

Radio Waves

Electromagnetic Radiation Radio Transmission and Reception **Modulation Techniques**

Electromagnetism

- Electricity and magnetism are different facets of electromagnetism
 - recall that a static distribution of charges produces an electric field
 - charges in *motion* (an electrical current) produce a magnetic field
 - a *changing* magnetic field produces an electric field, moving
- Electric and Magnetic fields produce forces on charges
- An accelerating charge produces electromagnetic waves (radiation)
- Both electric and magnetic fields can transport energy
 - Electric field energy used in electrical circuits & released in
 - Magnetic field carries energy through transformer

Spring 2006

UCSD: Physics 8; 2006

UCSD: Physics 8; 2006

Electromagnetic Radiation

- Interrelated electric and magnetic fields traveling through space
- All electromagnetic radiation travels at $c = 3 \times 10^8$ m/s in vacuum - the cosmic speed limit!
 - real number is 299792458.0 m/s exactly

Spring 2006

UCSD: Physics 8; 2006

Examples of Electromagnetic Radiation

- AM and FM radio waves (including TV signals)
- · Cell phone communication links
- Microwaves
- Infrared radiation
- Light
- X-rays
- Gamma rays
- · What distinguishes these from one another?

Lecture 13

UCSD: Physics 8; 2006

Lecture 13 2

Lecture 13

13

AM Radio in Practice • Uses frequency range from 530 kHz to 1700 kHz - each station uses 9 kHz - spacing is 10 kHz (a little breathing room) → 117 channels - 9 kHz of bandwidth means 4.5 kHz is highest audio frequency that can be encoded • falls short of 20 kHz capability of human ear • Previous diagram is exaggerated: - audio signal changes slowly with respect to radio carrier • typical speech sound of 500 Hz varies 1000 times slower than carrier • thus will see 1000 cycles of carrier to every one cycle of audio

Spring 2006

AM vs. FM

• FM is not inherently higher frequency than AM

- these are just choices

- aviation band is 108–136 MHz uses AM technique

• Besides the greater bandwidth (leading to stereo and higher audio frequencies), FM is superior in immunity to environmental influences

- there are lots of ways to mess with an EM-wave's amplitude

• pass under a bridge

• re-orient the antenna

- no natural processes mess with the frequency

• FM still works in the face of amplitude foolery

Lecture 13 4

Converting back to sound: FM

• More sophisticated

- need to compare instantaneous frequency to that of a reference source

- then produce a voltage proportional to the difference

- Compute L = [(L+R) + (L-R)]/2; R = [(L+R) - (L-R)]/2

- amplify the L and R voltages to send to speakers

• Amplification is common to both schemes

- intrinsic signal is far too weak to drive speaker

Assignments

• HW5: 12.E.24, 13.E.13, 13.E.15, 13.E.16, 13.P.7, 13.P.9, 13.P.11, plus additional required problems available on website

UCSD: Physics 8; 2006

Lecture 13 5