How do function and projection targets constrain synaptic connectivity?
Multiple whole-cell recordings to assay connections between cell pairs

- Information about the presence and strength of connections
- But false negatives due to slicing artefacts

Excitatory connectivity in the neocortex is neither uniform nor random.

Overrepresentation of bidirectional motifs

L5 pyramidal cells, Song et al. (2005)

Connection strengths are variable and their distribution has a long tail

L5/6 pyramidal cells, Deuchars, West, Thomson (1994)
Vibrissa cortex, L4 stellate \rightarrow L2/3 pyramid

Visual cortex, L2/3 \rightarrow L2/3 pyramid

Vibrissa cortex, all excitatory connections

Visual cortex, L5 \rightarrow L5 pyramid

Feldmeyer et al 2002

Holmgren et al 2003

Markram et al 1997
Are neurons connected by few strong synapses in a sea of weak synapses?

Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer & Mrsic-Flogel (Nature 2015)
Acuity (cycle/°)
Human 46
Mouse 0.5
Mapping receptive fields with two-photon calcium imaging and reverse correlation

Example cell

Stimuli

Linear receptive field

Calcium response

Quiescence Spike

Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer & Mrsic-Flogel (Nature 2015)
Layer 2/3
300 μm x 300 μm x 56 μm

Mutiple patch clamp

Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer & Mrsic-Flogel (Nature 2015)
Relating synaptic connections to receptive fields

Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer & Mrsic-Flogel (Nature 2015)
Spatial correlation of the receptive fields as a measure of cell-to-cell similarity

Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer & Mrsic-Flogel (Nature 2015)
Similarity of receptive fields predicts probability, strength, and reciprocity of synaptic connections

- Spatial correlation is a strong predictor of connectivity
- Cell pairs with positive correlations are more likely to connect with strong connections
- Reciprocal connections are stronger and exist between cell pairs with similar receptive fields

Cossell, Iacaruso, Muir, Houlton, Sader, Ko, Hofer & Mrsic-Flogel (Nature 2015)
At least in primary visual cortex, the evidence implies that neurons are connected by a few strong synapses in a sea of weak synapses.