Physics 12: Midterm Exam

May 6, 2013
Version A

- Be sure to write your name at the top of each page
- Multiple Choice problems are worth 2.5 points each for a total of 52.5 points
- True/False problems are worth 2.5 points each for a total of 17.5 points
- Short Answer Problems total 30 points
- Show your reasoning, write formulas where appropriate (short answer)
- You may use $10 \mathrm{~m} / \mathrm{s}^{2}$ in lieu of $9.8 \mathrm{~m} / \mathrm{s}^{2}$ in all calculations
- If you miss one part of the short answer, but need the number for the next part, make up a number and proceed

Formula List:

Factors of Ten quadrillion: 10^{15}; Q trillion/tera: 10^{12}; T billion/giga: 10^{9}; G million/mega: $10^{6} ; \mathrm{M}$ thousand/kilo: $10^{3} ; \mathrm{k}$

- $E=m c^{2}$
- $F=\frac{P}{A}=\sigma T^{4} ; T$ in ${ }^{\circ} \mathrm{K} ; T\left({ }^{\circ} \mathrm{K}\right)=T\left({ }^{\circ} \mathrm{C}\right)+273 ; T\left({ }^{\circ} \mathrm{C}\right)=\left(T\left({ }^{\circ} \mathrm{F}\right)-32\right) \times \frac{5}{9}$
- $\varepsilon_{\text {max }}=\frac{T_{h}-T_{c}}{T_{h}} ; T$ in ${ }^{\circ} \mathrm{K}$
- $\mathrm{COP}=\frac{T_{h}}{T_{h}-T_{c}} ; \mathrm{EER}=3.4 \frac{T_{c}}{T_{h}-T_{c}}$

Complex Units:

- Newtons: $\mathrm{N}=\mathrm{kg} \cdot \mathrm{m} / \mathrm{s}^{2}$
- Joules: $\mathrm{J}=\mathrm{N} \cdot \mathrm{m}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{2}$
- Watts: $\mathrm{W}=\mathrm{J} / \mathrm{s}=\mathrm{kg} \cdot \mathrm{m}^{2} / \mathrm{s}^{3} ; 1$ horsepower $=746 \mathrm{~W}$

Numerical and Conversion factors:

- 1 calorie $=4.184 \mathrm{~J} ; 1$ kiloalorie $=4,184 \mathrm{~J} ; 1 \mathrm{Btu}=1055 \mathrm{~J} ; 1 \mathrm{kWh}=3.6 \mathrm{MJ} ; 1$ QBtu $\approx 10^{18} \mathrm{~J}$
- density of water is $1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~g} / \mathrm{ml}=1 \mathrm{~kg} / \mathrm{l}=1000 \mathrm{~kg} / \mathrm{m}^{3}$; heat capacity is $4184 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$
- density of air is $1.3 \mathrm{~kg} / \mathrm{m}^{3}$; heat capacity is $\sim 1000 \mathrm{~J} / \mathrm{kg} /{ }^{\circ} \mathrm{C}$
- Stefan-Boltzman constant, $\sigma=5.67 \times 10^{-8} \mathrm{~W} / \mathrm{m}^{2} /{ }^{\circ} \mathrm{K}^{4}$

