Fusion and Astrophysical Plasma Physics Group

The Fusion and Astrophysical Plasma Physics Group within the Physics Department and the Center for Astrophysics and Space Sciences at the University of California, San Diego is led by Professor Patrick H. Diamond and consists of two research scientists-- Mikhail Malkov, Fred Hinton, and four graduate student researchers-- and is managed by an administrative assistant.

Most Recent Publication:

"Anomalous Viscosity of the Quark-Gluon Plasma" - Juhee Hong & P. H. Diamond (2014)


The shear viscosity of the quark-gluon plasma is predicted to be lower than the collisional viscosity for weak coupling. The estimated ratio of the shear viscosity to entropy density is rather close to the ratio calculated by š¯’©=4 super Yangā€“Mills theory for strong coupling, which indicates that the quark-gluon plasma might be strongly coupled. However, in the presence of momentum anisotropy, the Weibel instability can arise and drive the turbulent transport. Shear viscosity can be lowered by enhanced collisionality due to turbulence, but the decorrelation time and its relation to underlying dynamics and color-magnetic fields have not been calculated self-consistently. In this paper, we use resonance broadening theory for strong turbulence to calculate the anomalous viscosity of the quark-gluon plasma for nonequilibrium. For saturated Weibel instability, we estimate the scalings of the decorrelation rate and viscosity and compare these with collisional transport. This calculation yields an explicit connection between the underlying momentum-space anisotropy and the viscosity anomaly.



The memory of Professor Marshall N. Rosenbluth- an American plasma physicist and member of the National Academy of Sciences- who passed away on September 23, 2003.


We are working primarily on the theory of fusion plasma including:

  • Nonlinear dynamics of plasmas and fluids
  • Anomalous transport
  • Self-organized criticality in confined plasma
  • L-H transition, transport barrier physics
  • Dynamo theory
  • Nonlinear waves in space plasma



Our work is primarily funded by the Office of Fusion Energy Sciences of the U.S. Department of Energy.

Grant No. DE-FG02-04ER54738.