A Physics-Based Diet Plan

homer-donutThe holiday season is upon us, and for many, this translates into a marked uptick in the consumption of tasty food treats. I’m no different, and can really pack it in on such occasions. For instance, the day after Thanksgiving this year, I stepped on the scale to find myself about 5 pounds (~2 kg) above normal weight. I kicked in my diet plan, and by Monday morning (3 days later) I was back to normal. Resume course. I use a simple formula, backed by physics, that works every single time. The topic is Do-the-Math-relevant for two reasons: it applies quantitative physics to everyday life, and it touches on attitudes relevant to energy/resource conservation.

Continue reading

The Real Population Problem

Sometimes considered a taboo subject, the issue of population runs as an undercurrent in virtually all discussions of modern challenges. Naturally, resource use, environmental pressures, climate change, food and water supply, and the health of the world’s fish and wildlife populations would all be non-issues if Earth enjoyed a human population of 100 million or less.

The subject is taboo for a few reasons. The suggestion that a smaller number would be nice begs the question of who we should eliminate, and who gets to decide such things. Also, the vast majority of people bring children into the world, and perhaps feel a personal sting when it is implied that such actions are part of the problem. I myself come from a long line of breeders, and perhaps you do too.

Recently, participating in a panel discussion in front of a room full of physics educators, I made the simple statement that “surplus energy grows babies.” This is motivated by my recognition that population growth bent upwards when widespread use of coal ushered in the Industrial Revolution and bent again when fossil fuels entered global agriculture in a big way during the Green Revolution. These are really just facets of the broader Fossil Fuel Revolution. I was challenged by a member of the audience with the glaringly obvious statement that population growth rates subside in energy-rich nations—the so-called demographic transition. How do these sentiments square against one another?

So in the spirit of looking at the numbers, let’s explore in particular various connections between population and energy. In the process I will expose the United States, rather than Africa, for instance, as the real problem when it comes to population growth.

Continue reading

Crippling Intellects

Star Trek brainiac

People can be individually smart and collectively dumb. Or some may argue that people can be individually dumb yet collectively smart. When it comes to plotting a future path, I think we often get the worst of both worlds. In this post, I’ll look at the role that mental horsepower plays in our societal narratives, for better or for worse. We’ll explore two aspects to the problem: people who are so smart that they have dumb ideas; and smart people who are held captive by the manufactured “dumb” of society.

A word of warning: “smart” and “dumb” are loaded words, and even impolite. We place so much value on intelligence in our society that being called smart can make a person’s day, while being called dumb can cut to the core. We’re very sensitive to people’s perceptions of our intellectual standing, and some of the choicest insecurities are laid upon this foundation. I use “smart” and “dumb” as blunt instruments in this post, so if you’re particularly touchy on the topic, either steel yourself or skip the post and call it the smartest thing you did all day.

Let me preface what I am about to say by the disclaimer that most of this is conjecture. I have little data, relying instead on hunches about what makes people tick based on personal observations.

One other disclaimer: this isn’t a post whose veiled message is how smart I am. I might once have thought so, but then I met bona-fide geniuses when I was in grad school at Caltech. Fortunately, I was mature enough at that point for it not to cause a crisis of confidence or identity, and rather enjoyed the window I had into the off-scale brilliance of some individuals. So let’s go ahead and put me in the dumb box so we can move on to what I want to say.

Continue reading

Survey the People

The futuristic survey (covered in last post) has attracted about 1300 respondents, 900 from DtM, 300 from the Energy Bulletin (now Resilience.org), and a smattering from other places.

I will ultimately be sharing the results, but the habitual readers of the aforementioned sites are perhaps not representative of the population at large.

Thus I would like your help in pushing this out to a broader population.  See if you can get your friends and family members to take the survey, and perhaps even pass the link on to their friends, etc.  I’ve never done this sort of thing before, so do not know what to expect.  But let’s give it a try, yeah?

Here’s the link you want to pass on in whatever form (paste into e-mail, Twitter, link on FaceBook, whatever works): https://www.surveymonkey.com/s/2ZC6RD9

Thanks for your help—should be very interesting.

Futuristic Physicists?

www.dvdtoponline.com

One day, sitting around with a group of undergraduate physics students, I listened as one made the bold statement: “If it can be imagined, it can be done.” The others nodded in agreement. It sounded like wisdom. It took me all of two seconds to violate this dictum as I imagined myself jumping straight up to the Moon. I may have asked if the student really thought what he said was true, but resisted the impulse to turn it into an impromptu teaching moment. Instead, I wondered how pervasive this attitude was among physics students and faculty. So I put together a survey and in this post report what I found. The overriding theme: experts say don’t count on a Star Trek future. Ever.

Continue reading

Ruthless Extrapolation

We humans owe much of our success to our ability to recognize patterns and extrapolate trends to anticipate a future state. My cats, on the other hand, will watch a tossed toy mouse travel toward them across the room—getting ever-bigger—all the way until it smacks them between the eyes (no, they’re not strapped down—I’m not that sort of scientist). But far beyond an ability to avoid projectiles, our ancestors were able to perceive and react to changes in local food and water supplies, herd movements, seasonal cues, etc. Yet this fine tool can be over-used, and I see a lot of what I call ruthless extrapolation. In almost every case, extrapolation works until it doesn’t.  When the fundamental rules of the game change, watch out!

As with many aspects of human behavior, some of the finest commentary on the matter is served up by The Simpsons. In one episode, Lisa Simpson is taken to the orthodontist to evaluate whether or not she needs braces. The “doctor” runs a simulation based on current growth rates, producing an alarming graphic of teeth gone wild.

Image obtained from saucesome.net

Marge shrieks and is ready to do whatever it takes to protect her daughter against this cruel fate. Extrapolation can, of course, be used to argue both for impending doom or future prosperity—sometimes based on the same data. I started this blog with an extrapolative foil to demonstrate the insanity of continued physical growth, in fact. A tangential follow-up illustrated the hopelessness of differentiating a steady-state energy future from an energy crash using current data (although a continued exponential rise is already a poor fit).

Continue reading

Chris Martenson Podcast

I’ll cheat on my bi-weekly posting plan and slip in this podcast conversation between Chris Martenson and myself, covering many of the topics I have written about in the last year.

If you don’t have 45 minutes, and are a faster reader than I am, a transcript is also available—mercifully leaving out many utterances of “um” and “you know” (which is all I seem to hear when I listen to a recording of myself).  The original source and surrounding intro/write-up can be found on the Chris Martenson website.

Supermoon Disappointment

Putting on my astronomer hat, as one whose main research focus involves measuring the distance between the Earth and Moon, I feel compelled to “speak out” about the “supermoon” hype that crops up periodically.

Last night’s full moon was touted to be a “supermoon”—larger than normal.  As a result, many folks made it a point to watch the Moon rise.  I love the fact that people are paying attention to the Moon, getting outside, and enjoying the serene experience of watching the Moon creep over the horizon.  What I don’t like is that the hype leads to an overall sense of disappointment in many.  Is the campaign a net positive, or a net negative?  I don’t know.

In this post, we’ll look at the numbers and see just how special the supermoon is.

Continue reading

My Great Hope for the Future

[slimstat f='count' w='ip' lf='resource contains my-great-hope'] views this month; [slimstat f='count' w='ip' lf='strtotime equals 2011-07-01 | interval equals -1'] overall

So far on Do the Math, I’ve put out a lot of negative energy—whatever that means. Topics have often focused on what we can’t do, or at least on the failings or difficulties of various ambitious plans. We can’t expect indefinite growth—whether in energy, population, or even growth of the economic variety. It is not obvious how we maintain our current standard of living once fossil fuels begin their inexorable decline this century. And as I’ve argued before, achieving a steady-state future implies approximate equity among the peoples of the Earth, so that maintaining today’s global energy consumption translates to living at one-fifth the power currently enjoyed in the U.S.

In this post, I offer a rosy vision for what I think we could accomplish in the near term to maximize our chances of coming out shiny and happy on the tail end of the fossil fuel saga. I’m no visionary, and this exercise represents a stretch for a physicist. But at least I can sketch a low-risk, physically viable route to the future. I can—in part—vouch for its physical viability based on my own dramatic reductions in energy footprint. I cannot vouch for the realism of the overall scheme. It’s a dream and a hope—a fool’s hope, really—and very, very far from a prediction or a blueprint. I’ve closed all the exits to get your attention. Now we’ll start looking at ways to nose out of our box in a safe and satisfying way.

Continue reading

The Way is Shut

When I first approached the topic of societal energy in 2004, I became aware for the first time that our energy future was not in the bag, and proceeded to explore alternative after alternative to judge the viability and potential pitfalls of various options. I have retraced my steps in Do the Math posts, exposing the scales at which different energy sources might contribute, and the practical complexities involved. My spooky campfire version of the story, a la Tolkien: The Way is Shut.

Alright, I’m overstating things a bit. The good news is that there do exist energy flows and sources that qualify as abundant or at least potent. However, many of the alternatives represent ways to produce electricity, which applies only to about one-third of our current energy demand. The immediate threat is therefore the short term liquid fuels crunch we will see when the global petroleum decline commences within the decade.

In this post, I will reflect on the lessons we learn after having characterized the various alternatives to fossil fuels. There will still be some tidying-up to do on energy alternatives not treated thus far, but by and large the nature of content on Do the Math is about to pivot toward addressing the question “What can we do now?” In some sense, a common thread so far has been: “easier said than done,” or “don’t count on that technology saving our bacon.” I’ve closed all the exits to get your attention. We’re boxed in. Okay, the exits aren’t really closed: they’re just not as wide open as they would need to be for me to be complacent. So now we’ll start looking at ways to nose out of our box in a safe and satisfying way.

Continue reading

p5rn7vb