A Physics-Based Diet Plan

homer-donutThe holiday season is upon us, and for many, this translates into a marked uptick in the consumption of tasty food treats. I’m no different, and can really pack it in on such occasions. For instance, the day after Thanksgiving this year, I stepped on the scale to find myself about 5 pounds (~2 kg) above normal weight. I kicked in my diet plan, and by Monday morning (3 days later) I was back to normal. Resume course. I use a simple formula, backed by physics, that works every single time. The topic is Do-the-Math-relevant for two reasons: it applies quantitative physics to everyday life, and it touches on attitudes relevant to energy/resource conservation.

Continue reading

Let’s Blow this Joint

I have a confession to make. When we moved into our current house three years ago, we had to sell our clothes dryer due to gas/electric incompatibility (happens every time we move!). So we lived without a dryer for three years, hanging clothes out to dry, and generally being frugal about washing vs. re-wearing clothes. Well, after several weather-induced trips to the laundromat this winter, we (or can I lay this all at my wife’s feet?) finally broke down and bought a used washer/dryer set on Craigslist. We’ll still let the sun dry our clothes 95% of the time, but have other options now.

Even though this little vignette does relate to the common Do the Math theme of low-energy lifestyles, the actual point of bringing it up is that the washer/dryer came from a house that had just been on display as a model for energy efficiency—including the washer and dryer. At the house, we met Jason Beckman, of Classic Residential, Inc., who had carried out many of the efficiency upgrades to the house. I thought it would be instructive to have him perform an energy audit at our home—especially a blower door test to expose ventilation issues.

As a bonus, after the nominal audit activities were over, I was able to spend some quality time with the blower door, doing extensive tests in virtually every room in the house. What I found was certainly instructive for me, and hopefully will be useful to a broad audience as well.

Continue reading

Death of a Battery

Four 150 A-h 12-V golf-cart batteries

Four golf-cart batteries used in my off-grid home PV system. Each is 12 V, 150 A-h, thus 1.8 kWh of storage.

All the metrics looked great. The 2.7-year-old lead acid batteries in my off-grid photovoltaic system appeared to have settled into a consistent mid-life performance. Monthly maintenance (equalizing, adding distilled water) promised to keep the batteries in prime condition for some time to come. Based on cycle depth, I expected another 2.5 years out of the present set of batteries. Life was good.

Then, during my absence over the course of Thanksgiving weekend, one of the batteries expired. No forewarning. Just gave up. A previous post expressed an overall disappointment in batteries, now reinforced by this sudden nosedive.

In this post, I’ll show the metrics on my system detailing the demise of “Battery E.” The gruesome graphics are intended for mature audiences.

Continue reading

This Thermal House

If you want to make your house more efficient at repelling the unpleasantness outdoors (whether hot or cold), what should you do first? Insulate the walls? Insulate the ceiling? The roof? Better windows? Draft elimination? What has the biggest effect? While I have regrettably little practical experience tightening up a house (it’s on my bucket list), I at least do understand heat transfer from a physics/engineering perspective, and can walk through some insightful calculations. So let’s build a fantasy house and evaluate thermal tradeoffs at 1234 Theoretical Lane.

Continue reading

The Energy-Water Nexus

The principal challenge of this century, in my view, will be adapting to a life without abundant, cheap fossil fuels. It has been the lifeblood of our society, and turns out to have some really fantastic qualities. The jury is still out as to whether we will develop suitable/affordable replacements. But additional challenges loom in parallel. Water is very likely to be one of them, which is especially pertinent in my region. For true believers in the universality of substitution, let me suggest two things. First, come to terms with the finite compactness of the periodic table. Second, try substituting delicious H2O with H2O2. It has an extra oxygen atom, and we all know that oxygen is a vital requisite for life, so our new product will be super-easy to market. Never-mind the hydrogen peroxide taste, and the death that will surely visit anyone foolish enough to adopt this substitution. Sometimes we’re just stuck without substitutes.

Substitution silliness aside, water and energy are intimately related in what has been termed the Energy-Water Nexus (see for example the article by Michael Webber from this conference compilation; sorry about the paywall). We’ll explore aspects of this connection here, touching on pumping water, use of water for the production and extraction of energy, and desalination. As glaciers and snowpack melt and drought becomes more common in the face of climate change, our water practices will need to be modified, hitting energy right in the nexus.

Continue reading

Blow-by-Blow PV System Efficiency: A Case Study for Storage

A short while back, I described my standalone (off-grid) urban photovoltaic (PV) energy system. At the time, I promised a follow-up piece evaluating the realized efficiency of the system. What was I thinking? The resulting analysis is a lot of work! But it was good for me, and hopefully it will be useful to some of you lot as well. I’ll go ahead and give you the final answer: 62%. So you could peel away now and risk using this number out of context, or you could come with me into the rabbit hole…

Continue reading

Rocking the AC

When it comes up in casual conversation that I do not generally heat or cool my house, people either move to another seat or look at me with some mixture of admiration and disbelief. When non-Californians then find out that I live in San Diego, they might huff or spew, which often involves some embarrassing projectile escaping their mouth. But the locals are more consistently impressed—more so by my forsaking heat than AC (San Diego has very mild summers by U.S. standards). This summer, I turned on the AC for the first time since we bought the house three years ago. All in the name of science! I was blown away. Here is what I learned.

Continue reading

Solar Data Treasure Trove

I have not kept it secret that I’m a fan of solar power. Leaving storage hangups aside for now, the fact that the scale of available power is comfortably gigantic, that perfectly efficient technology exists, that it’s hard-over on the reality axis (vs. fantasy: it’s producing electricity on my roof right now), and that it works well almost everywhere—what’s not to like? Did you trip over that last part? Many do. In this post, we’ll look at just how much solar yield one may expect as a function of location within the U.S.

The ancient Mayans laboriously accumulated a substantial set of observational data on solar illumination across America well ahead of the present need. Okay, it wasn’t actually the ancient Mayans. It was the National Renewable Energy Lab (NREL), who embarked on a 30-year campaign beginning in 1961, covering 239 locations across the U.S. and associated territories. Imagine this. How many people were even cognizant of solar power in 1961? Yet the forward-thinking scientists at NREL appreciated the value of a solid baseline dataset way back then. This level of foresight seems akin to the Mayans constructing a calendar going all the way to 2012. That’s all I’m saying. It’s a gift from the past.

I have often consulted and enjoyed the product of this work over the years—called the NREL Redbook, or more formally, the Solar Radiation Data Manual for Flat Plate and Concentrating Collectors. But with a snazzy blog post as motivation, I have taken it up a notch and produced a variety of graphical representations of the dataset to explore what it can tell us. Let’s begin the guided tour.

Continue reading

My Modest Solar Setup

I have made repeated references in past posts to the modest off-grid photovoltaic (PV) system I built to cover a large share of our—again modest—electricity usage.  By popular demand, I’ll take you on a tour of the system: it’s history, its composition, and adaptation to my house.

In 2007, I acquired a single, second-hand solar panel—intent on doing something useful with it. Confronted with a variety of options, and eager to explore multiple paths, I purchased a second panel and proceeded to set up a dual system: two stand-alone off-grid PV systems mounted side by side. It was really cool. I was able to power my television console and living room lights off of the two systems, while experimenting with different components and learning to live (part of) my life on natural power. I wrote a comprehensive article about how to size and design such a system, which may be worth reading first. Since that initial success, I have incrementally expanded my system so that I now get more than half of my electrical power from eight panels sitting in the sun. This is their story.

I have enough to say about my solar setup (and PV systems in general) that I must break this topic into multiple posts. In this, the first, I will describe the components, functions, and evolution of the system. In a future post, I will present system performance data and an assessment of efficiency of the various components. Perhaps even later I can explore the impacts of panel orientation, tracking, horizon obstructions, and geographic location.

Continue reading

TED-Stravaganza

My wife calls it spying. I call it data. To-may-to, To-mah-to. It’s true that I know what she’s been up to (electrically) while I’m away. And it’s true that I can access this information anywhere in the world that has an internet connection. But domestic surveillance is not my aim (cameras and microphones would be far more informative in that regard). I just care about the energy angle.

In this post, I will present example results from monitoring and recording my home electricity use, demonstrating the marvelous secret world it reveals. My interest lies in putting numbers on my own behaviors, and in characterizing the appliances in my house. Some of this rubs off on my wife, and some of it rubs her the wrong way. But as I explained in an earlier post, I kept a note she once wrote that said: “Okay, TED’s pretty cool.”

Who is TED? TED is The Energy Detective. That same earlier post told the story of TED’s tortured journey to our home—a tale of excitement, rejection, and ultimate acceptance.

This post is not meant to convey anything deep and meaningful about the energy challenges we face, except for the fact that those challenges provided a background motivation for me to explore and monitor energy data in my home (it should be obvious by now that I’m a data-holic). Rather, I will simply showcase a number of data captures from TED so you can see for yourself the interesting hidden behaviors of appliances, and develop some intuition about how much of a toll various devices take.

Continue reading

payday loans