The Alternative Energy Matrix

[slimstat f='count' w='ip' lf='resource contains alternative-energy-matrix'] views this month; [slimstat f='count' w='ip' lf='strtotime equals 2011-07-01 | interval equals -1'] overall

Breathe, Neo. I’ve been running a marathon lately to cover all the major players that may provide viable alternatives to fossil fuels this century. Even though I have not exhausted all possibilities, or covered each topic exhaustively, I am exhausted. So in this post, I will provide a recap of all the schemes discussed thus far, in matrix form. Then Do the Math will shift its focus to more of the “what next” part of the message.

The primary “mission” of late has been to sort possible future energy resources into boxes labeled “abundant,” “potent” (able to support something like a quarter of our present demand if fully developed), and “niche,” which is a polite way to say puny. In the process, I have clarified in my mind that a significant contributor to my concerns about future energy scarcity is not the simple quantitative scorecard. After all, if it were that easy, we’d be rocking along with a collective consensus about our path forward. Some comments have  asked: “If we forget about trying to meet our total demand with one source, could we meet our demand if we add them all up?” Absolutely. In fact, the abundant sources technically need no other complement. So on the abundance score alone, we’re done at solar, for instance. But it’s not that simple, unfortunately. While the quantitative abundance of a resource is key, many other practical concerns enter the fray when trying to anticipate long-term prospects and challenges—usually making up the bulk of the words in prior posts.

For example, it does not much matter that Titan has enormous pools of methane unprotected by any army (that we know of!). The gigantic scale of this resource makes our Earthly fossil fuel allocation a mere speck. But so what? Practical considerations mean we will never grab this energy store. Likewise, some of our terrestrial sources of energy are super-abundant, but just a pain in the butt to access or put to practical use.

In this post, we will summarize the ins and outs of the various prospects. Interpretation will come later. For now, let’s just wrap it all up together.

Continue reading

Nuclear Fusion

Ah, fusion. Long promised, both on Do the Math and in real life, fusion is regarded as the ultimate power source—the holy grail—the “arrival” of the human species. Talk of fusion conjures visions of green fields and rainbows and bunny rabbits…and a unicorn too, I hear. But I strike too harsh a tone in my jest. Fusion is indeed a stunningly potent source of energy that falls firmly on the reality side of the science fiction divide—unlike unicorns. Indeed, fusion has been achieved (sub break-even) in the lab, and in the deadliest of bombs. On the flip side, fusion has been actively pursued as the heir-apparent of nuclear fission for over 60 years. We are still decades away from realizing the dream, causing many to wonder exactly what kind of “dream” this is.

Our so-far dashed expectations seem incompatible with our sense of progress. Someone born in 1890 would have seen horses give way to cars, airplanes take to the skies, the invention of radio, television, and computers, development of nuclear fission, and even humans walking on the Moon by the age of 79. Anyone can extrapolate a trajectory, and this trajectory intoned that fusion would arrive any day—along with colonies on Mars. Yet we can no longer buy a ticket to cross the Atlantic at supersonic speeds, and the U.S. does not have a human space launch capability any more. Even so, fusion remains “just around the corner” in many minds.

Continue reading

Warm and Fuzzy on Geothermal?

The Earth started its existence as a red-hot rock, and has been cooling ever since. It’s still quite toasty in the core, and will remain so for billions of years, yet. Cooling implies a flow of heat, and where heat flows, the possibility exists of capturing useful energy. Geysers and volcanoes are obvious manifestations of geothermal energy, but what role can it play toward satisfying our current global demand? Following the recent theme of Do the Math, we will put geothermal in one of three boxes labeled abundant, potent, or niche (puny). Have any guesses?

Continue reading

Nuclear Options

simpsons.wikia.com

A recent thrust on Do the Math has been to sort our renewable energy options into “abundant,” “potent,” and “niche” boxes. This is a reflection of my own mathy introduction to the energy scene, the result of which convinced me that we face giant—and ultimately insurmountable—hurdles in our quest to continue a growth trajectory. It is not obvious that we will even manage to maintain today’s energy standards. We have many more sources/topics to cover before moving on to the “now what” phase of Do the Math. Meanwhile, requests for me to address the nuclear story are mounting. So before readers become mutinous, I should interrupt the renewable thread to present my nuclear reaction. It’s a rich topic, and in this post I will only give a tutorial introduction and my big-picture take. A single post can’t possibly address all the nuances, so my main goal here is to demystify what nuclear is all about, build a vocabulary, and set a foundation for further discussion in later posts.

Continue reading