

The Sun

Stellar Explosion MOVIEs

<u>Core Collapse</u> <u>Supernova Movie</u>

Gamma-ray bursts (GRBs)

The Brightest Explosions in the Universe!

Long Duration GRBs Occur along with core collapse supernovae of some massive stars

Short Duration GRBs Probably merging neutron stars

Stellar Explosion MOVIEs

Gamma Ray Burst Movie

Leftover COMpact objects

<u>Type of Stellar</u> <u>Explosion</u>	<u>Compact</u> <u>Remnant</u>
Type Ia	NOTHING!
Failed Type Ia	NEUTRON STAR?
Type II	NEUTRON STAR
	BLACK HOLE
Gamma-Ray Burst	BLACK HOLE

Black holes

Evidence for Black holes

<u>Stellar Mass</u> <u>Black Holes</u> M ~ 3 - 20 M_{sun}

<u>Supermassive</u> <u>Black Holes</u> M ~ 10⁶ – 10⁹ M_{sun}