100 MPG on Gasoline: Could We Really?

3685 views this month; 3685 overall

Since I was a teenager, I frequently heard stories that some guy had invented a car that could get 100 miles per gallon (MPG), but that powerful interests (often GM, Chevron, etc.) had bought rights to the idea and sat on it. We suckers were left to shell out major bucks for gasoline, when a solution was in hand and under wraps.

Leaving aside the notion that such a design would bring unbelievable prosperity to its holder (i.e., no real incentive to sit on it), let’s look at what physics says is possible.

We like cars because we can travel quickly from point A to point B. So let’s evaluate the energy requirements to make that journey at freeway speeds. We will use the somewhat awkward (although appropriate) speed of 67 m.p.h. because it conveniently maps to 30 meters per second. At these speeds, aerodynamic resistance is the dominant energy drain, so we will start by evaluating only this to get a lower bound on fuel efficiency, and find that we do a pretty good job! Continue reading

Can Economic Growth Last?

0 views this month; 0 overall

As we saw in the previous post, the U.S. has expanded its use of energy at a typical rate of 2.9% per year since 1650. We learned that continuation of this energy growth rate in any form of technology leads to a thermal reckoning in just a few hundred years (not the tepid global warming, but boiling skin!). What does this say about the long-term prospects for economic growth, if anything?

Gross World Product

World economic growth for the previous century, expressed in constant 1990 dollars. For the first half of the century, the economy tracked the 2.9% energy growth rate very well, but has since increased to a 5% growth rate, outstripping the energy growth rate.

The figure at left shows the rate of global economic growth over the last century, as reconstructed by J. Bradford DeLong. Initially, the economy grew at a rate consistent with that of energy growth. Since 1950, the economy has outpaced energy, growing at a 5% annual rate. This might be taken as great news: we do not necessarily require physical growth to maintain growth in the economy. But we need to understand the sources of the additional growth before we can be confident that this condition will survive the long haul. After all, fifty years does not imply everlasting permanence.

The difference between economic and energy growth can be split into efficiency gains—we extract more activity per unit of energy—and “everything else.” The latter category includes sectors of economic activity not directly tied to energy use. Loosely, this could be thought of as non-manufacturing activity: finance, real estate, innovation, and other aspects of the “service” economy. My focus, as a physicist, is to understand whether the impossibility of indefinite physical growth (i.e., in energy, food, manufacturing) means that economic growth in general is also fated to end or reverse. We’ll start with a close look at efficiency, then move on to talk about more spritely economic factors. Continue reading